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TOPOLOGY OF THE SIEGEL SPACES OF DEGREE 

TWO AND THEIR COMPACTIFICATIONS 

Ronnie Lee and Steven H. Weintraub 

1. Introduction 

1.1. In this paper, we st~udy the various compactifi

cations of Siegel spaces of degree two. We discuss the 

Borel-Serre, the Satake, and the Igusa compactifications. 

This last one is of special interest because it gives a 

projective variety with at most finite quotient singulari

ties, and can be treated in the framework of Mumford's 

toroidal compactification theory ([ARMT]). 

We treat this smooth compactification in great detail. 

Apart from its intrinsic interest, it provides one of the 

first non-trivial examples of Mumford's theory, and the 

description here, for G = SP4' is a model for other rank 

two groups, e.g., G = SO(2,q) and G = SU(2,q). 

Let 62 denote the Siegel upper-half space of degree 2, 

consisting of 2-by-2 complex symmetric luatrices with posi

tive-definite imaginary part 

G = G2 = {Z E M2 ( ([) I2; = t Z , 1m Z > O}. 

There is a natural action of the discrete group G~) = 

SP4~) on this space, and we conside~ as well the principal 

congruence subgroup of level p ~ 3 

r = {g ESp4 C1L.) I9 ::; I mod p}. 

Denote by 6/r* the Igusa compactification of the quotient 

space (;/r. We call G/r* - G/f the "boundary" of 6/r*. It 

is a union of boundary components, each of which is known 
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as an elliptic modular surface. We study these surfaces 

in detail, determining their cohomology and Hodge structure, 

as well as the Chern classes of their normal bundles in 

G /r*.
2 

For r a normal subgroup of finite index in G(Z), as 

in this example, these spaces admit a natural action of the 

factor group GGl)/r. The above-mentioned data is essential 

in computing the holomorphic Lefschetz numbers ([AS]) for 

this action. 

In the case of the Siegel modular spaces, this can be 

viewed as an extension of the work of Erich Heeke. In 

1928, he discovered a relation between the class number 

h(-p) of the imaginary quadratic field Q(!-p) and the 

multiplicities of certain cuspidal representations in "Uber 

Ein Fundamental problem Aus Der Theorie Der Elliptichen 

Modulfunctionen" (see [HI]). Let p > 7 be a prime, p = 3 

(mod 4), let F p be the finite field of order p, and let 

SL2 (Fp 
) be the special linear group of order 2 over this 

finite field. There are two irreducible SL2 (F )-representap 

tions R R2 which are dual to each other, R ~ Ri,l , l 

dim Ri = (p-l)/2; in [H2] Hecke proved that if ffi is the
i 

multiplicity of R in the space of weight 2 cusp forms of
i 

level p, then the difference m - m is the same as thel 2 

class number h(-p) of Q/-p, m - m = h(-p). For cuspl 2 

forms of weight greater than 2, the same result is true, 

and these forms were investigated thoroughly by Hecke and 

Fe~dmann (see [F]). 

In modern language, Heeke's work is about the rank one 

group G = SL(2) (SP2) acting on the upper half plane Gl • 
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The space of cusp forms of weight k and level p can be 

identified with a cohomology group HOC6 /r*:L ) for an1 k 

appropriate line bundle L and the representation computedk , 

by the holomorphic Lefschetz formula. 

Let Sk(f) be the space of cusp forms of weight k over 

G/f (known as the space of cusp forms of weight k, level p, 

and degree 2). Since SP4(F ) operates on G/f, this spacep 

Sk(f) of cusp forms is a representation space of SP4(F ).
p 

To generalize Hecke's result, it is natural to consider 

non-self-dual irreducible representations p ~ p* of SP4(F )'p 

and compute the difference in multiplicities of p and p* 

appearing in Sk(f). In [Y], Yamazaki proved that there is 

an isomorphism between this space Sk(f) and the analytic 

cohomology HO(G/f*iLk) with coefficients in a line bundle 

L
k 

• It follows that the difference in multiplicities may 

be obtained by computing the holomorphic Lefschetz numbers. 

Some of these results were announced in [LWl], and a further 

treatment can be found in a forthcoming paper of Horikawa. 

This paper is organized as follows: 

We begin, in Section 2, by discussing the process of 

compactifyingG/f. In fact, we discuss various compactifi

cations of this quasi-projective variety, all of which are 

based on the combinatorial design known as the Tits build

ing, considered in 2.2. In 2.3 we discuss the Borel-Serre 

compactification, a smooth manifold with boundary, in 2.4 

the Satake compactification, a singular projeciive variety, 

and in 2.5 the Igusa compactification G/r*, a non-singular 

variety which is a desingularization of -the Satake compacti

fication. 
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As mentioned above, each irreducible component in the 

boundary of G/f* is an elliptic modular surface of level p. 

This is a non-singular fibration over the modular curve of 

level p, i.e. it is a fibration except over a finite number 

of points whose inverse images are singular. These kinds 

of manifolds were first studied by Kodaira in [K], and the 

elliptic modular surface was further studied by Shioda in 

[So]. In Section 3, we study the algebraic topology and 

Hodge structure of the elliptic modular surface. 

In Section 4, we determine the Chern classes of this 

surface and its normal bundle in G/f*, as well as other Chern 

classes which enter into the computation of the holomorphic 

Lefschetz numbers. 

The second author would like to thank Oxford University 

for its hospitality while much of this work was being done. 

2. CompactificatioDS 

2.1. SiegeZ space of degree 2. Let 6 2 denote the 

Siegel upper half space consisting of symmetric, complex, 

2-by-2 matrices with positive definite imaginary component, 

6 = {z E M2 (C) Iz = t Z, 1m Z > O}.
2 

Let SP4 Gl ) denote the integral symplectic group of degree 4. 

Every element g in this group can be written in the form of 

a 2-by-2 block matrix 

A : B 
I 
I

(g) -----.---
I
 
I


C I D
 
I
 

where A,B,C,D, satisfy the following conditions: 
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There is an action of sP4(JL) on the Siegel upper half space 

G defined by the formula: 

Z ~ Zeg = (ZB + D)-le(ZA + C). 

However, SP4(Z) contains elements of finite order, and the 

quotient space is not a manifold. To avoid this difficulty, 

it is the usual practice to consider the principal congruence 

subgroup of level p 

A D I mod p 

_:_-~-_:-] Sp4 (ll.)r E 

C : D B C 0 mod p-

Then the quotient space 6 2/r is a complex manifold of com

plex dimension 3, called the Siegel modular space. The only 

drawback of the Siegel modular space is that it is not a 

closed manifold, and there are various methods to compactify 

this manifold. In the next few sections, we will discuss 

the Borel-Serre compactificatiol1 6/rc , the Satake compacti

fication 6/r, and the Igusa compactifica1:ion 6/r*. From 

the topological point of ~iew, the Borel-Serre compactifica

tion G/rc is the most natural because it gives the actual 

topological boundary of the manifold. From the point of 

view of history, the Satake compactifica1:ion is the oldest. 

Finally, from the point of view of algebraic geometry, 

the Igusa compactification is most satisfactory because it 

results in a nonsingular projective variety. (See [BS], 

[St], I I g], [AMRT].) 
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2.2. Tits building. All these compactifications are 

based on a combinatorial design called the Tits building. 

Let V denote the free Z-module of rank 4 wi th base 

e 
l 

,e ,f ,f • Over this free module, there is a nonsingular,2 l 2 

skew-symmetric, bilinear pairing A: V x V ~ l defined by 

the condition: 

A(e.,e.) = A(f.,f.) = 0, A(e.,f.) = 0 ..•
1 J 1 J 1 J 1J 

The subgroup of automorphisms of V which preserves this 

pairing A is of course isomorphic to SP4~) mentioned before. 

However, we will use the notation Sp(V) to denote this 

group. Whenever it is necessary to use a matrix presenta

tion, we regard V as the space of integral row vectors 

(xl ,x2 'Yl'Y2) and regard Sp(V) ~ SP4~) as a matrix group. 

Associated to V, there are the vector spaces 

V~ ~ V ~W defined over the rational field and the vector 

space V ~ V ~Fp defined over the finite field Fp of p 

elements. Accordingly, there are the algebraic groups 

Sp(V ) over the rationals, and Sp(V) over the finite field. 
W

The structure of the parabolic subgroups in Sp(V~) is 

well known. There are two types of maximal parabolic sub

groups, and one minimal parabolic. For example, as repre

sentatives for the maximal parabolic groups, we have the 

following subgroups of matrices: 

I
I
I
I
I

all 0 0 0 

0a a a 2421 22 I
I 

I--------+-------PI 
a 

(2.2.1) E SP4 (Il) 
I
I
I
I 

3l a 32 
a a

33 34 

a 41 
a 42 0I

I 
a 44_ 
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a 
I
I 0 0all 12 I 
I 

a a I 0 02l 22 I 
I 
I(2.2.2) P E Sp 4 (I))--------T-------2 I 

a a I a a3l 32	 I 33 34 
I 
I_ a a a a

4l 42	 I 43 44
I 

and for the minimal parabolic subgroups, we have 

all 0 I
I 0 0 
I 

a a I 0 012 22	 I
I 
I 

(2.2.3) n P ESP4(~)Po PI --------4-------I 
I 

2 
a a a a

31 32 I
I 33 34 

l- a 41 
I 

a I 0 a
42 I 44 

Every parabolic subgroup in SP4(W) is conjugate to one of 

these parabolic subgroups Pi' i = 0,1,2. 

To record the incidence relation among parabolic sub

groups, we consider the set P of all rational parabolic 

subgroups partially ordered by inclusion. The geometric 

realization of this partially ordered set: P is called the 

Tits building, and is denoted by the symbol lev), 

IPI (V). 

In the present situation, lev) is a graph (I-dimensional 

simplical complex) and can be explained in terms of the 

simplectic geometry of V. Let ?l' ?2 and ~o denote respec

tively the set of lines L~ in V ' the set of 2-dimensional 
W 

isotropic subspaces H~ in V~, and the set of flags 

.(L~,HW) where H~ is an isotropic subspace and L~ is a line 

in HID' L C H(1)'
I1 
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~l {L~IL~ is a line in VQ}
 

~2 {H~IH~ is a maximal isotropic subspace in VQ}
 

'PO {(L ,H ) IH E 'P2,L~ E 'P1,L SO H }·

ID I1l ID ID Il 

Using these sets ~O' ~l' ~2 we now form a graph: for 

every line LQ in ~l or every plane H~ in ~2 we provide a 

vertex, and for every flag (L~,H~) we provide an edge whose 

endpoints are the vertices (L )' (H~). The resulting graph
W

is homeomorphic to ](V). For there is a one-to-one cor

respondence between the sets ~O' ~l' ~2 and respectively 

the set of parabolic subgroups conjugate to PO' PI' P2 

respectively. Given a line L~ E ~l' a plane H~ E ~2' or 

a flag (L~,H~) E ~O' we have a parabolic subgroup defined 

by the stabilizers in Sp(V~), 

P(L~) {g E Sp(V~) IL~.g LIlJ, 

P(H ll) {g E Sp(V~) IH~·9 H~J, 

P(LIJ,HjD) = {g E Sp(Vll) ILtD·g = LW,H~.g = H~}. 

