TOPOLOGY PROCEEDINGS Volume 11, 1986 Pages 177-208 http://topology.auburn.edu/tp/ # COMPLETIONS OF METRIC SIMPLICIAL COMPLEXES BY USING ℓ_p -NORMS by Katsuro Sakai ### **Topology Proceedings** $\textbf{Web:} \qquad \text{http://topology.auburn.edu/tp/}$ Mail: Topology Proceedings Department of Mathematics & Statistics Auburn University, Alabama 36849, USA E-mail: topolog@auburn.edu **ISSN:** 0146-4124 COPYRIGHT © by Topology Proceedings. All rights reserved. # COMPLETIONS OF METRIC SIMPLICIAL COMPLEXES BY USING 2p-NORMS #### Katsuro Sakai #### 0. Introduction Let K be a simplicial complex. Here we consider K as an abstract one, that is, a collection of non-empty finite subsets of the set V_K of its vertices such that $\{v\} \in K$ for all $v \in V_K$ and if $\emptyset \neq A \subset B \in K$ then $A \in K$. Then a simplex of K is a non-empty finite set of vertices. The realization |K| of K is the set of all functions $x \colon V_K \to I$ such that $C_X = \{v \in V_K | x(v) \neq 0\} \in K$ and $\Sigma_{v \in V_K} x(v) = 1$. There is a metric α_1 on |K| defined by $$d_1(x,y) = \sum_{v \in V_K} |x(v) - y(v)|.$$ Then the metric space $(|K|,d_1)$ is a metric subspace the Banach space $\ell_1(V_K)$ which consists all real-valued functions $x\colon V_K\to R$ such that $\Sigma_{v\in V_K}|x(v)|<\infty$, where $\|x\|_1=\Sigma_{v\in V_K}|x(v)|$ is the norm of $x\in\ell_1(V_K)$. The topology induced by the metric d_1 is the metric topology of |K| and the space |K| with this topology is denoted by $|K|_m$. The completion of the metric space $(|K|,d_1)$ is the closure $c\ell_{\ell_1(V_K)}|K|$ of |K| in $\ell_1(V_K)$. We will call this the ℓ_1 -completion of $|K|_m$ and denoted by |K|. It is well known that $|K|_m$ is an ANR (e.g., see [Hu]). In Section 1, we prove that the ℓ_1 -completion preserves this property, that is, Here a map f: X \rightarrow Y is a fine homotopy equivalence if for each open cover $\mathscr U$ of Y there is a map g: Y \rightarrow X called a $\mathscr U$ -inverse of f such that fg is $\mathscr U$ -homotopic to id_Y and gf is $f^{-1}(\mathscr U)$ -homotopic to id_Y. By F(V), we denote the collection of all non-empty finite subsets of V. Then F(V) is a simplicial complex with V the set of vertices. Such a simplicial complex is called a *full simplicial complex*. From the following known result, our theorem makes sense in case K contains an infinite full simplicial complex. - 0.2. Proposition. For a simplicial complex K, the following are equivalent: - (i) $|K|_m$ is completely metrizable; - (ii) K contains no infinite full simplicial complex; - (iii) $(|K|,d_1)$ is complete (i.e., $|K| = \overline{|K|}^{l_1}$). For the proof, refer to [Hu, Ch. III, Lemma 11.5], where only the equivalence between (i) and (ii) are mentioned but the implications (i) \Rightarrow (ii) \Rightarrow (iii) are proved (the implication (iii) \Rightarrow (i) is trivial). We can also consider $|K|_m$ as a topological subspace of the Banach space $\ell_p(V_K)$ for any p>1, where $$\ell_{p}(V_{K}) = \{x \in \mathbb{R}^{V_{K}} | \sum_{v \in V_{K}} |x(v)|^{p} < \infty \}$$ and the norm of x $\in l_p(V_K)$ is $$\|x\|_{p} = (\sum_{v \in V_{K}} |x(v)|^{p})^{1/p}.$$ Let d_p be the metric defined by the norm $\|\cdot\|_p$. Then the completion of the metric space $(|K|, d_p)$ is $cl_{p}(V_K)$ |K| and denoted by |K|. We will call |K| the l_p -completion of $|K|_m$. And also $|K|_m$ can be considered as a topological subspace of the Banach space $m(V_K)$ which consists all bounded real-valued functions $x \colon V_K \to R$ with the norm $\|x\|_\infty = \sup\{|x(v)||v \in V_K\}$. Let $c_0(V_K)$ be the closed linear subspace of all those x in $m(V_K)$ such that for each $\varepsilon > 0$, $\{v \in V_K | |x(v)| > \varepsilon\}$ is finite. Then $|K|_m = c_0(V_K)$. Let d_∞ be the metric defined by the norm $\|\cdot\|_\infty$. The completion of the metric space $(|K|, d_\infty)$ is $cl_m(V_K)$ $|K| = cl_{c_0}(V_K)$ and denoted by |K|. We will call |K| the c_0 -completion if $|K|_m$. However the metrics $d_2, d_3, \cdots, d_\infty$ on |K| are uniformly equivalent. In fact, for each $x, y \in |K|$, $d_2(x, y) = \|x - y\|_2 = (\sum_{v \in V_K} (x(v) - y(v))^2)^{1/2}$ $$\begin{aligned} \mathbf{d}_{2}(\mathbf{x}, \mathbf{y}) &= \|\mathbf{x} - \mathbf{y}\|_{2} = \left(\sum_{\mathbf{v} \in \mathbf{V}_{K}} (\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v}))^{2}\right)^{1/2} \\ &\leq \left(\sup_{\mathbf{v} \in \mathbf{V}_{K}} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})| \cdot \sum_{\mathbf{v} \in \mathbf{V}_{K}} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})|\right)^{1/2} \\ &\leq \left(\|\mathbf{x} - \mathbf{y}\|_{\infty} \cdot \left(\sum_{\mathbf{v} \in \mathbf{V}_{K}} \mathbf{x}(\mathbf{v}) + \sum_{\mathbf{v} \in \mathbf{V}_{K}} \mathbf{y}(\mathbf{v})\right)\right)^{1/2} \\ &= \left(2 \cdot \mathbf{d}_{\infty}(\mathbf{x}, \mathbf{y})\right)^{1/2} \end{aligned}$$ and since $\|\cdot\|_2 \ge \|\cdot\|_3 \ge \cdots \ge \|\cdot\|_{\infty}$, $$d_2(x,y) \ge d_3(x,y) \ge \cdots \ge d_{\infty}(x,y)$$. Therefore the ℓ_p -completions of $|K|_m$, p>1, are the same as the c_0 -completion, that is, $\overline{|K|}^{\ell}p=\overline{|K|}^{c_0}$ for p>1. For the c_0 -completion, Section 2 is devoted. In relation to Proposition 0.2, the following is shown. 0.3. Proposition. For a simplicial complex K, the metric space ($|K|,d_\infty$) is complete if and only if K is finite-dimensional. From Propositions 0.2 and 0.3, it follows that $\overline{|K|}^{\mathcal{L}_1} \neq \overline{|K|}^{\mathcal{C}_0} \text{ for an infinite-dimensional simplicial complex } K \text{ which contains no infinite full simplicial complex.}$ And it is also seen that in general, $\overline{|K|}^{\mathcal{C}_0} \text{ is not an ANR,}$ actually not locally connected (2.8). This is related to the existence of arbitrarily high dimensional principal simplexes and the fact that $\overline{|K|}^{\mathcal{C}_0} \text{ contains } 0 \in c_0(K_V).