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COMPLETIONS OF METRIC SIMPLICIAL
COMPLEXES BY USING %,-NORMS

Katsuro Sakai

0. Introduction

Let K be a simplicial complex. Here we consider K
as an abstract one, that is, a collection of non-empty
finite ;ubsets of the set VK of its vertices such that

{v} € K for all v ¢ V, and if § # A < B € K then A € K.

K
Then a simplex of K is a non-empty finite set of vertices.
The realization |K| of K is the set of all functions

X3 Vg » I such that C_ = {v e VK|x(v) # 0} € K and

z x(v) = 1. There is a metric d, on [K| defined by

VEVK

d, (x,y) |x(v) - y(v)|.

veVK
Then the metric space (|K|,dl) is a metric subspace the
Banach space Zl(VK) which consists all real-valued functions
|x(v) |

X: Vo> R such that Evev |x(v)| < =, where "X"l =z

K VEVK

is the norm of x ¢ zl(VK). The topology induced by the
metric d; is the metric topology of |K| and the space |K|
with this topology is denoted by |K|m. The completion of

the metric space (|K|,d,) is the closure cg K| of [K
1 K)

2, (V

in Ql(VK). We will call this the Ql-completion of [K[m and
L

denoted by [K l. It is well known that |K|m is an ANR

(e.g., see [Hu]). In Section 1, we prove that the

Zl—completion preserves this property, that is,
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0.1. Theorem. For any simplicial complex K, the

L L
Ql-compZetion KT L is an ANR and the inclusion |K|m cTRT !

is a fine homotopy equivalence.

Here a map f: X » Y is a fine homotopy equivalence if for
each open cover (/ of Y there is a map g: Y » X called a
l-inverse of £ such that fg is (~homotopic to idY and gf
is f_l(U)—homotopic to idx.

By F(V), we denote the collection of all non-empty
finite subsets of V. Then F(V) is a simplicial complex
with V the set of vertices. Such a simplicial complex is
called a full simplicial complex. From the following known
result, our theorem makes sense in case K contains an

infinite full simplicial complex.

0.2. Proposition. For a simplicial complex K, the
following are equivalent:
(1) IKIm is completely metrizable;
(ii) K contains no infinite full simplicial complex;

2
(iidi) (IKl,dl) is complete (i.e., |K| = TK 1.

For the proof, refer to [Hu, Ch. III, Lemma 1l1.5], where
only the equivalence between (i) and (ii) are mentioned but
the implications (i) = (ii) = (iii) are proved (the impli-
cation (iii) = (i) is trivial).

We can also consider |K|m as a topological subspace

of the Banach space QP(VK) for any p > 1, where

VK
L (v = {x e R¥[]

p w0
v€VKIX(V)I <l

and the norm of x € QP(VK) is
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- 1/
Il = (;V6VK|x<v)|p) P,

Let dp be the metric defined by the norm H-Hp. Then the

completion of the metric space (|K|,dp) is cllp(Vk)lK[ and

L 2
denoted by |K P, We will call TK] P the Qp—completion of
|K|m. And also ]K|m can be considered as a topological

subspace of the Banach space m(V which consists all

K)
bounded real-valued functions x: vK + R with the norm

Ixl, = sup{|x(v)||v € Viel. Let cy(Vy) be the closed linear
subspace of all those x in m(VK) such that for each ¢ > 0,
{v e vg||x(v)| > e} is finite. Then [K| < ¢y (Vg). Let

d, be the metric defined by the norm l-l_. The completion

of the metric space (|K|,d.) is clm(VK)|K| = czco(VK)|K|

c c
and denoted by [K 0. We will call |K O the co-completion
if |K|m. However the metrics d2,d3,“-,dDo on ]K| are

uniformly equivalent. In fact, for each x,y € |K|,

Qe = s =yl = (Lyey ) =y Y2
< (sup [x(v) -~y |+ I [x(w) -y 2
VEVK K

/2

A

. 1
(Ix - vl (Zveva(v) + zv€va(v)))
= (2 - a_(x,y)) /2
and since I+l > lelig > ==« > I,

d2(x,y) > d3(x,y) > eree > d (x,y).

Therefore the Rp—completions of [K[m, p > 1, are the same

c
as the c,-completion, that is, |K o _ K 0 for p > 1.

0

For the co—completion, Section 2 is devoted. 1In

relation to Proposition 0.2, the following is shown.
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0.3. Proposition. For a simplicial complex K, the
metric space (|K|,d ) is complete if and only if K is

finite-dimensional.

From Propositions 0.2 and 0.3, it follows that

2 [}
K 1 # |K 0 for an infinite-dimensional simplicial com-

plex K which contains no infinite full simplicial complex.

[¢
And it is also seen that in general, IK 0 is not an ANR,
actually not locally connected (2.8). This is related to the

existence of arbitrarily high dimensional principal

c
simplexes and the fact that IK] 0 contains 0 € c,(K,).

o Ky

In Section 2, we have the following

0.4. Theorem. Let K be a simplicial complex. If K

c
has no prinicpal simplex than [K 0 is an AR, in particular,

contractible. And if all principal simplexes of K have

c
bounded dimension then |K 0 18 an ANR.

c
0.5. Theorem. For any simplicial complex K, [K| 0\{0}

c
is an ANR and the inclusion |K| < JK]| 0\{0} 18 a homotopy

equivalence.

By Sd K, we denote the barycentric subdivision of a
simplicial complex K. Let 6: |Sd K| » |K| be the natural
bijection. As well known, 6: |Sd K|m -> |K|m is a homeo-
morphism. For the 21- and co-completions of the barycentric
subdivision, we have the following result in Section 3.
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0.6. Theorem. For any infinite-dimensional simplicial

complex K, the natural homeomorphism @: |Sd K|m > |K|m

3

extends to a homeomorphism §: [Sd K 1

2
> |K 1 but cannot

c c
extend to any homeomorphism h: ISd KI 0, TR 0.