Example (2.2.4). Let denote the line generated bye l 

the vector (1,0,0,0) and let e A f denote the planel l 
generated by the vectors (1,0,0,0) and (0,1,0,0). Then 

P(e1 ), P(eIAfl), P(e1,e1Afl) coincide with the group PI' 

P2' and P0 de fined in (2. 2 •1), (2 • 2 • 2), and (2. 2 • 3) • 

The building ](V) in the above paragraph consists of 

infinitely many vertices and edges. To apply this to the 

theory of compactification, we form the quotient space 

](v)/r of the building J(V) modulo the action of the con

gruence subgroup r. This is a finite graph whose vertices 

and edges are in one-to-one correspondence with r-conjugacy 

classes of parabolic subgroups in ~l/r u ~2/r and ~O/r 
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respectively. Once again, this can be explained in terms 

of the symplectic geometry of the vector space V. 

We consider nonzero vectors l = (x l ,x2 'Yl'Y2) in V, 

and identify two such vectors 1 and 1 1 whenever they differ 

only by a sign ±l, 

The resulting set is called the set of based lines in V, 

denoted by Pl. In a similar manner, we consider the nonzero 

2exterior products h = 1 A 1 in A V satisfying the condi1 2 

tion: 

A(1 ,1 ) = 0 mod p.1 2

Again, we say two such products h = 11 A 12 , hi = 1i A 1~ 

are equivalent if they differ only by a sign ±l, h = ±h ' • 

The set ~2 of all these equivalence classes is called the 

set of based isotropic planes in V. Note that given any 

element h in ~2' there is an isotropic subspace H in Vh 

defined by the formula: H = {s E VlsAh = O}. However,h 

two different elements h, hi in ~2 may define the same iso

tropic subspace, Hh = Hh, * h = ah ' • For a ~ 1, h and hi 

represent different bases of the same isotropic subspace. 

Finally, we define ~o to be the set of pairs (l,h) such 

that 1 E ~l' h E ~2' 1 A h = O. This allows us to construct, 

as before, a I-dimensional simplical complex J±(V) which 

has ~O as its set of edges and which has ~l U ~2 as its 

set of vertices. We will refer to J±(V) as the based 

Tits building of V. 
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Lemma (2.2.5). Let] (V) be the based Tits buiZding
± 

defined as above. Then there is a simpZicaZ isomorphism of 

] (V) with the quotient space ](V)/r.
± 

Proof. For the proof, it is enough to construct 

natural isomorphisms: 

Given a line L in ?l' we note that its intersectionQ 

with the integral lattice V is a one dimensional subspace, 

and so it determines a pair of generators ii, 

L Q n V = rz = 7l< Q, ). 

We define a map 

?1 + 7'1 
of ?l to ~l by assigning to every line LQ the vector 

±Q,(mod p) obtained by reducing the element i modulo p. An 

element g in r induces the identity map on the vector 

space V, and so 

i-g == Q, mod p. 

As a result, the above map of PI to ~l can be factored 

through the quotient space 

?l-----+7'l /r

\ ./,/ 
~-l 

It is not difficult to verify that this is a bijection. 

In a similar manner, we define bijections 

? If -+ tp , ? If + tp •o 0 2 2 

Given a maximal isotropic subspace H in ?2' its intersection 

H n V gives a two dimensional isotropic subspace in V. Let 
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i 1 be a base for this subspace. Thenl , 
2 

A(1 ,1 ) = 0l 2 

and the exterior product 1 A 1 determines up to sign an
1 2 

. 2 
e 1emnet J.n /I. V. There are mappings 

defined by assigning to H the corresponding product 

i A 1 mod p. It is easy to check that these factorl 2 

through r and give rise to bijections. 

Since 'PO/r, 'Pl/r, 'P2/r and ;75"0' 7'1' ;P"2 are respectively 

the edges and vertices of the simplical complexes ](V)/r, 

] (V), it follows that these complexes are the same. This
± 

proves the lenwa. 

2.3. BopeZ-Serpe compactification. As mentioned 

before, the Borel-Serre compactification of 6 /r is a2

compact manifold G2/rc with boundary, or strictly speaking, 

a manifold with corners. Let aG/rc denote its boundary. 

Then its construction can be described by a procedure called 

"blowing up" the building J±(V). The idea is to replace 

each of the simplices in J±(V) by a K(n,l)-manifold, and 

then glue them together in a canonical manner according to 

the incidence relation in ]±(V) •. 

To begin with, associated to each rational parabolic 

group P E 'P there is a real parabolic group P(R), and a 

discrete subgroup r p r n P(R) in P(R). We now construct 

a K(n,l)-manifold with f as its fundamental group. Let Kp 

be the unitary subgroup 
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A : B 
I 
I

K -----+---I 
I 

-B : A 

I 

in SP4(R). Then K is a maximal compact subgroup in SP4(R), 

and there is a canonical isomorphism 62 ~ K,SP4(R) of 62 

onto the right-coset space K,SP4(R). In this way, the 

Siegel space G /f can be identified with the double-coset2

space K,SP4{R)/f. Associated to .every rational parabolic 

subgroup P E f>, we consider the subgroup Kp = K n p(R) in 

the real parabolic group p(R) obtained by taking the inter

section of K and p(R). In fact, Kp and f p are subgroups 

of a smaller group. Let X(P) denote the character group of 

P, and 

Then 
0 

f p f n p (R) f n p (R) , 

0 

Kp K n peR) K n p (R) • 
0 

The subgroup Kp is a maximal compact subgroup in P (R) , and 

so the symmetric space 
0 

e(P) = Kp'P (R) , p E f> 

is contractible. This. allows us to form a K(n,l)-manifold 

by letting the discrete group f p operate on this space, 

and taking the double coset space: 
0 

e' {P} = Kp'P(R}/fp = e(p}/fp • 

Note that if two parabolic subgroups P, Q are conjugate to 

-1
each other P gQg ,by an element g in SP4(~)' then there 

is a natural induced mapping 

g: e' (P) -+ e' (Q) 
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between the corresponding K(n,l)-manifolds. Putting these 

mappings together, we have actions of SP4(~) on the disjoint 

unions 

~ e' (P), ~ e' (P), ~ e' (P). 
PE1 0 PE1 PE/ 21 

To "blow up" the building J±{V) , we form the quotient spaces 

~ e' {p)/r, ~ e' (p)/r, il e' (p)/r. 
PE 1° PE 11 PE 7'2 

Note that the connected components in the above spaces are 

in one-to-one correspondence with the set of simplices, 

7'o/r ~ ~o' 7'l /r ~ ~l' ?2/r ~ ~2 

in the building J±{V). Thus for each based line ~ E ~l' 

based plane h E ~2' and based flag (£,h) E ~o' we have 

K(n,l)-manifolds and we will denote these manifolds by the 

symbols 

X(i), X{h), X(i,h). 

Notation (2.3.1). We will also use the symbols L
l

, 

L and L to denote the manifolds x(e l ), X(el"f ), and2 O l 

X(el,el"f l ), where e l , e l " f l are given as follows 

x{e ), e == ± (1,0,0,0),l l 

X{el"f l ), e1"f l = ±(1,0,0,0) (0,1,0,0) , 

x(el,el"fl ) · 

It remains to patch these manifolds together. For 

this, we need the Levi-decomposition of parabolic groups. 

Recall the choice" of maximal compact subgroup K in SP4(R>. 

Associated to this, there is the Cartan involution 

8: SP4(R) + SP4(R) 

defined by 8(g) = tg-l 
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Let N be the nilradical of p(R>. Then the parabolic sub

groups P(R) can be written as semi-direct products 
o 

p{R) = M-N = M-A-N 

where M, N, A are invariant under e, 
0	 2M	 nXEX(M)Ker{x : M -+ R} · 

0	 0 

M is	 semi-simple and A is in the centralizer of M. 

The discrete group f p has a similar decomposition 

f p fM-f N 

where f = f n M, f = f n N. The maximal compact sub-M N 
o 

group Kp in M is obtained by taking the intersection of K 
o 

with	 M, 
o 

Kp =	 K n p = K n M. 
o 

Let ZM denote the symmetric space Kp~. Then this is a 

contractible space with an action of the discrete group 

f • Hence the quotient spaceM

o -+ f M -+ ZM -+ ZM/fM -+ 0 

is a K(n,l)-manifold. Since 
o 

Kp'P = K,M-N = (ZM> x N, 

there is a diagram of fibrations: 
0 

0 ----+ N/fN --. Kp,P/fp ----+ ZM/fM ----+ 0 

ft Kt p
0 t(2.3.2) 0 ----+ ----+	 • 0 N P • ZM 

--.... ft ----+ ft • ft0 N P M • 0 

The middle space on the top row is by definition the 

K(n,l)-manifold e' (P). It follows from the top row of the 

above diagram that e'{P) is the total space of a fiber 

bundle with ZM/fM as its base space, with nilmanifold 

N/f as its fiber, and with fM as its structure group.N 
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We now examine these fibrations in the case of the 

submanifolds Ll , L
2 

, LO in (2.3.1). Let PieR), i = 0,1,2, 

be the parabolic subgroups defined in (2.2.1), (2.2.2) and 
o 

(2.2.3), and let Mi , Ai' N be the corresponding subgroupsi 

appearing in the Levi decomposition of P. (R). Then, it is 
1. 

not difficult to see directly that for i = 1,2, the sub

group M contain SL (R) as their identity components.
i 2 

o 
Furthermore, the symmetric space ZM. = Kp.'Mi , i = 1,2, 

l. l. 

can be identified with the Siegel upper half plane 6
1

, 

ZM. ~ SO(2),SL2 (R) ~ Gl , 
1 

o 

and the double coset space Kp.,Mi/rM. can be id~ntified 
1 1 

with the quotient space 

ZM./rM. ~ SO(2),SL2 (R)/r(2,p) 
1 1 

where the fundamental group r(2,p) is the full congruence 

subgroup in SL2~) of level p. In the following, we will 

refer to this quotient space as the open modular curve. 

Over this base space, there is a fibration 

-----.» L. 
1 

1
 i 1,2.
 

* -------.» ZM./.lM. 
1 1 

where the fiber Ni/rN. is a 3-dimensional Heisenberg 
l. 

space for i = I, and a 3-dimensional torus for i = 2. 

The above manifold L can be compactified to a manifoldi 
c

L i with boundary by compactifying the base space Gl/r andl 

then adding the torus, or nilmanifold, to each boundary 

component. 
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If we restrict our attention to the minimal parabolic 

subgroup PO' and the manifold MO' then the above fibration 

(2.3.2) is trivial. However, there are two different 

1fibrations of La over S with nilmanifolds as fibers. 