$ In Section 2, we have the following - 0.4. Theorem. Let K be a simplicial complex. If K has no prinicpal simplex than $\frac{c}{|K|}^{c_0}$ is an AR, in particular, contractible. And if all principal simplexes of K have bounded dimension then $\frac{c}{|K|}^{c_0}$ is an ANR. - 0.5. Theorem. For any simplicial complex K, $|K|^{C_0} \setminus \{0\}$ is an ANR and the inclusion $|K| \subset |K|^{C_0} \setminus \{0\}$ is a homotopy equivalence. By Sd K, we denote the barycentric subdivision of a simplicial complex K. Let $\theta\colon |\operatorname{Sd} K| \to |K|$ be the natural bijection. As well known, $\theta\colon |\operatorname{Sd} K|_m \to |K|_m$ is a homeomorphism. For the ℓ_1 - and c_0 -completions of the barycentric subdivision, we have the following result in Section 3. 0.6. Theorem. For any infinite-dimensional simplicial complex K, the natural homeomorphism $\theta\colon |\operatorname{Sd} K|_m \to |K|_m$ extends to a homeomorphism $\overline{\theta}\colon \overline{|\operatorname{Sd} K|}^{\ell_1} \to \overline{|K|}^{\ell_1}$ but cannot extend to any homeomorphism h: $\overline{|\operatorname{Sd} K|}^{c_0} \to \overline{|K|}^{c_0}$. Let ℓ_2^f be the dense linear subspace of the Hilbert space $\ell_2 = \ell_2(N)$ consisting of $\{x \in \ell_2 | x(i) = 0 \text{ except for } \}$ finitely many i $\in \mathbb{N}$. A Hilbert (space) manifold is a separable manifold modeled on the Hilbert space ℓ_2 and simply called an ℓ_2 -manifold. A separable manifold modeled on the space ℓ_2^f is called an ℓ_2^f -manifold. An ℓ_2^f -manifold M is characterized as a dense subset of some ℓ_2 -manifold M with the finite-dimensional compact absorption property, so-called an f-d cap set for \tilde{M} (see [Ch₂]). In [Sa_{3.4}], the author has proved that a simplicial complex K is a combinatorial ∞ -manifold if and only if $|K|_m$ is an ℓ_2^f -manifold. Here a combinatorial ∞-manifold is a countable simplicial complex such that the star of each vertex is combinatorially equivalent to the countably infinite full simplicial complex $\Delta^{\infty} = F(N)$, that is, they have simplicially isomorphic subdivisions [Sa2]. In Section 4, using the result of [CDM], we see 0.7. Proposition. The pair $(|\Delta^{\infty}|^{\ell}, |\Delta^{\infty}|_{m})$ is homeomorphic to the pair (ℓ_{2}, ℓ_{2}^{f}) . Thus we conjecture as follows: 0.8. Conjecture. For a combinatorial ∞ -manifold K, the ℓ_1 -completion $\overline{|K|}^{\ell_1}$ is an ℓ_2 -manifold and $|K|_m$ is an f-d cap set for $\overline{|K|}^{\ell_1}$. Similarly as the ℓ_1 -completion of $|\Delta^{\infty}|_m$, we can prove that $(|\Delta^{\infty}|^{-1}, |\Delta^{\infty}|_m)$ is homeomorphic to the pair (ℓ_2, ℓ_2^f) but the same conjecture as 0.8 does not hold for the c_0 -completion. In fact, let K be a non-contractible combinatorial ∞ -manifold. Then $\overline{|K|}^{C_0} \setminus \{0\}$ is not homotopically equivalent to $\overline{|K|}^{C_0}$ by Theorems 0.4 and 0.5, hence the one-point set $\{0\}$ is not a Z-set in $\overline{|K|}^{C_0}$. Therefore $\overline{|K|}^{C_0}$ is not an ℓ_2 -manifold (cf. $[Ch_1]$). The second half of Conjecture 0.8 is proved in Section 4 as a corollary of the second half of Theorem 0.1. 0.9. Corollary. For a combinatorial ∞ -manifold K, $\left|K\right|_{m} \mbox{ is an f-d cap set for the } \ell_{1}\mbox{-completion }\overline{\left|K\right|}^{\ell_{1}}.$ #### 1. The l_1 -Completion of a Metric Complex Recall F(V) is the all of non-empty finite subsets of V, namely, the full simplicial complex with V the set of vertices. For each real-valued function $x: V \to \mathbb{R}$, we denote $$C_{X} = \{ v \in V | x(v) \neq 0 \}.$$ If x \in c₀(V) then C_x is countable. The set of vertices of a simplicial complex K is always denoted by V_K. 1.1. Lemma. Let K be a simplicial complex and $x \in \ell_1(V_K).
\quad \text{Then } x \in \overline{|K|}^{\ell_1} \text{ if and only if } x(v) \geq 0 \text{ for all } v \in V_K, \quad \|x\|_1 = \Sigma_{v \in C_x} x(v) = 1 \text{ and } F(C_x) \subset K.$ Proof. First we see the "only if" part. For each $v \in V_K$, let $v^* \colon \ell_1(V_K) \to R$ be defined by $v^*(x) = x(v)$. Then clearly v^* is continuous, so $x \in \overline{|K|}^{\ell_1}$ implies $x(v) = v^*(x) \ge 0$. And $\|x\|_1 = 1$ follows from the continuity of the norm $\|\cdot\|_1$. Let $A \in F(C_X)$ and choose $\varepsilon > 0$ so that $x(v) > \varepsilon$ for all $v \in A$. Since $x \in \overline{|K|}^{\ell_1}$, we have $y \in |K|$ with $\|x - y\|_1 < \varepsilon$. Then $y(v) \ge x(v) - |x(v) - y(v)| > x(v) - \varepsilon > 0$ for all $v \in A$, that is, $A \subset C_Y$. This implies $A \in K$ because $C_V \in K$. Next we see the "if" part. In case C_X is finite obviously $x \in |K|$. In case C_X is infinite, for any $\varepsilon > 0$ choose $A \in F(C_X)$ so that $$\textstyle \sum_{v \in V_{w} \setminus A} x \, (v) \ = \ \|x\|_1 \ - \ \textstyle \sum_{v \in A} x \, (v) \ < \frac{\epsilon}{2} \ .$$ Let $v_0 \in A$ and put $\alpha = \Sigma_{v \in V_K \setminus A} x(v)$. Then $x(v_0) + \alpha \in I$. We define $y \in |K|$ as follows: $$y(v) = \begin{cases} x(v_0) + \alpha & \text{if } v = v_0, \\ x(v) & \text{if } v \in A \setminus \{v_0\}, \\ 0 & \text{otherwise.} \end{cases}$$ Then clearly $\|x - y\|_1 = 2\alpha < \epsilon$. Therefore $x \in \overline{|K|}^{\ell_1}$. To prove the first half of Theorem 0.1, we use a local equi-connecting map. A space X is *locally equi-connected* (LEC) provided there are a neighborhood U of the diagonal ΔX in X^2 and a map λ : U \times I \rightarrow X called a (*local*) equi-connecting map such that $$\lambda(x,y,0) = x$$, $\lambda(x,y,1) = y$ for all $(x,y) \in U$, $\lambda(x,x,t) = x$ for all $x \in X$, $t \in I$. Then a subset A of X is λ -convex if $A^2 \subset U$ and $\lambda (A^2 \times I) \subset A$. The following is well known. 1.2. Lemma [Du]. If a metrizable space X has a local equi-connecting map λ such that each point of X has arbitrarily small λ -convex neighborhoods then X is an ANR. Moreover if λ is defined on $X^2 \times I$ then X is an AR. Now we prove the first half of Theorem 0.1. *Proof.* Let $$\mu$$: $\ell_1(V_K)^2 \rightarrow \ell_1(V_K)$ be defined by $$\mu(x,y)(v) = \min\{|x(v)|, |y(v)|\}.$$ Then μ is continuous. In fact, for each (x,y),(x',y') $\in \ell_1(V_K)^2$ and for each v \in V_K , $$\begin{aligned} & | \min\{ | x(v) |, | y(v) | \} - \min\{ | x'(v) |, | y'(v) | \} | \\ & \leq \max\{ | | x(v) | - | x'(v) | |, | | y(v) | - | y'(v) | | \} \\ & \leq \max\{ | x(v) - x'(v) |, | y(v) - y'(v) | \} \\ & \leq | x(v) - x'(v) | + | y(v) - y'(v) |, \end{aligned}$$ hence we have $$\|\mu(x,y) - \mu(x',y')\|_1 \leq \|x - x'\|_1 + \|y - y'\|_1.