Let lg be the dense linear subspace of the Hilbert
space 2, = QZ(N) consisting of {x € 2,|x(i) = 0 except for
finitely many i € N}. A Hilbert (space) manifold is a
separable manifold modeled on the Hilbert space 2, and
simply called an zz—manifold. A separable manifold modeled
on the space 25 is called an lg—manifold. An Zg—manifold M

is characterized as a dense subset of some lz-manifold M with

~

the finite-dimensional compact absorption property, so-called

an f-d cap set for M (see [Chz]). In [Sa the author

3,4]'
has proved that a simplicial complex K is a combinatorial
o-manifold if and only if |K|m is an zg-manifold. Here a
combinatorial w-manifold is a countable simplicial complex
such that the star of each vertex is combinatorially
equivalent to the countably infinite full simplicial complex
A" = r(N), that is, they have simplicially isomorphic sub-

divisions [Sa2]. In Section 4, using the result of [CDM],

we see
L

0.7. Proposition. The pair (|Am| ’lAwIm) is homeo-

morphic to the pair (22,25).

Thus we conjecture as follows:
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0.8. Conjecture. For a combinatorial w-manifold K,
2
the Lq-completion [K Lis an zz—manifold and |K|m is an

2
f-d cap set for |K 1.

Similarly as the zl-completion of |Aw|m, we can prove

o

that (|Am| ,]Awlm) is homeomorphic to the pair (22,25) but

the same conjecture as 0.8 does not hold for the c,-comple-

0

tion. In fact, let K be a non-contractible combinatorial

c
o-manifold. Then [K 0\{0} is not homotopically equivalent

c
to ]K 0 by Theorems 0.4 and 0.5, hence the one-point set

c c

{0} is not a Z-set in |K O. Therefore |K 0 is not an
zz-manifold (cf. [Chl]).

The second half of Conjecture 0.8 is proved in Section

4 as a corollary of the second half of Theorem 0.1l.

0.9. Corollary. For a combinatorial «~-manifold K,

2
|K|m is an f£-d cap set for the &,-completion [K l.

1

1. The #;-Completion of a Metric Complex
Recall F (V) is the all of non-empty finite subsets
of V, namely, the full simplicial complex with V the set
of vertices. For each real-valued function x: V - R, we
denote
Cx = {v € V|x(v) # 0}.

If x € cO(V) then Cx is countable. The set of vertices of

a simplicial complex K is always denoted by VK'
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1.1. Lemma. Let K be a simplicial complex and

2
X € Ql(VK). Then x ¢ |K 1 1f and only i1f x(v) > 0 for all

vV eV Hle = ZveC x(v) = 1 and F(Cx) < K.

KJ
X

Proof. First we see the "only if" part. For each

v €V

let v*: zl(v ) > R be defined by v*(x) = x(v).

K’ K
-'Q’l

Then clearly v* is continuous, so x ¢ [K| implies

x(v) = v*(x) > 0. And Hle = 1 follows from the continuity

of the norm H-Hl. Let A € F(CX) and choose ¢ > 0 so that

x(v) > ¢ for all v € A. Since x € TﬁTQl, we have y € |K|
with Ix - y“l < e. Then y(v) > x(v) - |x(v) = y(v)] >
x(v) - ¢ > 0 for all v € A, that is, A c Cy. This implies
A € K because Cy € K.

Next we see the "if" part. In case Cy is finite
obviously x € |K|. In case Cy is infinite, for any € > 0
choose A ¢ F(Cx) so that

x(v) = Hle - x(v) <

Njm
.

Ly €V A ) vea

Let v, € A and put o =

0 x(v). Then x(vo) + o € I.

VEVK\A
We define y € |K| as follows:

x(vo) + o 1if v =v

0’
y(v) = {x(v) if v € A\{vo},
0 otherwise.

2
Then clearly |x - y||l = 20 < €. Therefore x € |K l.

To prove the first half of Theorem 0.1, we use a
local equi-connecting map. A space X is locally equi-
connected (LEC) provided there are a neighborhood U of the

diagonal AX in x2 and a map A: U x I » X called a (loecal)
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equi-connecting map such that
A(x,y,0) = x, A(x,y,1) =y for all (x,y) € U,
Ax,x,t) = x for all x € X, t € I.

Then a subset A of X is A-convex if A2 c U and )\(A2 x I) < A.

The following is well known.

1.2. Lemma [Du]. If a metrizable space X has a local
equi-connecting map A such that each point of X has arbi-

trarily small A-convex neighborhoods then X is an ANR.

2

Moreover if A is defined on X° x I then X is an AR.

Now we prove the first half of Theorem 0.1.

1.3. Theorem. For a simplicial complex K, the
2l
ll-completion K is an ANR.

Proof. Let u: %,(V,)% > & (V,) be defined by
p(x,y) (v) = min{|x(v)|,]|y(v)]|}.
Then up is continuous. In fact, for each (x,y),(x',y') €
2
Zl(VK) and for each v € VK’
[min{|x(v)|,|y(v) ]|} - min{|x'(v)|,|y' (v)|}]

1A

max{|[x(v) | = [x* ) || [ly») ] = [y ) [}

In

max{|x(v) - x"(v)|,|y(v) - y"(v) |}

[x(v) = x* (V)| + |y(v) = y' (W) |,

I A

hence we have
lo(x,y) - u(x',y')lll < Ix - x'Hl + ly - y'“l.
And note that u(x,y) = 0 if and only if x(v) = 0 or y(v) = 0
for each v € V., which implies Ix - y“l = Hx"l + Hy"l.
Then lIx - yIIl < "X"l + ||y||l implies u(x,y) # 0. And observe

.2
= [} .
Cu(x,y) Cx n Cy for each (x,y) € l(VK) Let
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___21

U= {(x,y) € [K] 7| Ix - yl; < 2}.