These two fibrations f i : La + sl, i = 1,2 are induced by 

two natural homomorphisms: 

i = 1,2 

where POi stands for the parabolic subgroup in Mi , 
o 

POi = Po n Mi. The fiber of these maps are the nilmanifolds 

Ni/fN . 
1 

f. 
1 

* ----~~ Po ./fp
,1 O,i 

Comparing this with the boundary components in the previous 

example, it follows that the base manifold Po ./f canp
,1 0,1 

be identified in a natural manner with the boundary compo

c 
nent of ZM./fM.' and the manifold La can be identified with 

1 1 

one of the boundary components of Li , i = 1,2, ~i: La ~ 

dO(L ). This allows us to patch these manifolds La, LI ,
i 

L by gluing them together along the boundary component2 ,
 

[1 U [2
 

~1\ !~2 
La 

The above examples demonstrate the general pattern of 

gluing the components 

.~ X(£), ~ X(h), 11 X{£,h), 
£E'!l hE'! 2 {£,h)E7'O 
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together. The manifolds X{i), X{h) are fibrations 
o 0 

XCi) ~ B(i), X(h) ~ B{h), 
o 0 

with base space the open modular curves B{i), B(h) and with 

fiber a torus or a nilmanifold. We compactify the base 
o 0 

manifolds B(£), B(h) by adding a circle to each neighborhood 

of the cusp and then compactify X(£), X(h) by adding the 

corresponding fibration to these boundary circles. In 

this way, we obtain manifolds with boundaries X{i)c, X{h)c 

which are fibrations over 2-dimensional manifolds B{£)c, 

B{h)c, 

X{£)c ~ B{£)c, 

X(h)c ~ B(h)c. 

To obtain the Borel-Serre boundary, we identify these 

boundary components aX(£), aX(h:l with the manifold X(h,£) 

and glue all these manifolds together along their boundary 

components il X{£,h) 
(£,h) 

II X ( £) u 11 X (h) 

~ \ /
11 X(£,h) 

( £,h) 

We can describe the above gluing process more explicitly 

by means of an action of SP4(Fp). The fundamental group of 

Li is a normal subgroup in PieR) n SP4(R), and we define 

P. to be the quotient group 

Pi = {P i n Sp4 (Il) IfP. t, 

1 

In terms of matrices, these are matrix groups-obtained by 

changing coefficients in formulas (2.2.1), (2.2.2), (2.2.3) 

to coefficients in the finite field F. It is not difficult 
p 

to see from our construction of L. 
1 

1 
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o 

Li = Kp.,Pi/rp .' 
1 1 

that the group P. operates in the manifold L .• On the other 
1 1 

hand, there is a natural action of SP4 = SP4(V) on the 

oriented building J±(V), and the isotropy subgroups of the 

simplices (e ), (e A e ), (el,e A e ) are precisely thel l 2 l 2

groups Pi' P2 and PO. This allows us to rewrite the union 

~ X{R,), ~ X{h), 11 X{R"h) in the following manner: 
R,E'l hE'2 (R"h)EPO 

11 X{R,) - Ll .:. SP4' 11 X{h) - L2 ~ SP4' 
R,E~ ~l hE~ P 21 2
 

il X{R"h)
 

(R"h) E~O
 

The action of P., i = 1,2, on the manifold L. can be 
1 1 

extended to its compactification L. so as to get compact
1 

manifolds with SP4 actions 

il X{R,)c ~ Ll ~ SP4'
 
R,EPl PI
 

In addition, the diffeomorphisms 

~l: L O ~ dOLl' ~2: L O + dOL2 

can be chosen so that they are equivariant with respect to 

the action of PO. This allows us to extend ~l' ~2 to 

embeddings: 

~4>1: L
O .:. SP4 dL .:. SP4 + L .:. SP4I l 

Po PI PI 

<P 2 : LO ~ SP4 + dL2 .:. SP4 ~ L
2 .:. SP4· 

Po P2 P 2 

Finally, we can glue everything together by means of <P , 4>2:l 
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(L
l	 ~ SP4) II (L

2 ~ SP4)
 
PI P2
 

~\ /~l 
LO ~ SP4 

Po 

to get a closed five dimensional manifold with an action of 

Proposition (2.3.3). There is a piecewise-smooth 

equivariant homeomorphism with respect to the action of 

-	 cSP4 on the boundary (j(G2/f> of Borel-Serre compactifica

tion to the manifold 

defined as above. 

2.3. Satake aompaatifiaation. The oldest compacti 

fication of G2/r is due to I. Satake. The idea is a 

natural generalization of the classical SL2-situation where 

the procedure is to add rational points p/q to the upper 

half plane 61 and then form the quotient Gl /f(2,p). 

Satake's approach was the same: adding rational boundary 

components to the Siegel half space 62 and then forming 

the quotient space 6
2
/f. With a suitable topology on G2 , 

it was proven by Baily and Borel that G2/f is a projective 
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algebraic variety. Unlike the classical situation, the 

Satake compactification G2/r is no longer a nonsingular 

variety. 

Example (2.4.1). For r = SP4 ClL), the Satake compacti

fication is the union of G2/SP 'l) together with lower4 

dimensional Siegel spaces 

G'2/Sp4 CfL) = G2/Sp4 (JL) U Gl /SP2 (llJ u GO/SPO (ll) • 

Here GO/SPO(Jl) is understood to be an isolated point, and 

it is added to Sl/SP2(Jl) to compactify this manifold. 

For the principal congruence subgroup r of level p 

the Satake compactification G;/r can be described in terms 

of the lower dimensional Satake compactification ~/r(2,p), 

and the building J±(V). In [Z], S. Zucker described a map 

c -
G2/r + S2/ r 

of the Borel-Serre compactification onto the Satake com

pactification which extends the identity map in the interior. 

This map was exploited by R. Lee and R. Charney in their 

paper [CL]. 

Let a~2/r be the complement of G2/r in the Satake 

compactification 

aG2/r = G2/r - G2/r. 

This is called the slngular set of G2/r. We now construct 

this singular set d~ by means of the building J±(V). 

Recall that the manifolds X(t), t E ~l are singular 

fibrations over the base manifolds B(t). These base mani

folds are compact 2-dimensional manifolds, and their 

boundary components are in one-to-one correspondence with 

the isotropic planes h, h ~~. In other words, each boundary 
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circle corresponds to an edge (i,h) E J (V) attached to
± 

o 
the vertex (i). In fact, we can think of B(i) as sitting 

above the vertex (i), and on the edges coming out from this 

vertex there are the collar neighborhoods of the boundary 
o 

component. We can compactify B(i) by adding a point b(i,h) 

to the end of each of these collar neighborhoods 
o 

B(i) = UhE0 B(i) U b(i,h)
'1 2 

and we can think of these added points as sitting above the 

second type of vertices (h), h E ~2. In this way, the mani

folds B(i) are connected up to each other, and the resulting 

manifold U
iE

7' B(i) is homeomorphic to the singular set 
1 

d~7f. The manifold B(i) is a I-dimensional projective 

variety, and is referred to in the literature as the 

modular curve. 

This attaching process can be described more explicitly 

in terms of the manifold L • As mentioned before, there is
I 

a fibration 

*----------... z / r 
M M

l l 

with ba~e space the open modular curves B(i l ) = SO(2)'SL(2)/ 

f(2,p). Instead of adding a circular boundary component, 

we add one point to ZM /f for each cusp. The group ~lMI 1 

acts transitively on these boundary points of B(i ), withl 

isotropy subgroup isomorphic to ~O. This gives rise to 

equivariant embeddings 
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~2: PO,Sp ~ P 2,Sp. 

By means of ~i' i 1,2, we glue the spaces B(ii) and 

P 'Sp together to get a space2

W = B(i l ) ~ Sp _U _P2'SP 
P l PO,Sp 

with an action of Sp. 

Proposition (2.4.2). Let dG
2
/r denote the singuZar 

set of the Satake compactification. Then there is an equi

variant homeomorphism with respect to the action of Sp from 

the singuZar set S2/ r on to the space W defined as above. 

The proof of the above proposition follows immediately 

from the same argument as in [CL], and we will not repeat 

it here. 

2.5. The Theorem of torus embeddings. Let S2/ r be 

the Satake compactification described in the previous 

section. It was proven by Borel and Baily that the space 

G2/r is a projective variety. As pointed out in the intro

udction, the singularities of G2/r are extremely complicated 

and they present a major obstacle to studying it by algebraic-

geometric methods. 

Igusa was the first to find the cure for this problem 

by constructing a desingularization of this variety. We 

will refer to the resulting nonsingular projective variety 

G2/r* as the Igusa compactification. The object of the next 

two sections is to explain the Igusa compactification in the 

modern language of "toroidal compactification" as developed 

by D. Mumford (see [AMRT]). 
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First, by an algebraic torus over [, T = T{[), we mean 

an algebraic group isomorphic to a finite cartesian product 

[* x [* x ••• x [* where [* = GL {[) denotes the multiplical 

tive group of non-zero elements of [. Associated to this 

is the ring of algebraic functions f{OT) which is isomorphic 
_ -1 -1 

to a polynomial ring, f{OT) = [[Tl,T , ••• ,Tn,T ], wherel n 

the T are indeterminates. This can be explained in termsi 

of the group of characters of T, M = Horn 1 (T,[*). For a g-gr 

every element £ E M, we have the corresponding character 

function XE in f{OT)' and they form a base of f{OT) as a 

complex vector space, 

There is a dual object associated to M, namely the 

fundamental group N = Horn 1 ([*,T). Every element in a g-gp. 

N can be expressed in the form 

a l a 2 an 
Aa{t) = (t ,t ,··_,t ), 

There is a natural nonsingular pairing 

M x N -+ Horn ([* , [ * ) ~ 7L, (r, a) i.+ ( r, 0, ) 

defined by the formula X£{~ (t» = 0 r,a). 
a 

By a torus embedding, we mean an algebraic variety V 

which contains T as an open set, T c V, and which has a 

torus action T, T x V -+ V, extending the natural torus action 

of T on itself. A morphism of two torus ernbeddings T C VI' 

T C V is a map f: VI -+ V such that its restriction to T2 2 

is an epimorphism g: T -+ T and the diagram 

T x VI

1
(g,f) 

T x V2 

is commutative. 
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The simplest form of a torus embedding occurs when 

V = A is isomorphic to an affine space A ~ [n, and this is 

called an affine torus embedding. 