$$ And note that $\mu(x,y) = 0$ if and only if $x(v) = 0$ or $y(v) = 0$ for each $v \in V_K$, which implies $\|x - y\|_1 = \|x\|_1 + \|y\|_1.$ Then $\|x - y\|_1 \leq \|x\|_1 + \|y\|_1$ implies $\mu(x,y) \neq 0$. And observe $C_{\mu(x,v)} = C_x \cap C_v$ for each $(x,y) \in \ell_1(V_K)^2$. Let $$U = \{(x,y) \in \overline{|K|}^{\ell_1} | \|x - y\|_1 < 2\}.$$ Then U is an open neighborhood of the diagonal $\Delta \overline{|K|}^1$ in $(|K|^{l_1})^2$. For each $(x,y) \in U$, $\mu(x,y) \neq 0$ by the preceding observation. And it is easily seen that $$\begin{array}{l} x, \ \frac{\mu\left(x,y\right)}{\|\mu\left(x,y\right)\|_{1}} \in \overline{\left\lceil F\left(C_{x}\right)\right\rceil}^{\ell_{1}} \subset \overline{\left\lceil K\right\rceil}^{\ell_{1}} \ \ \text{and} \\ \\ y, \ \frac{\mu\left(x,y\right)}{\|\mu\left(x,y\right)\|_{1}} \in \overline{\left\lceil F\left(C_{y}\right)\right\rceil}^{\ell_{1}} \subset \overline{\left\lceil K\right\rceil}^{\ell_{1}}. \end{array}$$ Since $\overline{|F(C_x)|}^{\ell_1}$ and $\overline{|F(C_y)|}^{\ell_1}$ are convex sets in $\ell_1(V_K)$, we have $$(1-t)x + \frac{t \cdot \mu(x,y)}{\|\mu(x,y)\|_{1}}, \quad (1-t)y + \frac{t \cdot \mu(x,y)}{\|\mu(x,y)\|_{1}} \in \overline{|K|}^{\ell_{1}}$$ for any $t \in I$. Thus we can define a local equi-connecting map λ : U \times I \rightarrow $\top K \top^{\ell_1}$ as follows $$\lambda \left(x,y,t \right) \; = \; \begin{cases} (1-2t)\,x \; + \; \frac{2t\,\mu \left(x,y \right)}{\left\| \,\mu \left(x,y \right) \,\right\|_{1}} & \text{if } 0 \; \leq \; t \; \leq \; \frac{1}{2}, \\ \\ (2t-1)\,y \; + \; \frac{(2-2t)\,\mu \left(x,y \right)}{\left\| \,\mu \left(x,y \right) \,\right\|_{1}} & \text{if } \frac{1}{2} \; \leq \; t \; \leq \; 1. \end{cases}$$ Now we show that each point of $\frac{1}{|K|}^{\ell}$ has arbitrarily small λ -convex neighborhoods. Let $z \in \overline{|K|}^{\ell_1}$ and $\epsilon > 0$. Choose an A \in F(C_z) so that $\Sigma_{v \in A} z(v) > 1 - 2^{-1} \varepsilon$ and select $0 < \alpha(v) < z(v)$ for all $v \in A$ so that $\Sigma_{v \in A} \alpha(v) > 1 - 2^{-1} \varepsilon$. Let $$W = \{x \in \overline{|K|}^{\ell_1} \mid x(v) > \alpha(v) \text{ for all } v \in A\}.$$ Then W is an open neighborhood of z in $\frac{1}{|K|}^{\ell}$. For each $x,y \in W$, $$\begin{aligned} \|\mathbf{x} - \mathbf{y}\|_{1} &\leq \sum_{\mathbf{v} \in A} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})| + \sum_{\mathbf{v} \in V_{K} \setminus A} \mathbf{x}(\mathbf{v}) \\ &+ \sum_{\mathbf{v} \in V_{K} \setminus A} \mathbf{y}(\mathbf{v}) \\ &\leq \sum_{\mathbf{v} \in A} (\mathbf{x}(\mathbf{v}) - \alpha(\mathbf{v})) + \sum_{\mathbf{v} \in A} (\mathbf{y}(\mathbf{v}) - \alpha(\mathbf{v})) \\ &+ 1 - \sum_{\mathbf{v} \in A} \mathbf{x}(\mathbf{v}) + 1 - \sum_{\mathbf{v} \in A} \mathbf{y}(\mathbf{v}) \end{aligned}$$ $$= 2 - 2 \sum_{\mathbf{v} \in A} \alpha(\mathbf{v}) < \varepsilon.$$ Therefore diam W \leq ϵ . To see that W is λ -convex, let $(x,y,t) \in W^2 \times I \text{ and } v \in A. \text{ Note } \|_{\mu}(x,y)\|_1 \leq 1. \text{ If } t \leq 1/2,$ $\lambda(x,y,t)(v) = (1-2t)x(v) + \frac{2t \cdot \min\{x(v),y(v)\}}{\|_{\mu}(x,y)\|_1}$ $\geq (1-2t) \cdot \min\{x(v),y(v)\}$ If t \geq 1/2, similarly $\lambda(x,y,t)(v) > \alpha(v)$. Then $\lambda(x,y,t) \in W$. Therefore W is λ -convex. The result follows from Lemma 1.2. SAP-family introduced in [Sa₁]. Let \mathcal{F} be a family of closed sets in a space X. We call \mathcal{F} a SAP-family for X if \mathcal{F} is directed, that is, for each $F_1,F_2\in\mathcal{F}$ there is an $F\in\mathcal{F}$ with $F_1\cap F_2\subset F$, and \mathcal{F} has the simplex absorption property, that is, for each map $f\colon |\Delta^n|\to X$ of any n-simplex such that $f(\partial |\Delta^n|)\subset F$ for some $F\in\mathcal{F}$ and for each open cover \mathscr{U} of X there exists a map $g\colon |\Delta^n|\to X$ such that $g(|\Delta^n|)\subset F$ for some $F\in\mathcal{F}$, $g(|\Delta^n|)=f(\partial |\Delta^n|)$ and g is \mathscr{U} -near to f. Let L be a subcomplex of a simplicial complex K. We say that L is $full\ in\ K$ if any simplex of K with vertices of L belongs to L. For a subcomplex L of K, we always consider $|L|\subset |K|$, that is, $x\in |L|$ is a function $x\colon V_L\to I$ but is considered a function $x\colon V_K\to I$ with $x(V_K\cap V_L)=0$. 1.4. Lemma (cf. $[Sa_1, Lemma 3]$). Let K be a simplicial complex. Then the family $$\mathcal{F}(K) = \{ |L| | L \text{ is a finite subcomplex of } K \text{ which } is \text{ full in } K \}$$ is a SAP-family for \mathbb{T}^{1} . *Proof.* It is clear that $\mathcal{J}(K)$ is a direct family of closed (compact) set in $\overline{|K|}^{\ell}1$. Let $|L|\in\mathcal{J}(K)$ and define a map $\phi_L\colon\overline{|K|}^{\ell}1\to I$ by $$\phi_{L}(x) = \sum_{v \in V_{T}} x(v)$$. Then $\phi_L^{-1}(1) = |L|$. In fact, if $x \in |L|$ then $\phi_L(x) = \|x\|_1 = 1$. Conversely if $\phi_L(x) = 1$ then $C_x \subset V_L$ and $C_x \in K$ by Lemma 1.1. Since L is full in K, $C_x \in L$, which implies $x \in |L|$. Let N(|L|, 2) be the 2-neighborhood of |L| in $\overline{|K|}^{\lambda}1$, that is, $$N(|L|,2) = \{x \in \overline{|K|}^{l_1} \mid d_1(x,|L|) < 2\}.$$ Then $\phi_L(x) \neq 0$ for all $x \in N(|L|,2)$ because if $\phi_L(x) = 0$ then x(v) = 0 for all $v \in V_L$, hence for any $y \in |L|$, $$\begin{aligned} \|\mathbf{x} - \mathbf{y}\|_1 &= \sum_{\mathbf{v} \in V_K} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})| \\ &= \sum_{\mathbf{v} \in V_K} \mathbf{x}(\mathbf{v}) + \sum_{\mathbf{v} \in V_K} \mathbf{y}(\mathbf{v}) = 2. \end{aligned}$$ We define a retraction $r_L: N(C|L|,2) \rightarrow |L| (\subset |K|)$ by $$r_{L}(x)(v) = \begin{cases} \frac{x(v)}{\phi_{L}(x)} & \text{if } v \in V_{L}, \\ \\ 0 & \text{otherwise.} \end{cases}$$ Then for each $x \in N(|L|,2)$, $$\begin{aligned} \|\mathbf{r}_{\mathbf{L}}(\mathbf{x}) &- \mathbf{x}\|_{1} &= \sum_{\mathbf{v} \in \mathbf{V}_{\mathbf{L}}} \left| \frac{\mathbf{x}(\mathbf{v})}{\phi_{\mathbf{L}}(\mathbf{x})} - \mathbf{x}(\mathbf{v}) \right| + \sum_{\mathbf{v} \in \mathbf{V}_{\mathbf{K}} \setminus \mathbf{V}_{\mathbf{L}}} \mathbf{x}(\mathbf{v}) \\ &= \left(\frac{1}{\phi_{\mathbf{L}}(\mathbf{x})} - 1 \right) \sum_{\mathbf{v} \in \mathbf{V}_{\mathbf{L}}} \mathbf{x}(\mathbf{v}) + 1 - \phi_{\mathbf{L}}(\mathbf{x}) \end{aligned}$$ $$= \left(\frac{1}{\phi_{L}(x)} - 1\right) \phi_{L}(x) + 1 - \phi_{L}(x)$$ $$= 2 - 2\phi_{L}(x).$$ On the other hand 1 - $\phi_L\left(x\right)$ \leq $d_1\left(x,\left|L\right|\right)$ since for any y ε $\left|L\right|$, $$\begin{aligned} \|\mathbf{x} - \mathbf{y}\|_{1} &= \sum_{\mathbf{v} \in \mathbf{V}_{K}} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})| \\ &= \sum_{\mathbf{v} \in \mathbf{V}_{K}} \mathbf{v}_{L} \mathbf{x}(\mathbf{v}) + \sum_{\mathbf{v} \in \mathbf{V}_{L}} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})| \\ &\geq 1 - \sum_{\mathbf{v} \in \mathbf{V}_{L}} \mathbf{x}(\mathbf{v}) \\ &= 1 - \phi_{T}(\mathbf{x}).