2
Then U is an open neighborhood of the diagonal A|K| 1 in

L
(|K l)2. For each (x,y) € U, p(x,y) # 0 by the preceding

observation. And it is easily seen that
u(x,y) - g Y
X, Wﬂ7§7§711 € T?qup_r c TET and
(x,y) 4 4
Y Tty Ty € TFEIT = < TRT

2 2
. 1 1
Since F(CX) and F(Cy) are convex gets in Ql(VK), we
have

2
- teu(x,y) _ tep(x,y) 1
(1-t)x + “§T§7§TTI’ (1-t)y + Wﬁ(x,y) N € [K

for any t € I.

Thus we can define a local equi-connecting map A: U x I -

4y
K as follows

2ty (x,v) . 1
- + =
(1-2t)x T,y N if 0 < t < 50
ey e = » (2=-2t) u( ) 1
-2t X,y .
t-1 + _—W___E_Ti_— = .
(2 )y X,y N if 5 < t <1

L

Now we show that each point of |K| 1 has arbitrarily

L
small )-convex neighborhoods. Let z € |K 1 and ¢ > 0.

z(v) > 1 = 2—l€ and select

0 < a(v) < z(v) for all v € A so that z__a(v) > 1 - 271,

Choose an A € F(CZ) so that ZVEA

Let

2
W= {xe T K[ 1 |x(v) > a(v) for all v € A}.

2
Then W is an open neighborhood of z in [K| l. For each

X,y € W,
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1% = ¥l < Joeal®() =y | + Ty Gx(v)
K

* Tueyaa? )

| A

Yvea X (V) = a(v)) + ZveA(y(V) - a(v))

+ 1 - zveAx(v) + 1 - Zv€Ay(v)

Il

2 -2 ZVEAO‘(V) < €
Therefore diam W < €. To see that W is )\-convex, let

(x,y,t) € W2 x I and v € A. Note "u(x,y)lll <1l. Ift<1/2,

2temin{x (v),y(v)}

Ax,y,t) (v) = (l-2t)x(v) + [ERINN

(1-2t) emin{x(v) ,y (v) }

|v

+

2temin{x(v) ,y(v)}

min{x(v),y(v)} > a(v).
If t > 1/2, similarly x(x,y,t) (v) > o(v). Then )(x,y,t) € W.

Therefore W is )-convex. The result follows from Lemma 1.2.

To prove the second half of Theorem 0.1, we use a
SAP-family introduced in [Sal]. Let F be a family of closed
sets in a space X. We call 7 a SAP-family for X if ¥ is
directed, that is, for each F,,F, € 7 there is an F € J
with F, N F, cF, and # has the simplex absorption property,
that is, for each map f: |An| -~ X of any n-simplex such that
f(a|An|) c F for some F € 7 and for each open cover (/ of X
there exists a map g: |An] -+ X such that g(]Anl) < F for

f|a|An[ and g is ([-near to f. Let L

some F € 7, g||An|
be a subcomplex of a simplicial complex K. We say that L

is full in K if any simplex of K with vertices of L belongs
to L. For a subcomplex L of K, we always consider |L| < |K|,
that is, x € |L| is a function x: VL + I but is considered

a function x: V, » I with x(VK\VL) = 0.

K
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1.4. Lemma (cf. [Sal, Lemma 3]). Let K be a simplicial
complex. Then the family
F(k) = {|L] |L <5 a finite subcomplex of K which
ig full in K}
Ql
is a SAP-family for [K| ~.
Proof. It is clear that F(K) is a direct family of

2
closed (compact) set in K] . Let |L| € #(K) and define a

2
map ¢L: IR 1. I by

0,0 = Tey X9
L
-1 _ . _ _
Then ¢; (1) = |L|. 1In fact, if x € |L| then ¢ (x) = Hle = 1.
Conversely if ¢L(x) = 1 then C, &V, and C, €K by Lemma 1.1.
Since L is full in K, CX € L, which implies x € |L|. Let

£
N(|L|,2) be the 2-neighborhood of |L| in TET l, that is,

2
N(|L|,2) = (x € TR[ © | d,(x,|L]) < 2}.
Then ¢L(x) # 0 for all x € N(|L|,2) because if ¢L(x) =0

then x(v) = 0 for all v € V hence for any y € |L|,

LI
Ix -yl = szVK|x(v) - y(v) |
= 2v€VKx(v) + ZvEVKy(v) = 2.

We define a retraction r_: N(C|L;,2) > |L| (= |K|) by

L:
x(v) .
W if v € VL,
rL(x)(V) =
0 otherwise.

Then for each x € N(|L}|,2),

x(v)

) | = x(v)
VEVL ¢L(x)

brp () - xl) = - x(v)| + )

vEVK\VL

1
Gy - b Eveva(v) + 1 - ¢y (x)
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_ 1
= (5;7;7 - l)¢L(X) +1 - ¢L(X)

2 - 2¢L(x).
On the other hand 1 - ¢L(x) < dl(x,lLl) since for any
y € |L|,

Ix - yll, = ZVEVKIX(V) - y(v) |

x(v) + Z

v€VLIX(V) - y(v)|

)
VEVK\VL

| v
[

- Zveva(v)

1 - ¢, (x).
Therefore we have
dy (rp (x),x) < 2+d, (x,|L|) for each x € N(|L|,2).

2
By Lemma 2 in [Sa;], F(K) is a SAP-family in [K] l.
Now we prove the second half of Theorem 0.1.

1.5. Theorem. For a simplicial complex K, the inclu-

ston 1i: |K|m c TKTZl is a fine homotopy equivalence.
Proof. By |K|w, we denote the space |K| with the weak

(or Whitehead) topology. Then the identity of |K| induces

a fine homotopy equivalence j: |[K| -+ |K| ~[Sa,, Theorem 1].

By the same arguments in the proof of [Sal, Theorem 1] using

the above lemma instead of [Sal, Lemma 3], ij: |K|w > Tszl

is also a fine homotopy equivalence. Then the result follows

from the following lemma.

1.6. Lemma. Let f: X > Y and g: Y » Z be maps. If

f and gf are fine homotopy equivalences then so is g.