Example (2.5.1). Every algebraic torus ([*)n has an 

affine torus embedding. For this, we only have to consider 

the affine space An
([) _ [n, the inclusion ([*)n ~ [n, and 

the torus action ([*)n x [n ~ [n defined by (al, ••• ,a ).
n 

(zl,···,zn) = (alzl,···,anzn )· 

Note that in the above example the ring of algebraic 

functions r(O ) is the subring of polynomials [[TI ,T 2 ,··.,T ]
An n 

-1 -1
embedded in r(OT) - [[Tl,T , ••• ,Tn,T ]. In terms of thel n 

character group M of T, this amounts to taking the semi

group M_ generated by T ,T ,···,T , M_ c M, and forming
l 2 n 

the associated group ring [[M_] of this semi-group M_. The 

general theory of affine torus embedding can be studied in 

the same way by considering the character group M and semi

groups lying inside M. However, for our purpose, it is 

convenient to describe the theory in terms of the dual 

objects: NR, the Lie algebra of the torus, N = Lie(T),R 
and convex rational polyhedron cones (c.r.p.) in NR. By 

the last term, we mean a convex set a 

a = {x E NI~I~i(X) ~ 0, i = l,···,m} 

defined by rational linear functionals ~i. 

Theorem (2.5.2). There is a one-to-one correspondence 

(a,NR) ~ (T c Temb(a)) 

between the set ofc.r.p. cones a in NR which do not contain 

any linear subspace and the set of normaZ affine torus 
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embeddings of T, T c Temb(a). In addition, morphisms of 

such torus embeddings correspond bijectively to linear maps 

(a,~) -+ (a"~) of ~ which has finite cokernels and sends 

a into a'. 

For the proof of this theorem, we refer the readers to 

[AMRT], [0]. 

Example (2.5.3). If we consider the affine torus 

embedding in Example (2.5.1), ([*)n,=- ([)n, then the poly

hedral cone in NR is the positive cone defined by the 

coordinate planes, 

Example (2.5.4). Let T = ([*)2 be the 2-dimensional 

torus, and let ai be the convex cone in ~ = R2 
generated 

by the elements ~i = (1, i), ~i+l = (l,i+l), 

a. = {x~. + y~'+llx ~ 0, y ~ O}
111 

a. 
1 

iSince the matrix (1 i+l) is unimodular, it follows that1 

there is an isomorphism of N which takes si into (1,0) and 

si+l to (0,1), and so to the standard positive conea i 
2R~ in R , f: (oi,NR) + (R~,NR). This isomorphism induces 

an isomorphism of the torus f*: T -+ T. The affine torus 
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err~edding Temb(oi) associated to 0i is obtained by taking 

f* 2the composition T T c ([ • Here the affine torus embedding, 

T c ([2, in the right hand side is defined as in Example 

(2.5.1) . 

Let a be a convex rational polyhedral cone (c.r.p. cone) 

in NR, and let Temb(o) be the affine torus embedding associ

ated to o. Then the torus action on Temb(o) can be analyzed 

by the following theorem. 

Theorem (2.5.5). There is a one-to-one correspondence 

T ~ orb (T) 

between the set of simplices in a and the set of T-orbits 

orb(T) in Temb(O) such that 

(i) Orb (0) = T, 

(ii) dim T + dim orb(T) = dim T, 

(iii) T C T if and only if the closure of Orb(T l ) conl 2 

tains Orb(T ), Orb(T ) ~ Orb(T ).2 l 2

Example (2.5.6). Let 0i be the convex rational poly

hedral cones defined as in Example (2.5.4). Then there are 

two faces, T T + corresponding to the lines generatedi , l ,
i 

by Si and Si+l. Accordingly, there are two codimension-one 

T-orbits defined by the coordinate axes in Ternb(o.) ~ ([2.
1 

Definition (2.5.7). A rational partial polyhedron 

(r.p.p.) decomposition of NR is a collection ~ = {a} of con

vex rational polyhedral cones a in NR such that 

(i) if a E ~ and T is a face of a, then T E ~, 

(ii) if 0,0' E ~, then their intersection a n a' is a 

face of both a and a'. 
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Suppose we are given an r.p.p. decomposition (~,NR). 

By patching affine torus embeddings Temb(o), 0 E ~, together, 

we obtain an algebraic variety Temb{l1) containing T as a 

Zariski open set. Furthermore the patching process is so 

canonical that any morphism f: (I1,N) + (~',N') gives rise 

to a morphism f*: Temb{l1) + Temb{~') of t.he corresponding 

torus embeddings. Hence the general theory of torus 

embeddings can be summed up as follows. 

Theorem (2.5.8). There is an equivalence 

(11,N) ++ T c Temb{~) 

between the category of r.p.p. decompositions (~,N) and the
 

category of torus embeddings.
 

Here are two examples of r.p.p. decompositions. 

Example (2.5.9). Let 0i be the c.r.p. cones defined
 

in Example (2.5.4) and let l be the positive ray generated

i 

(1, i) • Then the collection ~ = {a.,l., (D,D)}
1 1 

2forms a r.p.p. decomposition of R. The ·torus embedding 

Temb{~) can be schematically represented as follows: 

,Q, 
1 

T----t~--------,Q,o 
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Recall that the affine torus embedding Temb(oi) is obtained 

by inserting two affine lines Orb(~i)' orb(~i_l) in T (see 

(2.5.6)). These two affine lines Orb(~i) in Temb(oi) inter

sect each other transversally at a point Orb(oi). To obtain 

the torus embedding Temb(~), we form the union U Temb(oi)' 

and glue the tori T c Temb(oi) and the affine lines Orb(Ti) 

in the consecutive affine spaces Temb(oi)' Ternb(oi_l) 

together. Hence we have an infinite family of projective 

lines, Orb(~i) ~ pl([), which has empty intersection 

Orb(~.) n Orb(~.) = ¢ for li-jl > 1, and has one intersec
1 ] 

tion	 point for li-jl = 1, Orb(~i) n Orb(~i+l) = Orb(Oi+l). 

Let us describe Temb(~) more explicitly. The dual cone 

to 0i is the convex cone generated by (i+l,-l) and (-i,l), 

yielding a torus embedding Temb(oi)' whose image we denote 

by [~, given by the map f.: ([*)2 + [2 by f. (z,w) = 
111
 

i+l -1 -i 2
(z	 w ,z w). Then Temb(~) = II [./~ where ~ is the fol
. 1 

1 

lowing identification: First we observe that 11 ([~)2 are 
. 1 
1 

all identified to ([*)2, (and we see T is open and dense in 

Temb (L1» so that (z., w.) E «([ ~) 2 ~ (z., w .) E «([ ~) 2 if for 
111 ] ] ] 

2 some	 (z,w) E (C*) , (z.,w.) = f.(z,w) and (z.,w.) = f.(z,w).
111 ] ] ] 

In particular, (z'+l'w.+ l ) ~ (z.,w.) if z'+l = z~w.,
1	 1 1 1 111 

-1 
wi +l = zi • 

Second we note that Orb(2 ) c Temb(oi) is identifiedi 

with Orb(~i) c Temb(oi+l). This is the identification of 

(zi'O) with (O,wi + l ) which we see is [* Ui [* where i(u) = 

u -1 Thus Orb(~i) = ([ U ([ = p1 «([), the projective line,i 

and Orb(oi) = Orb(~i) n Orb(~i+l) is the point 00 in Orb(~i)' 

which is identified with the point 0 in Orb(~i~l). 
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Example (2.5.10). Let P (R), N (R) denote the maximal2 2 

parabolic subgroup and its unipotent radical defined in 

(2.3.3). We denote by N2ClL) the integral lattice in N (R),2 

1~ -~--t--~-] B is a 2-by-2 symmetric 

integer matriX). 

Clearly, N 2 (Jl) is a free abelian group of rank 3, and 

associated to this abelian group there is a 3-dimensional 

algebraic torus T • The advantage of considering thep 
2 

algebraic torus in this manner is that there is an action 

of GL2 (fl) ~ M2 (fL) •A 2 (fL) on the subg rou p N 2 elL), and so an 

induced action of GL CIL.> on the algebraic torus T • We2 p 
2 

now describe a torus embedding of T whi.ch is equivariantp
2 

wi th respect to this action of G.L
2 

fJl.) • 

We note that the vector space N (R) can be identifiedp
2 

with the space of 2-by-2, real symmetric matrices. Inside 

this space, there is the open convex cone ~ of positive 

definite symmetric matrices-. On the boundary of this cone 

Q, there are three semi-definite symmetric integral matrices 

1 o o r 1 

[: 1 , l-lo o 

and they span a r.p. cone 

A +A 3 -A 3l 

;\1 ':\'2' A3 ~ 0).T3 = 1-A3 A2+A 3 
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If we consider the translates 1 
3 

·g of 1 by elements g in
3 

the group GL GZ) , then T 3 ·g and 1 either do not intersect2 3 

or their intersection 1 e g n 1 is a lower dimensional face.3 3 

Hence there is a r.p.p. decomposition ~ of N2 <R) defined by 

~ = {l i 
e glO < i ~ 3, g E GL 2 Gl)}, where 

TO {O}, T = {f0 
\0 :)IA ~ OJ, 

1 2 
{(AI o )IAI : O'} , and 

1 

\0 A2 A2 = 0 

3 
{(I+A 3 -A 3 \1) AI,A

2
,A

3 
> Of·L1 = 

-A 3 A +A2 3 

This decomposition is well-known from the reduction theory 

of quadratic forms. Under the equivalence relation of homo

thety, the space of positive semidefinite symmetric matrices 

has another model: namely the Poincare disk Gi ~ {zl Izi ~ l}. 

The cone 1 corresponds to an equilateral geodesic triangle3 

in the disk, and the group of tesselations is the same as 

[1-lJ
 
-1 1 

[: :J
 
Poincare disk with a triangulation by equilateral triangles 

and the dual triangulation represented by dotted lines 



TOPOLOGY PROCEEDINGS Volume 11 1986 145 

For our application in the next section, we have to 

consider the subspace 

o = U1E~nnorb(-r) 

in Temb(~) where 1 runs through all the c.r.p. cones lying 

in the interior of S"2. In other words, we delete all the 

orbits Orb(1) in Temb(~) associated to 1 0 -g, l 
l 

-g. Since 

the remaining cones are of the form 1 2 -g, 1 3 - g , the cor

responding orbits Orb(1 -g), Orb(1 -g) are of dimension one2 3 

and dimension zero by the Theorem (2.5.8 ii). As in Example 

(2.5.'9) it is not difficult to verify tha.t the closure 

Orb(1 2 
e 9) is isomorphic to a projective line, Orb(1 2 -9} 

l 
p ([). Hence the above space 0 consists of an infinite 

lnumber of projective lines p ([), and two of them either do 

not intersect or intersect transversely at one point. To 

give a precise description, we need the "dual" triangulation 

obtained by taking the center of each of the above triangles 

as a vertex, and the edge connecting the centers of two 

adjacent triangles as a vertex, and the edge connecting the 

centers of two adjacent triangles as a I-simplex (see figure). 

Every edge of this triangle corresponds to a projective line 

pl([) in 0, and two projective spaces intersect if they 

share a cornmon vertex. 