\end{aligned}$$ Therefore we have $d_1(r_L(x),x) \leq 2 \cdot d_1(x,|L|) \text{ for each } x \in N(|L|,2).$ By Lemma 2 in [Sa]], $\overline{\mathcal{I}}(K)$ is a SAP-family in $\overline{|K|}^{\ell}1$. Now we prove the second half of Theorem 0.1. 1.5. Theorem. For a simplicial complex K, the inclusion i: $|K|_m \subset \overline{|K|}^{l}$ is a fine homotopy equivalence. *Proof.* By $|K|_w$, we denote the space |K| with the weak (or Whitehead) topology. Then the identity of |K| induces a fine homotopy equivalence j: $|K|_w \to |K|_m$ [Sa₁, Theorem 1]. By the same arguments in the proof of [Sa₁, Theorem 1] using the above lemma instead of [Sa₁, Lemma 3], ij: $|K|_w \to \overline{|K|}^{k_1}$ is also a fine homotopy equivalence. Then the result follows from the following lemma. 1.6. Lemma. Let $f: X \to Y$ and $g: Y \to Z$ be maps. If f and gf are fine homotopy equivalences then so is g. Proof. Let $\mathscr U$ be an open cover of Z. Then gf has a $\mathscr U$ -inverse h: Z \to X. Let $\mathscr V$ be an open cover of Y which refines both $g^{-1}(\mathscr U)$ and $g^{-1}h^{-1}f^{-1}g^{-1}(\mathscr U)$. Then f has a $\mathscr V$ -inverse k: Y \to X. Since hgf is $f^{-1}g^{-1}(\mathscr U)$ -homotopic to id_X, fhgfk is $g^{-1}(\mathscr U)$ -homotopic to fk which is $g^{-1}(\mathscr U)$ -homotopic to id_Y. Since fk is $g^{-1}h^{-1}f^{-1}g^{-1}(\mathscr U)$ -homotopic to id_Y, fhgfk is $g^{-1}(\mathscr U)$ -homotopic to fhg. Hence fhg is st $g^{-1}(\mathscr U)$ -homotopic to id_Y. Recall gfh is $\mathscr U$ -homotopic to id_Z. Therefore g is a fine homotopy equivalence. #### 2. The co-Completion of a Metric Complex As seen in Introduction, for any p > 1, the ℓ_p -completion of a metric simplicial complex is the same as the c_0 -completion. In this section, we clarify the difference between the ℓ_1 -completion and the c_0 -completion. The "only if" part of Proposition 0.3 is contained in the following 2.1. Proposition. Let K be a simplicial complex. Then K is infinite-dimensional if and only if 0 \in $\overline{|K|}^{c_0}$. *Proof.* To see the "if" part, let $n \in \mathbb{N}$. From $0 \in \overline{|K|}^{C_0}$, we have $x \in |K|$ with $\|x\|_{\infty} < n^{-1}$. Then $C_x \in K$ and dim $C_x \ge n$ because $$1 = \sum_{v \in C_X} x(v) \le \|x\|_{\infty} (\dim C_X + 1) < n^{-1} (\dim C_X + 1).$$ Therefore K is infinite-dimensional. To see the "only if" part, let $\epsilon>0$ and choose $n\in \mathbb{N}$ so that $(n+1)^{-1}<\epsilon$. Since K is infinite-dimensional, we have $A\in K$ with dim A=n. Let \hat{A} be the barycenter of |A|, that is, $$\hat{A}(v) = \begin{cases} (n+1)^{-1} & \text{if } v \in A, \\ 0 & \text{otherwise.} \end{cases}$$ Then $\|\hat{\mathbf{A}}\|_{\infty} = (n+1)^{-1} < \epsilon$. Hence $0 \in \overline{|\mathbf{K}|}^{\mathbf{C}} 0$. 2.2. Lemma. Let K be a simplicial complex and $x \in \overline{|K|}^{C_0}. \quad \text{Then } x(v) \geq 0 \text{ for all } v \in V_K, \ \|x\|_1 = \sum_{v \in C_v} x(v) \leq 1 \text{ and } F(C_v) \subset K.$ *Proof.* The first and the last conditions can be seen similarly as the "only if" part of Lemma 1.1. To see the second condition, assume 1 < $\Sigma_{v \in C_X} x(v) \leq \infty$. Then there are $v_1, \dots, v_n \in C_X$ such that $\Sigma_{i=1}^n x(v_i) > 1$. Since $x \in \overline{|K|}^{c_0}$, we have $y \in |K|$ with $$\|x - y\|_{\infty} < n^{-1} (\sum_{i=1}^{n} x(v_i) - 1).$$ Then it follows that $$\sum_{i=1}^{n} y(v_i) \ge \sum_{i=1}^{n} x(v_i) - \sum_{i=1}^{n} |x(v_i) - y(v_i)|$$ $$\ge \sum_{i=1}^{n} x(v_i) - n \cdot ||x - y||_{\infty} > 1.$$ This is contrary to y \in |K|. Therefore $\Sigma_{v \in C_{\mathbf{v}}} \mathbf{x}(v) \leq 1$. Now we prove the "if" part of Proposition 0.3, that is, 2.3. Proposition. Let K be a finite-dimensional simplicial complex. Then $\overline{|K|}^{C_0} = |K|$, that is, $(|K|, d_{\infty})$ is complete. Proof. Let dim K = n and x $\in |K|^{C_0}$. By Proposition 2.1, x \neq 0, that is, $C_x \neq \emptyset$. And C_x is finite, otherwise K contains an (n+1)-simplex by Lemma 2.2. Therefore $C_x \in K$ by Lemma 2.2. For any $\varepsilon > 0$, we have $y \in |K|$ with $||x - y||_{\infty} < 2^{-1} (n+1)^{-1} \varepsilon$. Note $C_x \cup C_y$ contains at most 2(n+1) vertices. Then it follows that $$\begin{split} |\sum_{\mathbf{v} \in C_{\mathbf{x}}} \mathbf{x}(\mathbf{v}) - 1| &= |\sum_{\mathbf{v} \in V_{\mathbf{K}}} \mathbf{x}(\mathbf{v}) - \sum_{\mathbf{v} \in V_{\mathbf{K}}} \mathbf{y}(\mathbf{v})| \\ &\leq \sum_{\mathbf{v} \in V_{\mathbf{K}}} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})| \\ &= \sum_{\mathbf{v} \in C_{\mathbf{x}} \cup C_{\mathbf{y}}} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})| \\ &\leq 2(\mathbf{n}+1) \cdot \|\mathbf{x} - \mathbf{y}\|_{\infty} < \epsilon. \end{split}$$ Therefore $\|x\|_1 = \sum_{v \in C_x} x(v) = 1$. By Lemma 2.2, $x(v) \ge 0$ for all $v \in V_K$. Hence $x \in |K|$. Thus Proposition 0.3 is obtained. As a corollary, we have the following 2.4. Corollary. Let L be a finite-dimensional subcomplex of a simplicial complex K. Then |L| is closed in $\overline{|K|}^{C_0}$. Before proving Theorems 0.4 and 0.5, we decide the difference between the ℓ_1 -completion and the c_0 -completion as sets. Let K be a simplicial complex and let A \in K. The star St(A) of A is the subcomplex defined by St(A) = {B \in K|A,B \subset C for some C \in K}. We say that A is *principal* if A $\not\subset$ B for any B \in K \smallsetminus {A}, that is, A is *maximal* with respect to \subset . By Max(K), we denote all of principal simplexes of K. We define the subcomplexes ID(K) and P(K) of K as follows: $ID(K) = \{A \in K | \dim St(A) = \infty\},\$ $P(K) = \{A \in K | A \subset B \text{ for some } B \in Max(K) \}.