TOPOLOGY PROCEEDINGS Volume 11 1986 189

Proof. Let (/ be an open cover of Z. Then gf has a

(~inverse h: Z -~ X. Let V be an open cover of Y which

1 lf-lg-l(U). Then f has a

1

refines both g—l(U) and g ~h~

/-inverse k: Y + X. Since hgf is f_ g_l(U)-homotopic to

fhgfk is g—l(U)—homotopic to fk which is g_l(U)-homo-

X'
topic to id,. Since fk is g thTle7!

id
-1 .

g ~ ({/) -homotopic to

idy, fhgfk is g_l(U)—homotopic to fhg. Hence fhg is

st g_l(U)-homotopic to idY. Recall gfh is (~homotopic to idz.

Therefore g is a fine homotopy equivalence.

2. The cy-Completion of a Metric Complex

As seen in Introduction, for any p > 1, the zp-comple—
tion of a metric simplicial complex is the same as the
cO—completion. In this section, we clarify the difference
between the Rl-completion and the cO—completion. The

"only if" part of Proposition 0.3 is contained in the

following

2.1. Proposition. Let K be a simplicial complex.
c
Then K is infinite-dimensional if and only if 0 € [K| C.
Proof. To see the "if" part, let n € N. From

c
0 € TRT %, we have x € |K| with lIxl_ < n 1. fThen C, €K

and dim Cx > n because

1= x(v) < Ixl_(dim c_+ 1) < n"'(dim c + 1).

VECX
Therefore K is infinite-dimensional.

To see the "only if" part, let € > 0 and choose n € |
so that (n+l)-l < €., Since K is infinite-dimensional, we

have A € K with dim A = n. Let A be the barycenter of |A],

that is,
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1

(n+1) ~ if v € A,

A(v) =
0 otherwise.

~ _ c
Then llal_ = (n+1) 1 < g. Hence 0 € [K O.

2.2. Lemma. Let K be a simplicial complex and

c
x € [K O Then x(v) > 0 for all v € V ||x||l =

K?

zv€cxx(v) < 1 and F(CX) c K.

Proof. The first and the last conditions can be seen
similarly as the "only if" part of Lemma 1l.1. To see the

second condition, assume 1 < Zve x(v) < «, Then there are

C
X c
n . 0
vyre*+,v, € C  such that I, ;x(v.) > 1. Since x € [K[ °,

we have y € |K| with
-1,¢n
Ix =yl <n (fizlx(vi) - 1.

Then it follows that

n n n
Fio1¥(vy) 2 Do (vy) = Qi lx(vy) = v(vy) |
n
> zi=lx(vi) - nelx - y||Oo > 1.
This is contrary to y € |K|. Therefore ZV€C x(v) < 1.
x

Now we prove the "if" part of Proposition 0.3, that is,

2.3. Proposition. Let K be a finite-dimensional

c
simplicial complex. Then [K 0 - |K|, that is, (|K]|,d )

18 complete.

Proof. Let dim K = n and x € T?TFO. By Proposition
2.1, x # 0, that is, CX # @g. And Cx is finite, otherwise K
contains an (n+l)-simplex by Lemma 2.2. Therefore CX € K
by Lemma 2.2, For any € > 0, we have y € |K| with

Ix =yl < 2-l(n+l)-le. Note CX U Cy contains at most
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2(n+l) vertices. Then it follows that

|2vecxx(v) -1 = |zveva(V) - zvevKY(V”

(v) - y(v)|

|

ZVevK I X

= x(v) - y(v)|
zVECXUCy|

| A

2(n+l) ¢ llx -yl < e.

Therefore Hle =3 x(v) = 1. By Lemma 2.2, x(v) > 0

veC

for all v € Ve Hence x € [K

Thus Proposition 0.3 is obtained. As a corollary, we

have the following

2.4. Corollary. Let L be a finite-dimensional sub-

complex of a simplicial complex K. Then |L| is closed in
K 0.

Before proving Theorems 0.4 and 0.5, we decide the
difference between the Rl—completion and the cO—completion
as sets. Let K be a simplicial complex and let A € K. The
star St(A) of A is the subcomplex defined by

St(A) = {B € K|A,B c C for some C € K}.
We say that A is principal if A ¢ B for any B € K~{A}, that
is, A is maximal with respect to =. By Max(K), we denote
all of principal simplexes of K. We define the subcom-
plexes ID(K) and P(K) of K as follows:

ID(K) = {A € K|dim St(A) = =},

P (K)

{A € K|A c B for some B € Max(K)}.
Then clearly K = P(K) U ID(K). Observe ID(K) = K if and

only if P(K) = @, however P(K) = K does not imply ID(K) = @
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(the converse implication obviously holds). For example,
let
K

F({0,1}), K, = F({0,2,3}),

1 2

F({0,4,5,6}),¢¢-

K3
and let K = UneNKn' Then P(K) = K but dim St({0}) = o,
In general, for any A,B € K, St(A) < St(B) if and only if
B c A. Then ID(K) = @ if and only if dim st({v}) < «

for each v € V that is, K is locally finite-dimensional.

K’

2.5. Theorem. Let K be an infinite-dimensional and
locally finite-dimensional simplicial complex, namely
o
ID(K) = @, then [K = |K| u {o}.
c
Proof. By Proposition 2.1, |K| u {0} < JK 0 Let
o
x € [K] "~N|K

ID(K) = @, K has no infinite full simplicial complex. Then

. Assume x # 0, that is, Cx # @§. From

Cy, is finite because F(Cx) < K by Lemma 2.2. This implies
C, € K. Put dim st(C,) = n. From x £ |K|, it follows

z x(v) < 1l. Let

vec
X

1

(1 - x(v)), min x(v)} > 0.

vec
X

§ = min{ (n+1) "~ vec
X

1f Ix - yl_ < & then y(v) > 0 for all v € C,, that is,

C_c C.. From dim St(C_) = n, we have dim C_ < n. Hence
X Y X y —

Tuee ¥ < Byec 5 + Leq [x0) =y |
Yy Y Y

< szC x(v) + (dim Cy + 1).lx - y||Oo
X

< zvecxx(v) + (n + 1)6

< zvecxx(v) + (1 - zvecxx(v)) = 1.
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This is contrary to y € |K|. Therefore x = 0.