Let f(2,p) be the full congruence subgroup of level p 

in GL(2,l). Since the r.p.p. decomposition ~ is equivariant 

wi th respect to the action of GL (fL), there is an induced2 

action of f(2,p) on the torus embedding Temb(~) and its 

subspace O. The quotient space Gl /f(2,p)* of the Poincare 

space GI under the action of f(2,p) is known as the modular 
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curve of level p, and the triangulation ~ gives us a tri

angulation of 61/f(2,p)*. For p ~ 3, the group f(2,p) is 

torsion free, and its action on the triangulation does not 

fix any c.r.p. cones in the interior of n. Hence the 

action of the congruence subgroup f(2,p) on 0 does not fix 

1 any of the curves Orb(T2eg) ~ p ([) and so the quotient 

space O/f(2,p) is a union of projective lines pl([). Since 

S/f(2,p)* is compact, there are a finite number of cells in 

Sl/f(2,p)* and so there are a finite number of projective 

spaces in the corresponding space O/f(2,p). In particular, 

O/f(2,p) is compact. 

It is.worthwhile to point out that the dual triangula

tion gives rise to a triangulation of Sl/f(2,p)* by regular 

polygons with p sides. For p = 3,4,5 the modular curve 

G1/f(2,p)* is the Riemann sphere and the corresponding 

triangulations are the tetrahedron, the cube and the icosa

hedron. All these are, of course, known since antiquity. 

For higher values of p, we obtain a tesselation of the 

modular curve of genus 1 + (p-6) (p2_ l )/24 by (p2_1 )/2 

regular p-gons. 

2.6. The Igusa Compactification. We are now in a 

position to give a precise description of the Igusa com

pactification S2/ r *. 

Let n: 6 /r* ~ G2/f be the projection of the Igusa2

space onto the Satake space. Since this is a desingulariza

tion, n is an isomorphism in the interior 62/f. Recall the 

description in (2.4) that the singular set of the Satake 

space, 2G2/r = €2/ r - S2/ r , consists of modular curves: 
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o 
U_ B (.Q,), B (.Q,) B (.Q,) U aB (.Q,) , 

.Q,EPI 

aB(.Q,) U b(.Q"h),
 
.Q,c:h.
 
hEP
2
 

-1 1 1
0
Let n (B(.Q,», n- (b(.Q"h», n- (B(.Q,» denote respectively 

o 
the inverse image in G2/I'* of the open modular curve B(.Q,), 

the boundary cusp b(.Q"h), and the modular curve B(.Q,). The 

finite symplectic group SP4(Fp) operates on both the spaces 

~/r *, (;2/ r , and the map n is equivarian1: wi th respect to 

these actions. It is clear that the action of SP4(Fp) on 

the set PI is transitive, and so the induced action on the 

irreducible components {B(.Q,)}.Q,E~ is also transitive. It 
1 

follows immediately that the same is true for the action on 

-1 0 -1 -1
the set of inverse images n (B(.Q,», n (b(.Q"h», n (B(.Q,». 

Thus the subspaces n-l(B(.Q,'» ~ n-1 (B(.Q,'», n-l(b(.Q"h» ~ 

n-l(b(.Q,',h t », n-l(B(.Q,» ~ n-l(B(.Q,'» are isomorphic and 

they do not depend on the choice of .Q, or h. To describe 

6'"2/r*, we will concentrate on the following spaces: 

(2.6.1) 

(2.6.2) 

(2.6.3)
 

where .Q, 1 = ± (1,0,0 , 0), hI = ± (I, 0,0,0) /\ (0, I, 0 ,0), and we
 

will describe how they are glued together.
 

In (2.2.4), we associated to the line .Q,l and the iso

tropic plane hI' parabolic subgroups PI = P(.Q,I)' P2 = P(hl ). 

Let N be the unipotent radical in Pi' let Zi be the centeri 

of Ni , let Zi([) be the complexification of Zi' and let 

f Z . be the intersection of f with Zi' r z . Zi n f. Then 
1 1 
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r Z . is a free abelian discrete group, and the quotient 
1 

Zi([)/f Z . is an algebraic torus Tp . ~ Zi([)/f . with r . as z z 
1 111 

its fundamental group. According to the results of Borel 

and Harish-Chandra, there is an embedding of S2 as an open 
~ 

subspace in its compact dual symmetric space S2 = SP4([)/ 
v 

PO([)' 62 c S2. Over the last space the group Zi (£) 

operates, and so by translation there is an open subspace 

G2 ·Z i «() containing S2 and invariant under the group action 

of Zi([)' 6 c 6 2 •Zi ([) c 6
~ 

2 • From the theory of Siegel2 

domains (see [Y]), there is a decomposition of S2·Zi([) 

into a product 

(2.6.4) G2 ·Z i ([) ~ x (Zi'N ) x Zi([)G2- i i 

where the first factoL G is the upper half space of2 i 

degree 2-i, and the second factor Zi'N is the quotient ofi 

N modulo its center. Factoring down by the action of f .,i z 
1 

we obtain an embedding of the quotient manifold G2/f . as z 
1 

an open subspace in S2·Zi([)/fz. ; G2- i x (Zi'Ni ) x Tp .' 
1 1 

(2.6.5) 

Before proceeding, let us consider some examples. 

ExampLe (2.6.6). In the case i = 2, the unipotent 

radical N is an abelian and so it coincides with its2 

center Z2' 

I : B 
----+---
o : I 

Both the spaces 0 and Z2'N 2 
consist of a single point. The 

group r is the group of integral matrices: z 2 



149 TOPOLOGY PROCEEDINGS Volume 11 1986 

B,- -~--t--~- ]
- I 

with B congruent to zero modulo p. Since r is naturallyz
2 

isomorphic to N2 (Z) in (2.5.10), the algebraic torus T p
2 

can be identified with the space of complex, symmetric 

2-by-2 matrices 

z .. of 0 
1J 

described there. As for the embedding 

TIl T12)it is defined by sending an element in( 
. T L

12 22 

the symmetric matrix 

(( Tll/p) e (T12/P») , 
e (.) exp(2nl=T .) 

e (L12/P ) e(T /p)22

in T • The image of this embedding consists of matricesp 
2 

(z .. ) in T such that (-loglzi_~1 I) is positive definite.p1J 2 

Examp Ze (2 • 6 • 7). In the case i 1, the unipotent 

radical N is the Heisenberg groupl 

- 1 I 
I 
I a 12 1 I_________L _ 

I 
: 1 -a12 
: 1 

I 
I 

_ 1 ..J: _ 

I 
a 32 : 1 a 31 
0 : 1a 32 
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The center Zl is the one-parameter subgroup 

I
 
I
 

1 l 
--------~---------I 

0 l 1a 3l 
o 0 l 1 

The discrete group r is infinite cyclic, a E Z withz 3l
I 

a = 0 mod p, and the algebraic torus Tp = Zl ([)/r is3l z1 1 

the one dimensional algebraic torus, Tp ~ [*. As for the 
1 

embedding, 

it is given by the formula: 

where Lil with Im(L ll ) > 0 lies in the upper half space SI' 

L 2 lies in a one-dimensional complex vector space identil 

fied with Zl'N and e(L /p) ~ 0 lies in the algebraicl , 22

torus Tp - [*. 
1 

We now return to the general theory. The Lie algebra 

of the algebraic torus Tp is naturally isomorphic to the 
1 

space Zl" r Z. 0 R ~ Z
1 
.• There is a composite mapping 

1 
pr3 1m 

6 2 ~ S2_i x Z'N x Zi ([) ~ Zi([) ~ Zi 

of the upper half space into this vector space Zi. It can 

be shown that the image of this mapping is an open convex 

cone Q in Zi. The key step in the theory of toroidal comi 

pactification is to choose a r.p.p. decomposition ~i of Zi 

with the following properties: 



151 TOPOLOGY PROCEEDINGS Volume 11 1986 

(2.6.8) the union U a is the rational closure of gi' 
oEI:1. 

1 

(2.6.9) the decomposition ~i is invariant under the 

induced action of f p . on Zi' 
1 

(2.6.10) the number of equivalent cones modulo f p . is 
1 

finite, 

(2.6.11) if Z. is a subgroup in Z., then ~. is the same as 
1 J 1 

the set of cones a E 1:1., a E 1:1 .• 
1 J 

In the situation of (2.6.11), Zi c Zj' it can be shown that 

the cone Q. is the intersection of Z. with the rational 
1 1 

closure IT. of ~ .• 
J J 

Once such a system of r.p.p. decompositions ~i is 

chosen, our theory in (2.5) gives us a torus embedding 

Temb(~i) of T .• From this, we have the spacep 
1 

0. U x Zi,N x Orb(T)
1 

62- i i
TE~.n~. 

1 1 

defined as a subspace in 6 . x Z.'N. x Temb(~l'). Because2-1 1 1 

of condition (2.6.10), there is an action of f p . on this 
1 

space. The quotient spaces 0l/f p , 02/fp are respectively 
1 2 

1the spaces n-1 (;(!1»' n- (b(!1,h1 » required in our com

pactification. The projection O./f to the Satake space
1 p . 

1 

is induced by the projection of O. onto the first factor 
1 

S2
-1

.•

ExampZe (2.6.12). As mentioned before, in the case 

i 2, the algebraic torus T p can be identified with the 
2 

algebriac torus described in (2.5.10). From the definition, 

it is easy to check that the convex cone g2 coincides with 
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the cone of positive definite symmetric matrices discussed 

there. The r.p.p. decomposition ~2 = {TieglO ~ i ~ 3, 

g E GL2~)} satisfies all the above conditions (2.6.9)

(2.6.11), and so it can be used to construct our torus 

embedding Temb(~2). Since the factors SO' Z2,N 2 are trivial, 

we have 

U GO x Z2'N2 x Orb(T) 
TE~2USl2 

U Orb(T) 
TE~2USl2 

o. 
The subgroup f operates trivially on this space, and so

N2 

the quotient under the action of f p f(2,p) efN is the 
2 2 

same as the quotient of 0 under the action of f(2,p), 

02/ f p ~ O/f(2,p). The structure of this space was studied 
2 

-1
thoroughly in (2.5.10), and this is our space TI (b(£1,h ))1

in 6'2/f*. 

Examplf (2.6.13). The situation for i = 1 is simpler. 

This is because in this case we have a one-dimensional 

algebraic torus T ~ [*. There is a single cone Tp 1 , 
1 

T ~ 0, in ~l' and the corresponding torus embeddingl 

Temb(~l) ~ [. Clearly this satisfies all the conditions 

(2.6.8)-(2.6.11). 