$ Then clearly $K = P(K) \cup ID(K)$. Observe ID(K) = K if and only if $P(K) = \emptyset$, however P(K) = K does not imply $ID(K) = \emptyset$ (the converse implication obviously holds). For example, let $$K_1 = F(\{0,1\}), K_2 = F(\{0,2,3\}),$$ $K_3 = F(\{0,4,5,6\}), \cdots$ and let $K = \bigcup_{n \in \mathbb{N}} K_n$. Then P(K) = K but dim $St(\{0\}) = \infty$. In general, for any $A,B \in K$, $St(A) \subset St(B)$ if and only if $B \subset A$. Then $ID(K) = \emptyset$ if and only if dim $St(\{v\}) < \infty$ for each $v \in V_K$, that is, K is locally finite-dimensional. 2.5. Theorem. Let K be an infinite-dimensional and locally finite-dimensional simplicial complex, namely $ID(K) = \emptyset, then \overline{|K|}^{C_0} = |K| \cup \{0\}.$ Proof. By Proposition 2.1, $|K| \cup \{0\} \subset \overline{|K|}^{C_0}$. Let $x \in \overline{|K|}^{C_0} \setminus |K|$. Assume $x \neq 0$, that is, $C_x \neq \emptyset$. From ID(K) = \emptyset , K has no infinite full simplicial complex. Then C_x is finite because $F(C_x) \subset K$ by Lemma 2.2. This implies $C_x \in K$. Put dim $St(C_x) = n$. From $x \notin |K|$, it follows $\sum_{v \in C_x} x(v) < 1$. Let $\delta = \min\{(n+1)^{-1}(1 - \sum_{v \in C_X} x(v)), \min_{v \in C_X} x(v)\} > 0.$ $$< \sum_{v \in C_x} x(v) + (n + 1) \delta$$ $$\leq \sum_{v \in C_x} x(v) + (1 - \sum_{v \in C_x} x(v)) = 1.$$ This is contrary to $y \in |K|$. Therefore x = 0. 2.6. Lemma. Let K be a simplicial complex with no principal simplex, namely ID(K) = K. Then $$\frac{1}{|K|}^{c_0} = \mathbf{I} \cdot \overline{|K|}^{\ell_1} = \{ tx \mid x \in \overline{|K|}^{\ell_1}, t \in \mathbf{I} \}.$$ Proof. Let $x \in \overline{|K|}^{C_0}$. If x = 0 then clearly $x \in I \cdot \overline{|K|}^{\ell_1}$. If $x \neq 0$ then $\|x\|_1^{-1}x \in \overline{|K|}^{\ell_1}$ by Lemmas 2.2 and 1.1. Since $\|x\|_1 \leq 1$ by Lemma 2.2, $x = \|x\|_1(\|x\|_1^{-1}x) \in I \cdot \overline{|K|}^{\ell_1}$. Conversely let $x \in \overline{|K|}^{\ell_1}$ and $t \in I$. For any $\epsilon > 0$, we have $y \in |K|$ with $\|x - y\|_1 < \epsilon$, hence $\|x - y\|_{\infty} < \epsilon$. Choose $n \in \mathbb{N}$ so that $(n+1)^{-1} < \epsilon$. Since $C_y \in K = ID(K)$ we have $A \in K$ such that $C_y \subset A$ and $A \geq C_y \in K = ID(K)$ and $A \geq C_y \in K = ID(K)$. where \hat{A} is the barycenter of |A|. Since $\|\hat{A}\|_{\infty} \leq (n+1)^{-1} < \epsilon$ (see the proof of Proposition 2.1), $$\begin{aligned} \|\mathsf{tx} - \mathsf{z}\|_{\infty} &= \|\mathsf{tx} - \mathsf{ty} - (\mathsf{1-t})\hat{\mathsf{A}}\|_{\infty} \\ &\leq \mathsf{t} \cdot \|\mathsf{x} - \mathsf{y}\|_{\infty} + (\mathsf{1-t}) \cdot \|\hat{\mathsf{A}}\|_{\infty} \\ &< \mathsf{t}_{\varepsilon} + (\mathsf{1-t})_{\varepsilon} = \varepsilon. \end{aligned}$$ Therefore tx $\in \overline{|K|}^{c_0}$. In Lemma 2.6, we should remark that $\overline{|K|}^{c_0} \neq i \cdot \overline{|K|}^{\ell_1}$ as spaces. In fact, for each $n \in \mathbb{N}$, let $A_n \in K$ with dim A = n. Then the set $\{\hat{A}_n | n \in \mathbb{N}\}$ is discrete in $\overline{|K|}^{\ell_1}$ but has the cluster point 0 in $\overline{|K|}^{c_0}$. As general case, we have the following 2.7. Theorem. Let K be a simplicial complex with $ID(K) = \emptyset. \quad Then \ \overline{|K|}^C 0 = |P(K)| \ U \ I \cdot \overline{|ID(K)|}^{\ L} 1.$ Proof. Since $I \cdot |\overline{ID(K)}|^{l_1} = |\overline{ID(K)}|^{c_0} \subset |\overline{K}|^{c_0}$ by Lemma 2.5, we have $|P(K)| \cup I \cdot |\overline{ID(K)}|^{l_1} \subset |\overline{K}|^{c_0}$. Let $x \in |\overline{K}|^{c_0} \setminus |K|$. If x = 0 then clearly $x \in I \cdot |\overline{ID(K)}|^{l_1}$. In case $x \neq 0$, if C_x is finite and $C_x \notin ID(K)$, $C_x \in K \setminus ID(K)$ by Lemma 2.2, hence dim $St(C_x) < \infty$. The arguments in the proof of Theorem 2.5 lead a contradiction. Thus C_x is infinite or $C_x \in ID(K)$. In both cases, clearly $F(C_x) \subset ID(K)$. Then using Lemmas 1.1 and 2.2 as in the proof of Lemma 2.6, we can see $x \in I \cdot |\overline{ID(K)}|^{l_1}$. Since $|K| = |P(K)| \cup |ID(K)|$, we have $|K|^{c_0} \subset |P(K)| \cup I \cdot |\overline{ID(K)}|^{l_1}$. Next we show that Theorem 0.1
does not hold for the $\ensuremath{\mathtt{c}}_0\text{--}\ensuremath{\mathtt{completion}}.$ 2.8. Lemma. Let X be a dense subspace of a Hausdorff space \tilde{X} . Then any locally compact open subset of X is open in \tilde{X} . Hence for a locally compact set $A\subset X$, $\operatorname{int}_{\tilde{X}}A=\operatorname{int}_{X}A$. Proof. Let Y be a locally compact open subset of X and y \in Y. We have an open set U in X such that y \in U \subset Y and $c\ell_Y$ U is compact. Let \tilde{U} be an open set in \tilde{X} with $U = \tilde{U} \cap X$. Since $c\ell_Y$ U is closed in \tilde{X} , $\tilde{U} \cdot c\ell_Y$ U is open in \tilde{X} . Observe that $(\tilde{U} \subset \ell_Y U) \cap X = U \subset \ell_Y U = \emptyset.$ Then $\tilde{U} \subset \ell_Y U = \emptyset$ because X is dense in \tilde{X} . Hence $\tilde{U} \times X = \emptyset$, that is, $\tilde{U} = U$. Therefore Y is open in \tilde{X} . Let K be a simplicial complex. Then for each A \in K, $\inf_{\overline{|K|}} c_0^{|A|} = \inf_{|K|} |A| = |A| \cup \{|B| \mid B \in K, B \neq A\}.$ Thereby abbreviating subscripts, we write $\operatorname{int}|A|$ and also $\operatorname{bd}|A| = |A| \cdot \operatorname{int}|A|$. Notice that $\operatorname{int}|A| \neq \emptyset$ if and only if A is principal. We define the subcomplex BP(K) of P(K) as follows: BP(K) = {A $$\in$$ P(K) | |A| \subset bd|B| for some B \in Max(K)}. By the following proposition, we can see that Theorem 0.1 does not hold for the c_0 -completion. 2.8. Proposition. Let K be a simplicial complex. If $\dim P(K) = \infty \ and \ \dim BP(K) < \infty \ then \ \overline{|K|}^{C_0} \ is \ not \ locally$ connected at 0. *Proof.* By Corollary 2.4, |BP(K)| is closed in $\overline{|K|}^{c_0}$. $$\delta = d_{\infty}(0, |BP(K)|) > 0.$$ and let U be a neighborhood of 0 in $\overline{|K|}^{C_0}$ with daim U > δ . Similarly as the proof of Proposition 2.1, we have a principal simplex A \in K with $\hat{A} \in$ U. Since $bd|A| \subset |BP(K)|$, U $\cap bd|A| = \emptyset$, hence U $\cap |A|$ is open and closed in U. And $\emptyset \neq U \cap |A| \subsetneq U$ because $\hat{A} \in U \cap |A|$ and $0 \not\in U \cap |A|$. Therefore U is disconnected. Now we prove the first statement of Theorem 0.4. 