2.6. Lemma. Let K be a simplicial complex with no

principal simplex, namely ID(K) = K. Then

—C0 8 1
K| = I-]K = {tx|x ¢ [K] =, t € I}.

c
Proof. Let x € [K| O, If x =0 then clearly

) _ 3
x € I[K] 1 1£x # 0 then ﬂxﬂllx € [X] 1 by Lemmas 2.2

and 1.1. Since “X“1 < 1 by Lemma 2.2, x = Hx"l(HxHle) €

2 2
I.[(K l. Conversely let x € (K l,and t € I. For any

e > 0, we have y € |K| with lIx - yHl < ¢, hence lIx - wa < €.

Choose n € N so that (n+1) ™! < e. Since c,6 € K= ID(K)

we have A € K such that Cy c A and dim A > n. Let

z =ty + (1-t)a € |l = |K]|,

1

where A is the barycenter of |A|. Since Al < (n+l) = < ¢

(see the proof of Proposition 2.1),
ltx - z||oo = ltx - ty - (l—t)AIloo

tellx -yl + (1-t)-lAl

A

< te + (1-t)e = ¢.
o
Therefore tx € [K .

C 2
In Lemma 2.6, we should remark that [K 0 # I.[K 1
as spaces. In fact, for each n € |\, let Al € K with

~ 2
. _ L. . 1
dim A = n. Then the set {An|n € N} is discrete in [K|

c
but has the cluster point 0 in [K 0.

As general case, we have the following

2,7. Theorem. Let K be a simplicial complex with

<, 21
ID(K) = @. Then [K[ ° = |P(K)| U I.JID(K) .
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o o o
ID(K)] ~ = [ID(K) [ ~ < K[ ° by Lemma

2 C [e}
2.5, we have |P(K)| u I.[ID(K) 1 < [K 0. Let x € |K O\IK

L
If x = 0 then clearly x € I.[ID(K) l. In case x # 0, if

Proof. Since I.

Cy is finite and Cx £ ID(K), CX € KNID(K) by Lemma 2.2,
hence dim St(Cx) < », The arguments in the proof of
Theorem 2.5 lead a contradiction. Thus CX is infinite or
CX € ID(K). In both cases, clearly F(CX) < ID(K). Then

using Lemmas l.l1 and 2.2 as inthe proof of Lemma 2.6, we can see

2
x € I-TID(R | L. since |K| = |P(K)| U |ID(K) |, we have
o g
KT © < |P(R)| v I-TID(R) T ~.

Next we show that Theorem 0.1 does not hold for the

c,-completion.

0

2.8. Lemma. Let X be a dense subspace of a Hausdorff

space X. Then any locally compact open subset of X is open

in X. Hence for a locally compact set A c X, intgA = intXA.
Proof. Let Y be a locally compact open subset of X
and y € Y. We have an open set U in X such that y € U c Y

and CZYU is compact. Let U be an open set in X with
n

U=20 X. Since CQYU is closed in X, U\CLYU is open in X.

Observe that
(U\CQYU) nxs= U\CQYU = 4g.

Then U\CQYU = @ because X is dense in X. Hence UX = {,

that is, U = U. Therefore Y is open in X.
Let K be a simplicial complex. Then for each A € K,

int  _ |a] = int|K| |A] = |A] u {|B| | B € K,B ¢ A}.
m

TRT ©
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Thereby abbreviating subscripts, we write int|A| and also
bd|A| = |A|~Nint|A|. Notice that int|A| # @ if and only if
A is principal. We define the subcomplex BP(K) of P(K) as
follows:
BP(K) = {A € P(K) | |A| < bd|B| for some
B € Max(K)}.
By the following proposition, we can see that Theorem 0.1

does not hold for the c,-completion.

0
2.8. Proposition. Let K be a simplicial complex. If

dim P(K) = o agnd dim BP(K) < « then T?TFO is not locally
connected at 0.

Proof. By Corollary 2.4, |BP(K)| is closed in TRTFO.
Put

6 =d_(0,|BP(K)|) > 0.

and let U be a neighborhood of 0 in TKTCO with daim U > §.
Similarly as the proof of Proposition 2.1, we have a princi-
pal simplex A € K with g € U. Since bd|A| < |BP(K) |,
U N bd|A| = @, hence U N |A| is open and closed in U. And

~
g #UnNn |4 ; U because A € U N |A| and 0 £ U N |A|. There-

fore U is disconnected.
Now we prove the first statement of Theorem 0.4.

2.9. Theorem. Let K be a simplicial complex with no

c
principal simplex. Then the co-completion K] ° is an aR.
Proof. (Cf. the proof of Theorem 1.3). Define

'8 cO(VK)2 - cO(VK) exactly as Theorem 1.3, that is, as

follows:
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u(x,y) (v) = min{|x(v)|,|y(Vv)]|}.
Then for each (x,y),(x',y') € cO(VK)z,

hu(x,y) - p(x',y" il < max{lx - ',y - y'Hm},
hence u is continuous. Here we define an equi-connecting
map A: co(VK)2 x I - co(VK) as follows:

(1-2t)x + 2tp(x,y) if

| A
o+
A

A(xIYIt) =

= ©
= N
<

(2t-1)y + (2-2t)u(x,y) if
Using Lemmas 1.1 and 2.6, it is easy to see that

0,2 o o
A(C(]K )° x I) e |K . Let z € [K and € > 0. Then

c
the g-neighborhood of z is )-convex. In fact, let x,y € [K 0

such that Ix - zIl_,ly - zl_ < e. Observe
hp(x,y) - zll°° = lu(x,y) - u(z,z)llo°
< max{llx - sz,“y - sz} < €.

For 0 < t < 1/2,

Ix(x,y,t) - zl (1 - 2t)x + 2tp(x,y) - zl

A

(1 -2t)lx - zl_ + 2thu(x,y)
-zl < e.

For 1/2 < t < 1, similarly Ix(x,y,t) - zIIoo < €. By Lemma

C
1.2, TRT © is an ar.