Since Orb(T 1 ) consists of a single point, we have an 

isomorphism 

°1
 - 6 x ZI'N1 
x Orb (T )
1 1 

- 6 x Zl'N11
 

- 6
1 

x [
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of 01 with the product of upper half space 61 and the com

plex affine space. As for the action of f , we observep
1 

tnat the subgroup f operates trivially and so there is an 
z 1 

induced action of f p /f z on 01. Using our description of 
1 1 

f as a semi-direct product in (2.3.3), f ~ f efN ' itp p M
1 111 

is easy to see that there is a semi-direct product decom

position of f p /f
z

1 1 

f /f - f e(f /f ); f(2,p)ez 2 
zp 1 1 Ml Nl zl 

with the congruence subgroup f(2,p) ; f as the quotient
M

1 

and with the free abelian group of rank 2, Z2 ; f N /f ' 
z

1 1 

as the kernel. In fact, it is more convenient to identify 

f p /f with the group of matrices: z1 1 

all a l2 0] alla 22 - a 12a 21 = 1
 

f /f a a
p 21 22 : all ~ a 22 - 1 mod p1 Zl
 1~31 a 32 a 12 a 21 a 31 = a 32
 

The upper 2-by-2 block lall a 12Jconstitutes the congruencea a
21 22 

subgroup f(2,p), and the last row (a ) gives the abelian31 ,a32 

kernel 7L 2 
• An element (Zl' z2) in the product 6"1 x ([ is sent 

under the action of f /f to the elementp z
1 1 

allZ l + z2 + +a 21 a 13 z 1 a 32 )
 
( + a + a
a 12 z 1 a 22 12 z

1 22 

It follows that the quotient space 0l/f is a fibration withP
1 

o 
the open modular curve B(~l) Gl /f(2,p) as its base and with 

the elliptic curve [/12 as its fiber. Throughout the rest 

of the paper, this total space is known as the open elliptic 
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o 0 

modular surface, and is denoted by D(~l)' D(~l) 

1 x ([If (2, p) x 71.2 
, 

o w2 
----~t D(,Q,l)

1 In 
* -------.t B (,Q, l) 

From the previous discussion, this total space is the por
o 

tion of the Igusa compactification sitting above B(,Q,l)' 
o -1 0 

D(~l) = TI (B(~l»' and TI is the projection of the Igusa 

compactification onto the Satake compactification. 

It remains to explain how O./f p are glued together.
1 . 

1 

For this, we return to the general theory of toroidal 

compactification. If Z. c Z., then there is a commutative 
1 J 

diagram: 

G' If 
• 2 Zj1

--------.t S2· Z . ([) If z
l~ j 

------+. (;2 . xZ . 'N . xT
-J J J P j 

where the vertical maps are given as in (2.6.5), and the 

horizontal maps are induced by inclusions f z . c f .'z
1 J 

~2-Zi([) c G2 -Z j ([). Because of condition (2.6.11), the 

bottom horizontal map can be further extended to a map e .. :
1J 

6'2 . xZ .'N . xTemb ( Ll . ) __l--.;...J~. 6: . xZ .,N . xTemb (Ll . ) 
2-1. r1. 1. 1. 

e .. 

f J-J J 

G'2 . xZ .'N . xT ·----Pt G . xZ .'N. xT
 
-1 1 1 p.

1
2-J J J p j
 

The spaces 0i' OJ are subspaces in G2- i x Zi,Ni x Temb(Lli ), 

6 . x Z.,N. x Temb(Ll .), and we can glue them together by2-J J J J
considering the union: 
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(2.6.14)	 O. '\. u /" {(;2' x Z .,N. x Temb (t:. . )} •
 
1 " /" e.. -J ] J J
 

O. 1J 
1 

Notice that the image e .. (0.) of O. in the product S2 . x
1J 1 1 -J 

Z.,N. x Temb(t:..) consists of the following
J J J
 

6'2 . x Z .,N. x U Orb ( T)

-J J J TCt:..U Z .

J 1 

and so it is disjoint from OJ. However, the closure 

e . . (0.) of this space contains the subspace
1J 1 

6 . x Z .,N. x U Orb ( T)
2 -J J J TC8..Us-2· 

J J 
Tnrt.~O 

1 

which lies	 also in 0 .. 
J 

In our situation Zi Zl' Zj = Z2' we can describe 

this gluing procedure more explicitly. The map 

e G x Zl'N x T .+ T12 : l l PI P2 

is described by the formula 

(Tll'T12'Z)~ (e(T11/p) 

e(L12/p ) 

Under the inclusion Zl C Z2' the convex cone rt l is mapped 

to the positive ray E t:. generated by the matrixLl' Ll 2 , 

(0 0) in "0: • If the above map e is ext:ended to their0 1 2 12 

torus embeddings 

e 6 x Zl,N x Temb (8. 1 ) -+ Temb (8. )12 : 1 l 2

we obtain a covering mapping of Sl x Zl,N l x Temb(8. ) ontol 

its image Orb(LO) U Orb(T ), and the abelian group r /rl	 Z Z1 2 

is the covering transformation group. If we restrict this 

to the subspace 01 - 61 
x [, then its ima.ge is a two-dimen

sional algebraic torus [* x [* with /I'z as its fundar z l 2 

mental group. 
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Define the star of T star(T ), to be the r conesl , l 

a in ~2 which contain Tl as a face. Then, from (2.5.10), 

it is easy to see that the union of all the orbits Orb (a) 

associated to a, a E star(Tl)' is an infinite chain of 

projective lines U. pl([)., Orb(a) =pl([), dim T = 2,
1 1 

with two consecutive members intersecting transversely at 

one point, Orb (a) n Orb(a') = {pt} a = dV, a' = aVe From 

our previous discussion, this is the subspace in 02 which 

lies in the closure of e (01).12 

On the other hand, the star star(T ) induces a r.p.p.l 

decomposition ~O on the Lie algebra r /r ~ R of thez z1 2 

algebraic torus e 
12 

(O) ~ [* x [*. Such a r.p.p. decompo

sition coincides with the triangulation ~O defined in 

(2.5.9) above. The algebraic closure e (01) is the same12 

as the torus embedding Temb(~O) associated to ~O' e12 (01) 

Temb(~O)' and so we have an infinite chain of projective 

lines as explained in (2.5.9). 

Recall that r p is the isotropy subgroup in r which 
o 

keeps both the line £1 and the plane hI invariant, 

f p f n P(£l,h l ) (see (2.3.3». This group f p operates 
o 0 

on the spaces 01' Temb(~2)' and Terr~(~O)' and the map e 12 

is equivariant under this action. In particular, this 

operates on the closure e 12 (Ol) and the infinite union of 

projective lines UP([)i. The quotient of the last space 

under this action is a p-gori UiEI/P(pl([»i as explained in 

(2.5.10). The spaces 0l/f , O/fp are glued together in 
PI 2 

the union 0l/f p "U/ Temb(~2)/fp , and this p-gon is 
1 D 2 

1 
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lies in the closure of 0l/f p 
1 

The procedure of attaching p-gons to the open elliptic 

modular surface D(,Q,l) 6 x C/f (2,p) _71. 2 is well known. It 

was discovered by Kodaira (see [K]), and was explained by 

D. Mumford in great detail as an example of toroidal com

pactification in [AMRT]. In the above notation, this is 

achieved by forming the union 

There is a projection of this union onto the modular curve 

B(,Q,l) which sends the above p-gon to the infinite cusp ioo. 

Thus the p-gon is attached to a boundary neighborhood of 
o 
D(,Q,l) near the infinite cusp. Since the group PI permutes 

transitively all the boundary neighborhoods, we can attach 

other p-gons to other cusps by means of this action. The 

result is a projective variety called the elliptic modular 

surface D(~l). 

As mentioned at the beginning of this section, the 

-1inverse image TI (B(,Q,)) over other components B(l) is iso

morphic to this elliptic modular surface. We will denote 

TI-l(B(~)) by D(,Q,) and refer to this as the elliptic modular 

surface associated to,Q,. It contains the subspace 

TI-l(~(l)) as a Zariskiopen set. 
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3. The Elliptic Modular Surface 

In this section, we study the algebraic topology of the 

modular surface. First we describe its cohomology, and then 

describe its Hodge structure. 

Our results here are valid for any N ~ 3. 

As we are concentrating on a single elliptic modular 

surface D(~l)' we shall, in order to simplify the notation, 

denote it by Dl • As before, we have the natural fibration 
o 0 

n: D ~ B which extends to a map of the compactifications
l

,
l 

i oon: D ~ B B = B(~l)' (see 2.5). Let denote the
l

,l l 

infinite cusp in B • Then sitting above this infinite
l 

cusp there is a rational N-gon, 

-1 . N 1 
n (100 

) = Ui=l(P ([»i. 

We denote by Vioo a disc neighborhood of the infinite cusp 

ioo in B and denote by Uioo its inverse image in Dl ,
l 

n-l(vioo). The special linear group SL = SL2~N) overUioo 

the ring of integers mod N operates on D and B • Thisl l 

action is transitive on the boundary cusps in B with the
1 

subgroup 

as the isotropy subgroup of ioo. Wihtout loss of generality, 

we may assume that Vioo ' are invariant under the actionUioo 

of this subgroup P.. Translation by SL yields an equivari

ant neighborhood 

U = U. x SL, V = V. x SL 
1 

00 
1 00P P 

covering all the boundary components. 
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The cohomology of the space U can be expressed as an 

induced representation 

H*(U) = Ind-pSL(H*(Uo ),
100 

as U is a disjoint union of copies of Uioo • Since the space 

U has the homotopy type of an N-gon, it is easy to verify
ioo 

that the cohomology H*(U ) is given by the formulas:
i
 

O
H (U 0 =71.) 

].00 

Hl(U 0 =71. 
(3.1.1) 

].00 
) 

H2 (U 0 =71.. fJ)7L ... ~7L (N copies)) ~ 
100 

Hi (* 0 0, i > 2.= 100 
) 

Here in the third formula, there is a natural basis for the 

vector space H ~ ff)~=17l.., given by the Poincare dual
2 

(U ioo ) 

of the rational curves (pl([)) f 1 < i < N, in n-l(ioo).0 

1 

As for the boundary manifold it follows from ourau ioo ' 

description of f that this is a torus bundle over Slpo 
]. 

1 0
with monodromy (N 1). (This sort of manifold is known as 

a Heisenberg manifold.) Hence, it has the following 

cohomology: 

H
O(3U

1 
0 

00 =71.) 

)H
l (3U

1 
0 00 = 7I..a ff) 7I..b 

(3.1.2) 
H

2 (aU 0 = 7L c E9 7Ld (9 7L/Nll.
1 00 

) 

H3 (3Uo
1 oo ) =71. 

where a and b denote the two generators of Hl , and c and d 

2the two generators of H. Let i*: H*(U ioo ) ~ H*(aU ioo ) be 

the natural homomorphism induced by inclusion. Then from 

the description of classes in (3.1.1) the image of i* in 

H1 (3U ioo)' H2 (3U ioo ) consists of the one dimensional sub

spaces la, Ic respectively. The other generator b of Hl 

lies in the image of 
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1T*: Hl(aV. ) ~ Hl(aU. ).
100 100 

Finally, we denote	 by the symbol Hi(U ) the kernel of i*,ioo 

(3.1.3)	 ker(i*) 

I rnage (H * (U. , aU. ) ~ H* (U. ». 
100 100 100 

Then the space H~(U. ) is trivial, and the space H7(u. ) is 
• 100	 • 100 

a free abelian group of rank N-l. 

o o 
3.2. We now consider the fibration TI: 0 ~ B with

1 l 
o 

torus T as its fiber, and with B as its base space. Sincel 
o 
B is the quotient	 of the upper half plane under the actionl 

of f(2,N), it is a K(TI,l)-manifold. Associated to this 

fibration, there is a spectral sequence converging to the 

cohomology H*(D
l ) with its E~,S-terrns given by: 

(3.2.1) E~'s Hr(BliHs(T» 

r
H (f (2,N) jH S (T)). 