2.9. Theorem. Let K be a simplicial complex with no principal simplex. Then the c_0 -completion $\overline{|K|}^{c_0}$ is an AR. *Proof.* (Cf. the proof of Theorem 1.3). Define $\mu\colon \ c_0^-(V_K^-)^2 \to c_0^-(V_K^-) \text{ exactly as Theorem 1.3, that is, as}$ follows: $$\mu(x,y)(v) = \min\{|x(v)|, |y(v)|\}.$$ Then for each $(x,y),(x',y') \in c_0(V_K)^2$, $$\|\mu(x,y) - \mu(x',y')\|_{\infty} \le \max\{\|x - x'\|_{\infty}, \|y - y'\|_{\infty}\},$$ hence μ is continuous. Here we define an equi-connecting map $\lambda\colon \left.c_0^-(V_K^-)\right.^2\times \left.I\right. \to \left.c_0^-(V_K^-)\right.$ as follows: $$\lambda(x,y,t) = \begin{cases} (1-2t)x + 2t\mu(x,y) & \text{if } 0 \le t \le \frac{1}{2}, \\ (2t-1)y + (2-2t)\mu(x,y) & \text{if } \frac{1}{2} \le t \le 1. \end{cases}$$ Using Lemmas 1.1 and 2.6, it is easy to see that $$\lambda((\overline{|K|}^{c_0})^2 \times I) \subset \overline{|K|}^{c_0}$$. Let $z \in \overline{|K|}^{c_0}$ and $\varepsilon > 0$. Then the ϵ -neighborhood of z is λ -convex. In fact, let x,y ϵ $|K|^{C_0}$ such that $||x - z||_m$, $||y - z||_m < \epsilon$. Observe $$\begin{aligned} \parallel \mu \left(\mathbf{x}, \mathbf{y} \right) &- \mathbf{z} \parallel_{\infty} &= \left\| \mu \left(\mathbf{x}, \mathbf{y} \right) - \mu \left(\mathbf{z}, \mathbf{z} \right) \right\|_{\infty} \\ &\leq \max \{ \left\| \mathbf{x} - \mathbf{z} \right\|_{\infty}, \left\| \mathbf{y} - \mathbf{z} \right\|_{\infty} \} < \epsilon. \end{aligned}$$ For 0 < t < 1/2, $$\begin{split} \| \lambda (x,y,t) - z \|_{\infty} &= \| (1 - 2t)x + 2t\mu(x,y) - z \|_{\infty} \\ &\leq (1 - 2t) \| x - z \|_{\infty} + 2t \| \mu(x,y) \\ &- z \|_{\infty} < \varepsilon. \end{split}$$ For $1/2 \le t \le 1$, similarly $\|\lambda(x,y,t) - z\|_{\infty} < \epsilon$. By Lemma 1.2, $\overline{|K|}^{0}$ is an AR. As corollaries, we have the second statement of Theorem 0.4 and the first half of Theorem 0.5. 2.10. Corollary. Let K be a simplicial complex with dim P(K) < ∞ . Then the c_0 -completion $\overline{|K|}^{c_0}$ is an ANR. *Proof.* By Corollary 2.4, |P(K)| is closed in $\overline{|K|}^{c_0}$. Then $\overline{|K|}^{c_0} = \overline{|P(K)|}^{c_0}$ u $\overline{|ID(K)|}^{c_0} = |P(K)|$ u $\overline{|ID(K)|}^{c_0}$. By Theorem 2.9, $\overline{|ID(K)|}^{C_0}$ is an AR. Since |P(K)| and $|P(K)| \cap \overline{|ID(K)|}^{C_0} = |P(K) \cap ID(K)|$ are ANR's, so is $\overline{|K|}^{C_0}$ (cf., [Hu]). 2.11. Corollary. For any simplicial complex K, $\boxed{\mathbb{K}}^{c_0} \setminus \{0\}$ is an ANR. *Proof.* By Theorems 2.5 and 2.7, $|K|^{C_0} < 0$ = $|P(K)| \cup (|\overline{ID(K)}|^{C_0} < 0)$. Then similarly as the above corollary, we have the result. The following is the second half of Theorem 0.5. 2.12. Theorem. For any simplicial complex K, the inclusion i: $|K|_m \subset \overline{|K|}^c 0$ is a homotopy equivalence. *Proof.* Since both spaces are ANR's, by the Whitehead Theorem [Wh], it is sufficient to see that i: $|K|_m = \frac{c_0}{|K|} c_0$ is a weak homotopy equivalence, that is, i induces isomorphisms $$i_*: \pi_n(|K|_m) \to \pi_n(\overline{|K|}^{C_0} \setminus \{0\}), n \in \mathbb{N}.$$ Let $\mathcal{J}(\mathtt{K})$ be the family of Lemma 1.4. And for each $|\mathtt{L}| \in \mathcal{J}(\mathtt{K})$, let $\phi_\mathtt{L} \colon \overline{|\mathtt{K}|}^{\mathtt{C}_0} \to \mathtt{I}$ be the map defined as Lemma 1.4. (Since $\mathtt{V}_\mathtt{L}$ is finite, the continuity of $\phi_\mathtt{L}$ is clear.) Then $\phi_\mathtt{L}^{-1}(\mathtt{1}) = \mathtt{L}$. Let $$U(L) = \{x \in \overline{|K|}^{C_0} \mid C_x \cap V_L \neq \emptyset\}.$$ Then U(L) is an open neighborhood of |L| in $\overline{|K|}^C 0$. In fact, for each $x \in U(L)$, choose $v \in C_x \cap V_L$. If $\|x - y\|_{\infty} < x(v)$ then $v \in C_y \cap V_L$ because y(v) > 0, hence $y \in U(L)$. Since $\phi_L(x) \neq 0$ for each $x \in U(L)$, we can define a retraction r_L: U(L) \rightarrow |L| similarly as Lemma 1.4. Observe for each x \in U(L) and t \in I, $$C_{(1-t)x + tr_{T}(x)} \subset C_{x}$$ Then using Lemma 1.1 and Theorem 2.7, it is easily seen that (1-t)x + ${\rm tr_L}(x)$ \in $\overline{|K|}^c 0 \setminus \{0\}$. Since $$C_{(1-t)x + tr_{\tau}(s)} \cap V_{L} \neq \emptyset$$, it follows that $(1-t)x + tr_L(x) \in U(L)$. Thus we have a deformation $h_L: U(L) \times I \to U(L)$ defined by $$h_{L}(x,t) = (1-t)x + tr_{L}(x)$$. It is easy to see that $\overline{|K|}^{C_0} \setminus \{0\} = \bigcup \{U(L) \mid |L| \in \mathcal{F}(K)\}.$ Now we show that $i_{\star}\colon \pi_n(|K|_m) \to \pi_n(|K|_m) \to \pi_n(|K|_m)$ is an isomorphism. By S^n and B^{n+1} , we denote the unit n-sphere and the unit (n+1)-ball. Let $\alpha\colon S^n \to |K|_m$ and $\beta\colon B^{n+1} \to |K|^{C_0} \setminus \{0\}$ be maps such that $\beta \mid S^n = \alpha$. Note α is homotopic to a map $\alpha'\colon S^n \to |K|_m$ such that $\alpha'(S^n) \subset |L'|$ for some $|L'| \in \mathcal{J}(K)$. By the Homotopy Extension Theorem, α' extends to a map $\beta'\colon B^{n+1} \to |K|^{C_0} \setminus \{0\}$. From compactness of $\beta'(B^{n+1})$, we have an $|L| \in \mathcal{J}(K)$ such that $|L'| \subset |L|$ and $\beta'(B^{n+1}) \subset U(L)$. Then α' extends to $r_L\beta'\colon B^{n+1} \to |L| \subset |K|_m$. Therefore i_{\star} is a monomorphism. Next let $\alpha\colon S^n \to |K|^{C_0} \setminus \{0\}$ be a map. From compactness of $\alpha(S^n)$, we have an $|L| \in \mathcal{J}(K)$ such that $\alpha(S^n) \subset U(L)$. Then $r_L\alpha\colon S^n \to |L| \subset |K|_m$ is homotopic to α in U(L). This implies that i_{\star} is an epimorphism. #### 3. Completions of the Barycentric Subdivisions By Sd K, we denote the barycentric subdivision of a simplicial complex K, that is, Sd K is the collection of non-empty finite sets $\{A_0, \cdots, A_n\} \subset K = V_{\text{Sd} K}$ such that $A_0 \not\subseteq \cdots \not\subseteq A_n$. We have the natural homeomorphism $\theta \colon \left| \text{Sd } K \right|_m \to \left| K \right|_m \text{ defined by }$ $\theta (\xi) (v) = \sum_{v \in A \in K} \frac{\xi(A)}{\dim A + 1}.$ The inverse θ^{-1} : $|K|_m \to |Sd K|_m$ of θ is given by $\theta^{-1}(x)(A) = (\dim A + 1) \cdot \max\{\min x(v) - \max x(v), 0\}.