As corollaries, we have the second statement of Theorem

0.4 and the first half of Theorem 0.5.

2.10. Corollary. Let K be a simplicial complex with

c
dim P(K) < o, Then the c,-completion |K 0 18 an ANR.

0

c
Proof. By Corollary 2.4, |P(K)| is closed in [K 0,

C C o] (o]
Then TRT ¢ = TP % v TID®T ° = |P(K) | u TIDRT °.



TOPOLOGY PROCEEDINGS Volume 11 1986 197

C
By Theorem 2.9, TID(KI] C is an AR. Since |P(K)| and

C C
|P(X)| n TID(KI]T © = |P(K) n ID(K)| are ANR's, so is TK[ °

(cf., [Hu]).

2.11. Corollary. For any simplicial complex K,

c
K 0\{0} 18 an ANR.

c
Proof. By Theorems 2.5 and 2.7, JK]| 0{0} = |P(K)| v

c
(TID(®)] O\{0}). Then similarly as the above corollary,

we have the result.
The following is the second half of Theorem 0.5.

2.12. Theorem. For any simplicial complex K, the

c
inclusion 1i: |K|m < JK 0{0} is a homotopy equivalence.

Proof. Since both spaces are ANR's, by the Whitehead

c
Theorem [Wh], it is sufficient to see that i: lK]m < TRT ~{o0}
is a weak homotopy equivalence, that is, i induces iso-
morphisms
c
. 0
i,: ﬂn(|K|m) > nn( K] °~{o}), n € N.

Let F(K) be the family of Lemma 1.4. And for each

c
|L] € #F(K), let ¢ 2 [K 0 5 I be the map defined as Lemma

1.4. (Since V, is finite, the continuity of ¢L is clear.)

L
Then ¢ 7 (1) = L. Let

C
U(L)={x€molcanL;‘ﬂ}.

c
Then U(L) is an open neighborhood of |L| in JK] 0 1n fact,

for each x € U(L), choose v € Cy N V. 1f Ix - yl_ < x(v)

then v € Cy n VL because y(v) > 0, hence y € U(L). Since

¢L(x) # 0 for each x € U(L), we can define a retraction
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rp: U(L) + |L| similarly as Lemma l.4. Observe for each
X € U(L) and t ¢ I,

1-t)x + tr.(x) © Cx'

C
( L

Then using Lemma 1.1 and Theorem 2.7, it is easily seen
€o
that (l-t)x + trL(x) e |K ~{0}. Since

C(l—t)x + trL(s) n vL =
it follows that (l-t)x + trL(x) € U(L). Thus we have a
deformation hL: U(L) x I » U(L) defined by

hL(x,t) = (1-t)x + trL(X).
c
It is easy to see that |K 0\{0} = y{u() | |L| € F(K)}.

c
Now we show that i,: nn(|K|m) > wn( KT © {0}) is an

l, we denote the unit n-sphere

+ |K| _and B: st
m

. . +
isomorphism. By s™ ang B"

and the unit (n+l)-ball. Let qg: sh

c
K 0\{0} be maps such that S[Sn = a. Note o is homotopic

to a map o': S© -+ |K|, such that a'(s™) e |L'| for some

|L'| € F(XK). By the Homotopy Extension Theorem, o' extends

c
to a map R': Bn+l + |K O\{O}. From compactness of B'(Bn+l),
we have an |L| € F(K) such that |L'| < |L| and B'(Bn+l) c U(L).
Then o' extends to r B': gt L} = |K|m. Therefore i, is

c
a monomorphism. Next let a: s” » TK 0\{0} be a map. From
compactness of a(Sn), we have an |L| € F(K) such that
a(s™ < U(L). Then rpo: s? » RIS |K|m is homotopic to a

in U(L). This implies that i, is an epimorphism.

3. Completions of the Barycentric Subdivisions

By Sd K, we denote the barycentric subdivision of a

simplicial complex K, that is, Sd K is the collection of
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non-empty finite sets {AO,-.-,An} c K = Vsd K such that
AO ; ee. § An. We have the natural homeomorphism
6: |Sd K]m > ]K]m defined by
0(8) (V) = Juenex aI%i%lI_T .
The inverse e-l: |K|m + |sd K|m of g is given by
67l (x) (A) = (dim A + 1).max{min x(v) - max x(v),0}.
VEA vgA
In fact, let x € |K| and write Cx = {vo,-..,vn} s0
that x(vo) > eee > x(vn). For each v € VK,
66 1 (x) (v) = ZveAEKmax{géz x(u) - E;X x(u),0}.
If v £ C, then ﬁég x(u) = 0 for v € A € K, hence ee_l(x)(v)

= 0. For A € K, if A # {VO,---,vj} for any j = 0,+++,n then

min x(u) - max x(u) = 0. Hence
u€A ugA
0071 (x) (v,) = T2IT(x(v.) - x(v., 1)) + x(v) = x(v,)
i j=1i 3j j+1 n i’”
1

Therefore 66 —(X) = X.

Conversely let ¢ € [Sd K| and write Cg = {AO,...,An}
so that AO % o

A For each A € K,

c
# n’
676 (e) (A) = (@im A + 1) -max{min 6(£) (V)
VEA
- max g(g)(v),0}.
vgA
If A £ CE then A & A or Ai—l s A g Ai for some i = 0,+¢.,n,
where A—l = g. In case A & An’ we have vO € A\An. If

Vo € B € K then ¢(B) = 0 because B # Ai for any i = 0,++.,n.