The cohomology HS(T) of the torus has only three nonzero 

terms: 

O
H (T) =71.. 

~(3.2.2) Hl(T) =71..(f)71.. E 

H 2 (T) = 71... 

We use the notation E to denote the standard representa

tion of f(2,N} on the free abelian group of rank 2 (the 

restriction of the standard representation of SL2 Gl) to 

f(2,N}. This follows from checking the fundamental group 

oof 0 ). At any rate the nonzero terms of the spectral1

sequence are concentrated in the lower corner as in the 

figure: 
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0 + 0 + 0 

l71.	 + H (f(2,N» + 0 

l0 + H (f(2,N) ;E) + 0 

l7L H (f(2,N» 0 
-t- 

Since the differentials are zero, the spectral sequence 
o 

collapses, and the cohomology of D is given by:
l
 

HO (D ) ~ 71.
 
1
 

H1(D
1

) ~ H1(l\) - H1 (f(2,N»
 

(3.2.3) H2 (D ) - H1(B1i E ) ell.
1 

- H
l 

(f(2,N);E) ~l 

H3 (D
1

) - H1(B
1

) 

On the other hand, there are long exact sequences: 

(3.2.4) 0 ---+ Hl (13 ) ---+ H1 (l31) L
.* 

Hl(d13 ) ....L 
cusp 1	 l 

2 00 

H (B , dB ) ---+ .t ••

l l 
1 1 10	 0 0 0jE

(3.2.5) 0 ---+ H (Bl,dBl;E)--'H (Bl;E)-+H (dBl;E)--' 

2 0 0 

H (Bl,dBl;E)--+lt ••
 

1 0 1
 000	 0 

where Hcusp(Bl) = coker(H (dB l ) + H (Bl,dB », and j* andl 

jE are induced by inclusions. We are abusing our language 
000 

by writing dB for B n V • As B is an open manifold and 
ool l l 

o 
B n V is a collar of each end, this is harmless.l 

In the first exact sequencE~ (3.2.4), the cohomology 

2 00 

group H (Bl,aB ) is of rank 1 generated by the orientation
l 

class, and the coboundary map 8 is surjectiv~, so 

(3.2.6)	 Coker if. ~ 71... 

Also, it is easy to see that 

l(3.2.7) H (13)cusp 1 
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(3.3) Theorem (3.3.1). The cohomoZogy of D as a
1 

representation space of r(2,N) is given by the foZZowing 

formuZas: 

(i) H
O

(0
1 

) =71. 
(ii) H1(01) H1 (B

1 
) 

(3.3.2) (iii) H
2 

(Ol) 
1 00 

H (BI,aBIiE) 

(iv) H
3 

(Ol) H
1 

(B
1 

) 

(v) H
4 

(0
1 

) =71. 
2where H , (u. ) is defined in (3 .1.3) •
• 100 

Proof·	 Consider the Mayer-Vietoris sequence: 
3 0 3 Y 3H3 (0 ) -+	 H (0 ) ED H (U) -+ H (aU) ° -+ 1 1 

2	 2 0 2 S 2 
-+ H (0 )	 -+ H (0 ) ED H (U) -+ H (aU)1 1 

1 a 
-+ H (° )	 -+ HI (lJ ) ED HI(U) -+ HI (aU) -+ O.

1 l 

It is enough to determine the groups coker y, ker S, 

coker S,	 ker a because we have group extensions: 

(3.3.3)	 0 -+ coker y -+ H2 (0 ) -+ ker S -+ 01 
1o -+ coker 8 -+ H (0	 ) -+ ker a -+ 01 

1and the group H3 (D	 ) is dual to H (0 ) by Poincare duality.1 1 

From the discussion in the previous paragraphs, we can 
o 

decompose	 H*{aU), H*{D ) E9 H*{U) into direct sums as follows: 

l
l
 

Hl{au) - Hl(aB ) E9 Im[i l : Hl(U) -+ Hl(aU)],

l 

2(3 • 3 • 4 )	 H2 ( aU) - H2 ( aB1 ; E) Ell Im [i : H2 (U) + H2 ( aU) ], 

H3 {aU) - Hl{aBliH2T) E9 Hl{a~l)' 

Hl(~l) ED Hl(u) - Hl{B ) ED Hl{U)
 

H2 (D1 ) Ell H2 (U) - H2 (T) Ell H2 (B ;E) Ell H2 (U)
1 

H3 (D ) Ell H3 
(U) - H1 (B ;H2T) Ell H1(B )l	 

l 

1	 1 1 

Accordingly the mappings a,S,y can be written in the form 

of block matrices 
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Ct = Y 

For the coefficients of these matrices, vie have 

,1'* 1 ,all J , Ct 22 Ct12 0'21 O. 

,2
(3.3.5) J'* 1	 0,S2l E , S32 S31 611 S22 = 0 

2 H2the composite map H (T) -+ (U) -+ H2 
(aU) ,S12
 

j*.
Yll 

A straightforward computation shows that 

l lker Ct ker j* ~ ker i H (B)cusp 1 

coker S = 0 
o 0 

ker S ker j~ ~ ker i 
2 ~l HI(B1,aBI;E) 

Gl IndpSL (H~ (U ioo) ) 

~ 2~, 

coker Y =	 coker j* = Z.
 
1 0 1
From (3.2.7), H (B ) = H (B ) which is self-dual. cusp l l 

Putting these results into (3.3.3), we obtain the required 

formulas immediately. 

From (2.6.13) we can see that there is a natural action 

of the group SLA on the elliptic modular surface Dl , where 

SLA is given by an extension 

1 -+ 7l. ~ 7l. -+ SLA £;. SI~ -+ 1
N N 

and we can describe H*(D ) as a representation space of
I 

SLA• As we have described the action of SL in (3.3.1), it 

suffices to describe the action of 7l.
N 
~ZN = Ker(p). The 

action of Ker(p) covers the trivial action on B and whileI , 

ker(p) acts non-trivially on fibers, it acts trivially on 

the homology of the general torus fiber T. Thus ker(p) 
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acts trivially on every term in (3.3.1) except for the sub

space Indp 
SL (H!2 

(U ioo». Since it does not permute the cusps, 

it suffices to determine its action on H2, (U. 
1 00 ) = ker(i 2 : 

• 

H2 (u. ) ~ H2 (au. », a free	 abelian group of rank N-l.
100 100 

Using 2.6.13 and 3.1.2, it is not hard to check that one 

factor ofZN acts trivially, and that the action of the 

other factor ofZ is its natural action on the kernel ofN 

the augmentation map from the group ringla ] toZ.
N 

We now determine the ranks of the cohomology groups of 

0 1 • First, we recall the following well-known facts (see 

[Sm]). Let t denote the number of cusps of B
l 

, and g the 

genus of B then
l

, 

(3.3.6)	 t = (N 2/2)IT(1-p-2) where the product is taken 

over all primes p dividing N 

(3.3.7)	 g = 1 + (N-6)t/12. 

Next we determine the Euler characteristic of 0 1 • 
o	 0 

Since 0 is a torus bundle over B it contributes 0 to the
1 l 

Euler characteristic X. This leaves t cusps, each with 

Euler characteristic N (from	 3.1.1), so 

(3.3.8)	 x = Nt. 

Corollary (3.3.9). The ranks of the groups Hi(D ) are
l 

as follows: 

(i)	 rank(H 0 (01 » rank(H4 (01 » 1
 

1 3
(ii)	 rank(H (0 rank(H (0 2g
1 » 1 » 

2(iii) rank(H (0 X + 4g - 21 » 

where 9 and X are as above. 

1 00 

Corollary (3.3.10). Rank(H (Bl,aBl;E» = (N-3)t/3. 
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3.4. In this section we further identify H*(D ) andl 

compute its Hodge structure. Here we have taken cohomology 

with coefficients in [. 

Proposition (3.4.1). The chern number C~(D1) = o. 

Proof. By a theorem of Kodaira ([KJ, Theorem 12.1], 

the canonical bundle K(D ) is the pullback of a bundle Ml l 

over B K(D ) = n*(M ). Recall that the canonical bundle
I

, l I 

is the highest exterior power of the cotangent bundle, and 

hence (see [Hi]) we have the following fact, which we shall 

use repeatedly below: Cl(D ) = -Cl(K(Dl ». In particular,l 
2here Cl(Dl ) = O. 

Corollary (3.4.2). (i) The Todd genus T(dl ) = X/12 

(ii) The signatupe o(D ) = -2X/3.l
 

Proof. Hirzebruch ([Hi]) has shown that T(Dl ) =
 
2 

2 l l 
2 

l )
(Cl{DI ) + C {D »/12 and o(D ) = (Cl{D - 2C 2 {Dl »/3. 

2Here c a and of course x.c 2l 

Corollary (3.4.3). The Hodge numbers of D are asl 

follows: 

(i) hO,O h 2 ,2 1 

(ii) hl,O hO,l h 2 ,l = g 

(iii) h 2 ,O h O,2 (N-3)t/6 

(iv) hl,l 2 + (N-l)t.
 

Proof. The Todd genus
 

Corollary (3.4.4). Let Si(f(2,N» denote the space of 

cusp forms of weight i for the group f(2,N)~ and Si(f(2,N» 

its dual. 
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(i) HI,O H2 ,1 = S (f (2,N», HO,l = Hl ,2 S2(f(2,N»2 

(ii)	 H2 ,O S3(f(2,N», HO,2 = S3(f(2,N»
 

SL 
(H!

2 
(U ioo :


(iii) HI,l Indp [» ~ [ ~ [. 

Proof. By the results of Shirnura [Shl, H~usp(B) can 

be identified with S2(f(2,N» m S2(f(2,N», and similarly, 

Hl(Bl,aBl;E) can be identified with S3(f(2,N» e S3(f(2,N». 

Clearly these summands transform holomorphically and anti 

holomorphically respectively. Thus to prove the corollary 

it suffices to show that all classes in IndpSL(H7(UiOO;[» e 

[ ~ [ are of type (1,1), since the dimension of this space 

is equal to hl,l. This we do by showing that they are all 

represented by algebraic cycles. This is clear for the 

2 (Uioo ;[)first summand, as by 3.1.1 all classes in H are 

represented by algebraic cycles. There remain two summands 

[ ~ [. One is represented by the general elliptic curve 

fiber. The other is represented by the section of 

TI: D ~ B which is given by the identity in the group lawl l 

in each elliptic curve, which extends over each cusp as a 

nonsingular section (as is verified in [So]--compare 4.2.3 

and 4.2.6). 