$ $v \notin A$ In fact, let $x \in |K|$ and write $C_x = \{v_0, \dots, v_n\}$ so that $x(v_0) \ge \dots \ge x(v_n)$. For each $v \in V_K$, $\theta \theta^{-1}(x)(v) = \sum_{v \in A \in K} \min_{u \in A} x(u) - \max_{u \notin A} x(u), 0\}.$ If $v \notin C_X$ then min x(u) = 0 for $v \in A \in K$, hence $\theta \theta^{-1}(x)(v)$ = 0. For $A \in K$, if $A \neq \{v_0, \dots, v_j\}$ for any $j = 0, \dots, n$ then $$\theta\theta^{-1}(x)(v_i) = \sum_{j=i}^{n-1}(x(v_j) - x(v_{j+1})) + x(v_n) = x(v_i).$$ Therefore $\theta\theta^{-1}(x) = x$. Conversely let $\xi \in |Sd K|$ and write $C_{\xi} = \{A_0, \dots, A_n\}$ so that $A_0 \nsubseteq \dots \nsubseteq A_n$. For each $A \in K$, $\theta^{-1}\theta(\xi)(A) = (\dim A + 1) \cdot \max\{\min \theta(\xi)(v)\}$ - $$\max_{\mathbf{v} \notin \mathbf{A}} \theta(\xi)(\mathbf{v}), 0$$. If A $\not\in$ C then A $\not\subset$ A or A or A i - 1 $\not\supset$ A $\not\subseteq$ A for some i = 0,...,n, where A = $\not\emptyset$. In case A $\not\subset$ A we have $v_0 \in$ A A if $v_0 \in$ B \in K then ξ (B) = 0 because B $\not\in$ A for any i = 0,...,n. Therefore $$\theta(\xi)(v_0) = \sum_{v_0 \in B \in K} \frac{\xi(B)}{\dim B + 1} = 0,$$ hence $\theta^{-1}\theta(\xi)(A) = 0$. Observe if $v \in A_i \sim A_{i-1}$ then $$\theta\left(\xi\right)\left(v\right) \; = \; \sum_{v \in B \in K} \; \frac{\xi\left(B\right)}{\dim B \; + \; 1} \; = \;
\sum_{j=i}^{n} \; \frac{\xi\left(A_{j}\right)}{\dim A_{j} \; + \; 1} \; \; .$$ In case $A_{i-1} \not\supset A \subsetneq A_i$ for some $i = 0, \dots, n$, we have $v_1 \in A \setminus A_{i-1}$ and $v_2 \in A_i \setminus A$. Since $$\min_{\mathbf{v} \in \mathbf{A}} \theta(\xi)(\mathbf{v}) \leq \theta(\xi)(\mathbf{v}_1) = \sum_{j=1}^{n} \frac{\xi(\mathbf{A}_j)}{\dim \mathbf{A}_j + 1}$$ $$= \theta(\xi)(\mathbf{v}_2) \leq \max_{\mathbf{v} \notin \mathbf{A}} \theta(\xi)(\mathbf{v}),$$ it follows $\theta^{-1}\theta(\xi)(A)=0$. It is easy to see that $\min_{\mathbf{v}\in A_{\underline{i}}}\theta(\xi)(\mathbf{v})=\sum_{j=i}^{n}\frac{\xi(A_{j})}{\dim A_{j}+1} \text{ and }$ $$\max_{\mathbf{v} \notin A_{\mathbf{i}}} \theta(\xi)(\mathbf{v}) = \sum_{j=i+1}^{n} \frac{\xi(A_{j})}{\dim A_{j} + 1}.$$ Thus we have $$\theta^{-1}\theta(\xi)(A_{i}) = (\dim A_{i} + 1)(\sum_{j=i}^{n} \frac{\xi(A_{j})}{\dim A_{j} + 1}$$ $$- \sum_{j=i+1}^{n} \frac{\xi(A_{j})}{\dim A_{j} + 1}$$ $$= (\dim A_{i} + 1) \frac{\xi(A_{i})}{\dim A_{i} + 1} = \xi(A_{i}).$$ Therefore $\theta^{-1}\theta(\xi) = \xi$. 3.1. Theorem. For a simplicial complex K, the natural homeomorphism $\theta\colon |\operatorname{Sd} K|_{\mathfrak{m}} \to |K|_{\mathfrak{m}}$ induces a homeomorphism $\overline{\theta}\colon |\operatorname{Sd} K|^{2} \to |K|^{2}$. Proof. For each $\xi, \eta \in |\operatorname{Sd} K|$, $\|\theta(\xi) - \theta(\eta)\|_{1} = \sum_{v \in V_{K}} |\sum_{v \in A \in K} \frac{\xi(A)}{\dim A + 1}$ $- \sum_{v \in A \in K} \frac{\eta(A)}{\dim A + 1}|$ $\leq \sum_{v \in V_{K}} \sum_{v \in A \in K} \frac{|\xi(A) - \eta(A)|}{\dim A + 1}$ $= \sum_{A \in K} |\xi(A) - \eta(A)| = \|\xi - \eta\|_{1}.$ Then θ is uniformly continuous with respect to the metrics d_1 on $|Sd\ K|_m$ and $|K|_m.$ Hence θ induces a map $\overline{\theta}\colon \overline{|\operatorname{Sd}|K|}^{2} \xrightarrow{1} \xrightarrow{1} \overline{|K|}^{2} 1. \quad (\operatorname{However, we should remark that } \theta^{-1}$ is not uniformly continuous in case dim $K = \infty$. In fact, let $A \in K$ be an n-simplex and $B \subset A$ an (n-1)-face. Then for the barycenters $\widehat{A} \in |A|$ and $\widehat{B} \in |B|$, we have $\|\widehat{A} - \widehat{B}\|_{1} = 2/n$ but $\|\theta^{-1}(\widehat{A}) - \theta^{-1}(\widehat{B})\|_{1} = \|A - B\|_{1} = 2.$ Since θ is injective, so is $\overline{\theta}$. In order to show that $\overline{\theta}$ is surjective, it suffices to see $\overline{|K|}^{2} = \overline{|K|} = \overline{|K|}^{2} = \overline{|K|} = \overline{|K|} = \overline{|K|}^{2} = \overline{|K|} \overline{|K|}$ $$n \cdot x(v_{n+1}) + \sum_{i=n+1}^{\infty} x(v_i) \le \sum_{i=1}^{\infty} x(v_i) = 1.$$ Moreover $n \cdot x(v_n)$ converges to 0. If not, we have $\epsilon > 0$ and $1 \le n_1 < n_2 < \cdots$ such that $n_i x(v_{n_i}) > \epsilon$ for each $i \in \mathbb{N}$. We may assume $\Sigma_{n>n_1} x(v_n) < \epsilon/2$. Since $$\begin{split} & 2 \left(\mathbf{n_{i+1}} - \mathbf{n_{i}} \right) < \mathbf{n_{i+1}} \text{ hence } \mathbf{n_{i+1}} < 2 \mathbf{n_{i}}. \text{ Observe} \\ & \sum_{n=n_{1}}^{n_{i+1}-1} \frac{\varepsilon}{2n_{i}} \\ & = \left(\frac{1}{2n_{1}} + \cdots + \frac{1}{2(2n_{2}-1)} \right) \varepsilon + \cdots + \left(\frac{1}{2n_{i}} + \cdots + \frac{1}{2(n_{i+1}-1)} \right) \varepsilon \\ & < \frac{n_{2}-n_{1}}{2n_{1}} \cdot \varepsilon + \cdots + \frac{n_{i+1}-n_{i}}{2n_{i}} \cdot \varepsilon \\ & < \frac{n_{2}-n_{1}}{n_{2}} \cdot \varepsilon + \cdots + \frac{n_{i+1}-n_{i}}{n_{i+1}} \cdot \varepsilon \\ & < \left(n_{2}-n_{1} \right) \cdot \mathbf{x} \left(\mathbf{v_{n_{2}}} \right) + \cdots + \left(n_{i+1}-n_{i} \right) \cdot \mathbf{x} \left(\mathbf{v_{n_{i+1}}} \right) \end{split}$$ $$\leq (x(v_{n_{1}+1}) + \cdots + x(v_{n_{2}})) + \cdots + (x(v_{n_{i}+1}))$$ $$+ \cdots + x(v_{n_{i+1}}))$$ $$= \sum_{n=n_{1}+1}^{n_{i}+1} x(v_{n}) < \frac{\varepsilon}{2}.$$ This contradicts to the fact $\sum_{n=n_1}^{\infty} n^{-1}$ is not convergent. For each $n \in \mathbb{N}$, let $A_n = \{v_1, \dots, v_n\}$. Define $\xi_n \in |Sd K|$, $n \in \mathbb{N}$ and $\xi \in \ell_1(K)$ as follows: $$\xi_{n}(A) = \begin{cases} i(x(v_{i}) - x(v_{i+1})) & \text{if } A = A_{i}, i \leq n, \\ (n+1)x(v_{n+1}) + \sum_{i=n+2}^{\infty} x(v_{i}) & \text{if } A = A_{n+1}, \\ 0 & \text{otherwise,} \end{cases}$$ and $$\xi\left(\mathtt{A}\right) \; = \; \begin{cases} n\left(\mathtt{x}\left(\mathtt{v}_{n}\right) \; - \; \mathtt{x}\left(\mathtt{v}_{n+1}\right)\right) \; \; \text{if } \mathtt{A} \; = \; \mathtt{A}_{n} \; , \; n \; \in \; \mathbb{N} \text{,} \\ 0 \qquad \qquad \qquad \text{otherwise.} \end{cases}$$ Since $n \cdot x(v_n)$ converges to 0, we have $$\|\xi_{n} - \xi\|_{1} = 2 \sum_{i=n+2}^{\infty} x(v_{i}).