Therefore
= em
0(g) (vg) ZVOEBEK dmB+1 - 0
hence e_le(g)(A) = 0. Observe if v € A;NA; ; then
® __ )

- _EB) ——
6(e) (V) = Jicpex @im B ¥ T j=i dim a4 + 1 °
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In case Ai—l A A % Ai for some i = 0,+++,n, we have

v, € ANA, and v, € Ai\A. Since

1 i-1 2
_ n E(Aj)
$é2 8(g) (v) < 8(g)(vy) = zj=i 315—35—1—1
= 0(g) (vy) < max o6(g) (v),
~ vgA
it follows e_le(g)(A) = 0. It is easy to see that
. n g(Aj)
min 0(£) (V) = )y ; Fma, T 2@
V€Ai j
6(g) (v) = 32 e 0y)
max v) = YLi_. e
ngi J=i+l dim Aj + 1

Thus we have

N £(A,)
j=i dm A, ¥ I

1

6710 (£) (a;) = (Aim A, + 1) (]

A,
- Zn __Ei_ll___
j=i+1l dim Aj + 1
. £ay)
s ldim Ay D) gmEw T T ey
Therefore e_le(g) = £

3.1. Theorem. For a simplicial complex K, the natural

homeomorphism 6: |Sd K|m - |K|m induces a homeomorphism

_ 2 2,
B sd K + |K .
Proof. For each g,n € |Sd K|,

(a)

le(g) - etn)ly = ZVEVKIZVEAEK &T%_Z_I_i

n(A)

- zveAeK dim B + 1
< Z z (A) -n (A)
= vEVK VEAEK éim A+ 1

= JaeklE@) - n@A)| = lg - niy.

Then § is uniformly continuous with respect to the metrics

dl on |sd K|m and |K|m. Hence 6 induces a map
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2 2
§: TSa ®T 1> TRT T. (However, we should remark that e_l

is not uniformly continuous in case dim K = »., In fact,

let A € K be an n-simplex and B « A an (n-1)-~face. Then

for the barycenters A € |A| and B ¢ |B|, we have Ia - g"l =
2/n but 1671 (A) - 071(B)I, = IA - BI; = 2.) Since ¢ is

injective, so is §. In order to show that 6 is surjective,

2 2 2
it suffices to see [K l\|K] c 6(Tsd K l). Let x € [K l\|K

Then CX is infinite. Otherwise CX € ]K] by Lemma 2.2, so

X € |K| because x(v) > 0 for all v € v, and Hle = 1.
Recall C, is countable. Then write Cy = {vn|n € N} so that
X(vl) > x(vz) > e+« > 0. Observe

nex(Vyg) * Lioner® (Vi) < Qo x(vy) = L

Moreover n-x(vn) converges to 0. If not, we have ¢ > 0 and

1 <n; <n, < -+« such that nix(vni) > ¢ for each i € N.
We may assume Zn>nlx(vn) < g¢/2, Since
(n,,, = n;,) =5— < (n,,; - n.)x(v )
i+l i" n;.q = i+l i n;q
n.
i+l €
< lpen 41XV < 3
i
2(ni+l - ni) <N hence n;.q < 2ni. Observe
Eni+l—l €
n=n,; 2n
1 1 1 1
= (5=—— + o0 + =) + ocee + (z=— + see+ ______:__)g
an 2(2n2—l) 2ni 2(ni+l 1)
n,-n n,, ,-n,
2 71 i+l i
S o, ettt Tt €
1 i
<Patm oL Dia™
n n.
2 i+l

N

(ny=n;) « x(v ) + cee + (n;  -ng) ¢ x(v )
i+l
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< (X(an+l) + eee + x(vn2)) + eee + (x(vni+1)
+ eee + x(vn ))
i+l
n.
_ i+l IS
- zn=nl+lx(vn) <7

)

This contradicts to the fact Zh=n n_l is not convergent.
1

For each n € N, let An = {vl,---,vn}. Define g, € |sda x|,

n el and ¢ € %1 (K) as follows:

i(x(vi) - x(vi+l)) if A = Ai, i
En(A) = (n+l)x(vn+l) + zi=n+2x(vi) if A = An+l'
0 otherwise,
and
n(x(vn) - X(Vn+l)) if A = A, nE N,

g£(p) =

otherwise.
Since n-x(vn) converges to 0, we have
o
he, - gl = 2 J;_ ox(v).

Then Hgn - ng converges to 0, that is, g, converges to g.

L
Hence g € |Sd K l. It is easy to see that

Tne2X (vy)

x(v.,) + if v =v,, i < ntl
8(gy) (V) = * n*l i -
0 otherwise,
and
HG(En) - xﬂl = 2 Zn+2x(vi).
Then e(gn) converges to x. This implies 5(&) = X.

2
Finally, we see the continuity of l. Let x € |K| 1,

2
-1 1 . .
£ =106 (x) € [SAK and ¢ > 0. Write C, = {v,/[|i € N} so
that x(v;) > x(v,) > +++. Recall i-x(v;) converges to 0.

We can choose n € | so that (n+l)'X(Vn+l) < e/6,
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Zion42¥(Vy) < /6 and x(v ) > x(v .,). Put
§ = mln{x(vi) - X(Vi+l) | x(vi) > X(vi+l)’
i=1,*++,n} > 0.
4
Let y € |K with
i .0 €
Ix y"l < mln{i, m}

2
and n = § l(y) € TSTR] . Remark that for 1 < i < j < n+l,

x(vi) > x(vj) implies y(vi) > y(vj) because

§ 8
y(vy) - y(vj) > (x(vy) = 5) - (X(vj) + 3)
= (x(vi) - X(Vj)) - § > 0.

Then, reordering v '--,vn, we can assume that

l’
y(vl) > y(v2) > eee > y(vn) > y(vn+l).
For each i € |, let A = {vl,---,vi}. Then Cg c {Ai|i € N1,

g(Ai) = i-(x(vi) - x(vi+l)) for all i € N, and

1]

n(a;) is(y(vy) = y(vy,)) for i = 1,+-+,n.
Therefore
I le@) - n@p|

= Jioplitx(vy) = x(vi ) = ey (v = y(vg )|

[

Vioaislxtvy) =y |+ Tigielxtvi ) - yivg )|

I A

2(J ) -lx =yl =n@m+ -lx -yl < &

Since i'x(vi) converges to 0,
e o]

Zi=n+

o m
wi|m
.