4. The Chern Classes of Certain Bundles 

4.1. In this section we calculate the chern classes 

of D of its normal bundle in the Igusa compactification
l

, 

S/r*, and various other chern classes and numbers that we 

need for our work in [LWl,2]. 

While our method here works for an arbitrary level 

N > 3, in order to simpli~y computations we restrict 

ourselves to the case N = p, p an odd prime, which is the 
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situation of interest in [LWl,2]. We rely on the results 

of Yamazaki [Y], and we follow his notation with the fol

lowing exception: 

If P is a complex codimension 1 submanifold of the 
') 

complex manifold Q, we denote by [P] E H~(Q} the cohomology 

class dual to P. This cohomolo9'Y class determines a complex 

line bundle (the line bundle associated to the divisor P) 

which we denote by NP. Then cl(NP) = [P], and the restric

tion of the bundle NP to P is indeed the normal bundle of 

P in Q. Here Yamazaki uses cl(P), but we follow the 

topologists' convention in writing cl(P) for Cl(TP), where 

TP is the tangent bundle of P. (We may sometimes write NP 

as NQP, if it is important to emphasize Q.) 

We will follow Yamazaki in identifying a top-dimensional 

cohomology class of a complex manifold wi.th its evaluation 

on the fundamental class of the lnanifold. 

We have that 0 = G'2/r* - <i2/r is the union of irreduci

ble components 0(1). Following Yamazaki, we re-index 

4
these as 0i' i = l,···,{p -1)/2, and denote by TI: 0i ~ Bi 

the projection' of each one of these singular fibrations 

onto its base Bi • Thus Bi = G"1/:L(2,p)* and if x is a 

generic point of Bi , x E Sl/r(2,p), then its fiber T TI -1 (x) 

is a complex torus in Di • Note that in our notation [x] is 

the fundamental cohomology class of B and TI-l([x]) = [T].i , 

First we deal with a single boundary component, an 

elliptic modular surface 0 •1 
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Theorem .(4.1.1). (i) c (01) p(p2-1)/22 
-3 2

(ii) c (01) -2 (p -1) (p-4) [T]
1 

(iii) Ci (D ) o.1

Proof. We have already shown (i) and (iii)--see 

(3.3.8), (3.4.1), (3.4.2). As for (ii), let us quote 

Kodaira's theorem ([K], Theorem 12.1) more precise than in 

(3.4.1). Kodaira showed that 

K(D = 7T*(K(B ) - f)l ) l 

where cl(f) = -(Pa+l ), with Pa the arithmetic genus of D •l 

But Pa+l = T(Ol)' the Todd genus, and C (D(B = -(2-2g).l »1 

From (3.3.7) and (3.4.2) we have that 

n* (2- 3 (p2_l) (p-4) [x]) 

-3 2+2 (p -1) (p-4) [T] as required. 

Proposition (4.1.3). Let Sl be a projective line in 

an exceptional fiber of 01. Then C l (N Sl) = -2.o
1 

Proof. The general fiber T is homologous to the sum 

Sl + ••• + Sp of the projective lines in an exceptional 

fiber, and T has self-intersection number O. 

Now c Cl(N Sl) is the self-intersection number ofD1 
51' so the self-intersection matrix of the span of the 

classes 5 , ••• ,S is
1 p 

c 1 1 
1 c 1 

1 c 

c 1 
1 1 c 

From this matrix, 51 + ••• + 5 has self-intersection 
p 

number p(c+2), so c = -2. 
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4.2. Now we turn to the normal bundle of D •
l 

2Consider cl(ND ) E H (D ). If we let P denote thel l 

stabilizer of 0 under the action of SP4(F ) on 6 /r*, then1 p 2
2Cl(ND )	 is in the invariant cohomology H (D )P. We see

l l 

from Section 3.3 that H2 (D l : [)p = [ e [. The cohomology 

class [T] is invariant, and [T]- [T] = 0 as NT is trivial. 

2 IJ PWe let [S] E H (0 : ) be the dual of [T], so [T] -[S] = 1,
1 

[S] -[S]	 = 0_ ([T] is a primitive integral cohomology class, 

and	 it turns out that [S] is a half-integral class, i.e. 

2
2 [S] E H (D

l 
: 71.) • ) 

2 
- (P2~1) I[T] - 2p [S] _ 

Proof. We have Cl(ND ) = arT] + b[S] for some a,b.l 

We first determine b, and then determine a with the aid of 

a couple of lemmas. 

Yamazaki ([Y], proof of Theorem 5) shows that 

(4.2.2)
 

where K(D ) is the canonical bundle of 0 •
l 1 

Applying (4.1.2), we have 

_2-2 p (p2_ l ) (p-4) = (2- 3 (p2_ l ) (p-4) [T]) (a[T] + b[S]), 

yielding b = -2p. 

Let ~ be the closure of the image of the diagonal 

matrices of (;2 in /IJ = G"i/ r *, and let E bE~ the sub-variety 

of mconsisting of the union of the translates of ~ under 

the action of the group Sp(4,F ) on /11. (Thus the divisor 
p 
2[E] is an invariant class in H (/IJ).) E is a union of 

p2(p2+ l )/2 disjoint irreducible components E , and for any
a. 

component D of 0, E n D is the union of the points ofi i 

order p on D ([Y], Lemma 3).
i 



170 Lee and Weintraub 

The structure of E is easy to describe. All the com

ponents are identical, so we concentrate on the one, Eo' 

which is the image of ~ itself. It is the quotient of ~ 

by its stabilizer in r, which is isomorphic to r(2,p) x 

1 2
r(2,p). Then Eo = Sl/r(2,p)* x Sl/r(2,p)* = B x B1 ,l 

Bi B1 as in Section 3. 

However, by [Y], Theorem 2, 

2 -4 -1 3 2 4(4.2.4) c (NE)C (NO) -2 3 p (p -1) (p -1),
1 l 

and the lemma follows. 

2 
Lemma (4 2 5) C (NEIO ) pep -1) [T] + p2[S].

•• • 1 1 48 

(Here, as below, Cl(NFIG) = i*C (NF), i: G + ~).1
 

Proof. As [E] is invariant, C (NEI0 ) = y[T] + z[S]
1 1 

for some y,z. 

Now E n 01 is the union of the section of TI consisting 

2of	 the points of order p. There are p such sections, each 

of	 which has intersection number 1 with T, so Cl(NElol ) ·[T] 

2 2 
= p , so z = p • 

2 2
Hence c l (NE I01) 2p Y 

so	 y is as claimed. 

Proof of (4.2.1) (continued). For any component E 
ex 

of E, the intersection E n 01 is either empty, or is a
 
2 Bl
{pt} x B or 1 x {pt} in E , which has self-intersection
l	 a 
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2 
Cl(NEID1)Cl(ND

1 
) = (-P(~8-1) [T] + p2[S]) (a[T] - 2p[S]) 

yielding a = _(p2_1 )/24. 

Corollary (4.2.6). (i) C~(ND1) = p(p2_1 )/6 

(ii) Cl(NDlIT) = -2p 

(iii) Cl(ND1)c (D ) = p(p2_1 ) {p-4)/4.
l 1 

1
Let EO be the section of TI: D + B consisting of thel l 

origin for the group law in each general fiber (each of 

which is an elliptic curve), extended to the singular 

1
fibers as well. Then, for some a, EO E n D • 

a l 

122
Lemma (4.2.7). Cl{ND1Eo) = -p(p -1)/24. 

l. f 2 f 1Proo.f As EO 1S one 0 p components 0 E 

(and E n ES n D = ¢ for a ~ S),
a l
 

1 2 -2 1 2
 
Cl(NDIEO) P cl(NDIE)
 

1 1
 
-2 1 2P cl{NE) cl(ND1 ) 

-2 ') 
p Cl(NE)-cl(ND )1 

2
-p (p -1) /24 by (4.2. 3) • 

Remark (4.2.8). It follows that Cl(NE) 

_p(p2_ 1 ) ([Bl ] + [B2 ]), though we do not need this fact.
24 1 1 

4.3. For our work in [LWl,2] we also need to consider 

the following: 

Let C be the sections of TI: D + B consisting of2 l l 

the points of order one or two. We observe first that C2 

contains E~ as one component. Also, over a general fiber 

C has four points, but in a singular fiber two of these2
 
1
points become identified. Lastly, C2 n E = E~ as 2 is 

prime to p. We shall write C = E~ U C2 , and denote the2 
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the fundamental cohomology classes of each term in the 

union C by [x] and [x] respectively.
2 

Proposition (4.3.1). (i) c (C ) = _(p2_ l ) (2p-9)/6
l 2

(ii) c (NO IC ) = - (p2_ l ) (p-3) /6
l 21 

2
(iii) c (No lC ) = -(p -1)/4.l l 2 

Proof. (i) n: C + B is four-to-one everywhere2 l 

except over the (p2_ l )/2 cusps, where it is three-to-one, 

so c (C ) = X(C ) = 4X(B ) - (p2_ l )/2. But B is a Riemann
l 2 2 l l
 

(p-6)if 2
-1),
surface of genus g = 1 + and the result follows. 

(ii) Since NO IC 2 ~ TC = To lc2 , C (N lc ) + c (C )2 l l O 2 l 21 1 
2 c l (TOll C ). Now c (C ) = X(B) [x] + (3X (B) - (p -1) /2) [x]2 l 2
 

-3 2
 
as in (i), and c (TOll C ) = i* (-2 (p -1) (p-4) [T]) by

l 2 
1 .

(4.1.1), where i: C + 01 is the inclusion. Now EO l.nter2 

sects T in one point, and C intersects T in three points.2 

Hence i*([T]) = [X] + 2[x] and the result follows. 

i*(Cl(NOl » 

2 
i* (- (p -1) [T] - 2p [S]) by

24 

(4.2.1) • 

By (4.2.5), [5] = P-2 (P(P;;1) [T] + c (NElo », so
l l 

2 
c (NOli C ) = i * (- (Pl;l) [T] - ~ C (NE ID ». Since E n Cl 2 l l 2 

E~ (and E n C2 = ¢), 

i*(C1 (NEIO l » ii(C1(NE~101»
 
1 1
 

(EOeEO·Ol) 

122
Cl(N EO) = -p(p -1)/24 by (4.2.7).O1 

where i
1

: E~ + 0 
1 

is the natural projection, (ee) is the 

2
intersection number. Thus C (N0 Ic ) = (-(p -1)/12) (4) 

1 1 2 

(2/p) (_p(p2_1 )/24) = _(p2-1~/4. 
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4.4. Finally, we consider the line bundle L correspond

ing to	 modular forms of weight one. 

p(p2_l) [T] 
24 • 

Proof. By [Y], LID n*(Li)' Li a bundle over B so,l l , 

as above, Cl(LID1 ) z·[T]. To determine z, note that [Y] 

also shows that 

-2 -1 2 ?cl(L ID	 )C (N(Dl » = -2 3 p (p~-l).l 1 

But Cl(LID1)Cl(N(Dl » = -2pz by (4.2.1), and the proposi

tion follows. 
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