© €
16y = (#l)x(v q) + J5_ ox(v)< g+

e

Then [i_ &(A;) = bell, - J7_ &) > 1 -5, hence

IS_gnap) > Jh_je@) - [T e - @) |

£

> 1 -3 -

2
This implies I . Thus we have

AEK\{Al,---,An}n
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-1 -1

le ~(x) - 6 ~(y) ||l = lg - nlll

h E?:lli(Ai) - n(a) | + Zf=n+1|€(Ai)|

+ zAEK\{A]_I"'lAn}ln(A)I
€ 3 €

fgrt3tzT e

The proof is completed.

Thus the Zl—completion well behaves in the barycentric
subdivision of a metric simplicial complex. However the

co—completion does not.

3.2. Proposition. Let K be an infinite-dimension

simplicial complex. Then there is no homeomorphism

c c
h: TSa & ° » TR ° extending the natural homeomorphism

6: |sd K[ - [K|.

c
Proof. Assume there is a homeomorphism h: |[Sd K 0,

c
K| 0 such that h||sd K| = 6. For each simplex A € K,

we define A* € |Sd K| by A*(A) = 1. Note h(A*) = §(A*) is
the barycenter of A of |A|. For each n € , take an
n-simplex A €K, Then as seen in the proof of Proposition
*=A * — Ak =
2.1, h(An) A converges to 0. However HAn Amll°° 1 for

1

any n # m € N. This shows that h™" is not continuous at 0.

In the above, h_l is not continuous at x # 0 either.

For example, let AO € K with dim St(AO) = o and for each
1

-g 7 1 = — A%
n € N take an n-simplex An € St(Ao). We define gn 5 A0 +
1, . _17 17
5 AX € |sd K|, n € N. Then h(g)) = 5 A, + 3 A converges
to % A, but Hgn - gmﬂw =1 for any n # m € N. This implies

2
h~! is not continuous at Ag-
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4. The %{-Completion of a Metric Combinatorial «-Manifold

Let A” be the countable-infinite full simplicial
complex, that is, 2% = F(N). For the zlwcompletion and

the c,-completion of |Aw|m, we have

0
4.1. Proposition. The pairs (lA”| ’|Am|m) and
0

(2% ,lAwIm) are homeomorphic to the pair (zz,gg)_

Using the result of [CDM], this follows from the

following

4.2, Lemma. Let K be a simplicial complex with no

2 c
principal simplex. Then [K 1 and TR © are nowhere
locally compact.

Proof. Because of similarity, we show only the

2
-case., Let x € (K 1 and € > 0. It suffices to construct

4

1
a discrete sequence X € TRT =, n € N, so that lx - xn“l < €.
If C, is infinite, write C_ = {vn|n € N} so that x(vy) >

x(v2) > eee, If CX is finite, choose a countable-infinite
subset V of VK such that CX < V and F(V) < K and then
write V = {v_[n € N} so that x(vy) > x(vy) > «+-.  (Such

a V exists because K has no principal simplex.) Note that

x(vy) > 0 and x(v) < n"! for each n € N. Put

1

2}>0.

§ = min{%,x(vl),

2
By Lemma 1.1, we can define x_ € [K l, n € N, as follows:

x(vl) -6 if v = Vi

xn(v) = x( ) + 8§ if v =

Vn+l Vhel’

x(v) otherwise.
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Then clearly lx - anl = 28 < ¢ for each n ¢ N and

Hxn - xm"l = 2§ if n # m.

The second half of Conjecture 0.8 (i.e., Corollary
0.9) is a direct consequence of Theorem 1.5 and the

following

4.3. Proposition., Let M be an lg—manifold which is
contained in a metrizable space ﬁ. If for each open cover
U of M there is a map f: M > M which is (-near to id, then
M 2s an f-d cap set for &.

Proof. By [Sa3, Lemma 2]}, M has a strongly universal
tower {Xn}nGN for finite-dimensional compact such that
M = UHENXn and each Xn is a finite-dimensional compact
strong Z-set in M. From the condition, it is easy to see
that each Xn is a strong Z-set in ﬁ. Let { be an open
cover of ﬁ and Z a finite-dimensional compact set in ﬁ.
Since M is an ANR, M has an open cover V/ such that any two
V-near maps from an arbitrary space to M are {~homotopic
[Hu, Ch. IV, Theorem l.l1]. For each V ¢ |/, choose an open
set 6 of & so that ; N M =V and define an open cover
D of & by

V= {\7|v eV, vinx #g1u {ﬁ\xn}.
Let ¥ be an open cover of ﬁ which refines (/ and D. From the
condition, there is a map f: ﬁ + M which is {/-near to id.
Observe that £|z n X+ 2 n Xn > M and the inclusion
Z N Xn c M are V/-near, hence (/~homotopic. By the Homotopy
Extension Theorem [Hu, Ch. IV, Theorem 2.2 and its proof],

we have a map g: 2 - M such that g|A n Xn = id and g is
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(~homotopic to f|Z. From the strong universality of the
tower {Xn}n€N’ we have an embedding h: Z2 - Xm of Z into
some X ~such that h|z n X =g|zn X = id and h is (-near

to g, hence st (/~near to id.

4.4, Remark. In connection with Conjecture 0.8 and

our results, one might conjecture more generally that a

completion M of an Rg—manifold M is an 22—manifold if the

~

inclusion M ¢« M is a fine homotopy equivalence. However

this conjecture is false. 1In fact, let M be a complete ANR

such that MNA is a 22—manifold for some Z-set A in M but M

is not an Kz—manifold. Such an example is constructed in

[BBMW]. And let M be an f-d cap set for M~NA. Then M is
also an f-d cap set for M by the same arguments in Proposi-

tion 4.4. Using [Sa3, Lemma 5], it is easily seen that the

inclusion M « M is a fine homotopy equivalence. And M is

an 2f-manifold by [Ch,, Theorem 2.15].

2 27

Addendum: Recently, Conjecture 0.8 has been proved in

2
[Sas]. In fact, it is proved that (K 1 is an L ,-manifold

2

if and only if K is a combinatorial ~-manifold.
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