$$ Then $\|\xi_n - \xi\|_1$ converges to 0, that is, ξ_n converges to ξ . Hence $\xi \in \overline{|Sd|K|}^{\ell}$. It is easy to see that $$\theta\left(\xi_{n}\right)\left(v\right) \; = \; \begin{cases} x\left(v_{\underline{i}}\right) \; + \; \frac{\sum_{n+2}^{\infty}x\left(v_{\underline{i}}\right)}{n+1} \; \text{if } v = v_{\underline{i}}, \; \underline{i} \; \leq \; n+1 \\ 0 \; & \text{otherwise,} \end{cases}$$ and $$\|\theta(\xi_n) - x\|_1 = 2 \sum_{n+2}^{\infty} x(v_i).$$ Then $\theta(\xi_n)$ converges to x. This implies $\overline{\theta}(\xi) = x$. Finally, we see the continuity of θ^{-1} . Let $x \in \overline{|K|}^{\ell}1$, $\xi = \theta^{-1}(x) \in \overline{|Sd|K|}^{\ell}1$ and $\varepsilon > 0$. Write $C_x = \{v_i | i \in N\}$ so that $x(v_1) \geq x(v_2) \geq \cdots$. Recall $i \cdot x(v_i)$ converges to 0. We can choose $n \in N$ so that $(n+1) \cdot x(v_{n+1}) < \varepsilon/6$, $$\begin{split} \Sigma_{i=n+2}^{\infty} x(v_i) &< \varepsilon/6 \text{ and } x(v_n) > x(v_{n+1}). \quad \text{Put} \\ \delta &= \min\{x(v_i) - x(v_{i+1}) \mid x(v_i) > x(v_{i+1}), \\ &\qquad \qquad i = 1, \cdots, n\} > 0. \end{split}$$ Let $y \in \overline{|K|}^{\ell_1}$ with $$\|\mathbf{x} - \mathbf{y}\|_1 < \min\{\frac{\delta}{2}, \frac{\varepsilon}{6n(n+1)}\}$$ and $\eta = \overline{\theta}^{-1}(y) \in \overline{|Sd|K|}^{\ell}$. Remark that for $1 \le i < j \le n+1$, $x(v_i) > x(v_j)$ implies $y(v_i) > y(v_j)$ because $$y(v_i) - y(v_j) > (x(v_i) - \frac{\delta}{2}) - (x(v_j) + \frac{\delta}{2})$$ = $(x(v_i) - x(v_j)) - \delta > 0$. Then, reordering v_1, \dots, v_n , we can assume that $$y(v_1) \ge y(v_2) \ge \cdots \ge y(v_n) > y(v_{n+1})$$. For each $i \in \mathbb{N}$, let $A_i = \{v_1, \cdots, v_i\}$. Then $C_{\xi} \subset \{A_i \mid i \in \mathbb{N}\}$, $\xi(A_i) = i \cdot (x(v_i) - x(v_{i+1})) \text{ for all } i \in \mathbb{N}, \text{ and}$ $\eta(A_i) = i \cdot (y(v_i) - y(v_{i+1})) \text{ for } i = 1, \cdots, n.$ Therefore $$\begin{split} & \sum_{i=1}^{n} \left| \xi \left(A_{i} \right) - \eta \left(A_{i} \right) \right| \\ & = \sum_{i=1}^{n} \left| i \cdot \left(x (v_{i}) - x (v_{i+1}) \right) - i \cdot \left(y (v_{i}) - y (v_{i+1}) \right) \right| \\ & \leq \sum_{i=1}^{n} i \cdot \left| x (v_{i}) - y (v_{i}) \right| + \sum_{i=1}^{n} i \cdot \left| x (v_{i+1}) - y (v_{i+1}) \right| \\ & \leq 2 \left(\sum_{i=1}^{n} i \right) \cdot \left\| x - y \right\|_{1} = n (n+1) \cdot \left\| x - y \right\|_{1} < \frac{\varepsilon}{6} \end{split}.$$ Since $i \cdot x(v_i)$ converges to 0, $$\sum_{i=n+1}^{\infty} \xi(A_i) = (n+1) \times (v_{n+1}) + \sum_{i=n+2}^{\infty} x(v_i) < \frac{\varepsilon}{6} + \frac{\varepsilon}{6} = \frac{\varepsilon}{3}.$$ Then $\sum_{i=1}^{n} \xi(A_i) = \|\xi\|_1 - \sum_{i=n+1}^{\infty} \xi(A_i) > 1 - \frac{\varepsilon}{3}$, hence This implies $\Sigma_{A \in K \setminus \{A_1, \dots, A_n\}} \eta(A) < \frac{\varepsilon}{2}$. Thus we have $$\begin{split} &\|\theta^{-1}(x) - \theta^{-1}(y)\|_{1} = \|\xi - \eta\|_{1} \\ &\leq \sum_{i=1}^{n} |\xi(A_{i}) - \eta(A_{i})| + \sum_{i=n+1}^{\infty} |\xi(A_{i})| \\ &+ \sum_{A \in K \setminus \{A_{1}, \dots, A_{n}\}} |\eta(A)| \\ &\leq \frac{\varepsilon}{6} + \frac{\varepsilon}{3} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$ The proof is completed. Thus the $\ell_1\text{--}\text{completion}$ well behaves in the barycentric subdivision of a metric simplicial complex. However the $c_0\text{--}\text{completion}$ does not. 3.2. Proposition. Let K be an infinite-dimension simplicial complex. Then there is no homeomorphism $h\colon \overline{|\operatorname{Sd} K|}^{C_0} \to \overline{|K|}^{C_0} \text{ extending the natural homeomorphism}$ $\theta\colon |\operatorname{Sd} K|_{\mathfrak{m}} \to |K|_{\mathfrak{m}}.$ Proof. Assume there is a homeomorphism $h: \overline{|\operatorname{Sd} K|}^{C_0} \to \overline{|\operatorname{K}|}^{C_0}$ such that $h||\operatorname{Sd} K| = \theta$. For each simplex $A \in K$, we define $A^* \in |\operatorname{Sd} K|$ by $A^*(A) = 1$. Note $h(A^*) = \theta(A^*)$ is the barycenter of \widehat{A} of |A|. For each $n \in \mathbb{N}$, take an n-simplex $A_n \in K$. Then as seen in the proof of Proposition 2.1, $h(A_n^*) = \widehat{A}_n$ converges to 0. However $\|A_n^* - A_m^*\|_{\infty} = 1$ for any $n \neq m \in \mathbb{N}$. This shows that h^{-1} is not continuous at 0. In the above, h^{-1} is not continuous at $x \neq 0$ either. For example, let $A_0 \in K$ with dim $St(A_0) = \infty$ and for each $n \in \mathbb{N}$ take an n-simplex $A_n \in St(A_0)$. We define $\xi_n = \frac{1}{2} A_0^* + \frac{1}{2} A_n^* \in |Sd| K|$, $n \in \mathbb{N}$. Then $h(\xi_n) = \frac{1}{2} \hat{A}_0 + \frac{1}{2} \hat{A}_n$ converges to $\frac{1}{2} \hat{A}_0$ but $\|\xi_n - \xi_m\|_{\infty} = \frac{1}{2}$ for any $n \neq m \in \mathbb{N}$. This implies h^{-1} is not continuous at \hat{A}_0 . ### 4. The ℓ_1 -Completion of a Metric Combinatorial ∞ -Manifold 1986 Let Δ^{∞} be the countable-infinite full simplicial complex, that is, $\Delta^{\infty}=F(\centsum)$. For the ℓ_1 -completion and the ℓ_0 -completion of $|\Delta^{\infty}|_m$, we have 4.1. Proposition. The pairs $(|\Delta^{\infty}|^{1}, |\Delta^{\infty}
{m})$ and $(|\Delta^{\infty}|^{1}, |\Delta^{\infty}|{m})$ are homeomorphic to the pair (ℓ_{2}, ℓ_{2}^{f}) . Using the result of [CDM], this follows from the following 4.2. Lemma. Let K be a simplicial complex with no principal simplex. Then $\overline{|K|}^{l_1}$ and $\overline{|K|}^{c_0}$ are nowhere locally compact. Proof. Because of similarity, we show only the ℓ_1 -case. Let $x \in \overline{|K|}^{\ell_1}$ and $\varepsilon > 0$. It suffices to construct a discrete sequence $x_n \in \overline{|K|}^{\ell_1}$, $n \in \mathbb{N}$, so that $\|x - x_n\|_1 < \varepsilon$. If C_x is infinite, write $C_x = \{v_n | n \in \mathbb{N}\}$ so that $x(v_1) \geq x(v_2) \geq \cdots$. If C_x is finite, choose a countable-infinite subset V of V_K such that $C_x \subset V$ and $F(V) \subset K$ and then write $V = \{v_n | n \in \mathbb{N}\}$ so that $x(v_1) \geq x(v_2) \geq \cdots$. (Such a V exists because K has no principal simplex.) Note that $x(v_1) > 0$ and $x(v_n) \leq n^{-1}$ for each $n \in \mathbb{N}$. Put $\delta = \min\{\frac{\varepsilon}{3}, x(v_1), \frac{1}{2}\} > 0$. By Lemma 1.1, we can define $x_n \in \overline{|K|}^{\ell_1}$, $n \in \mathbb{N}$, as follows: $$\mathbf{x}_{n}(\mathbf{v}) = \begin{cases} \mathbf{x}(\mathbf{v}_{1}) - \delta & \text{if } \mathbf{v} = \mathbf{v}_{1}, \\ \mathbf{x}(\mathbf{v}_{n+1}) + \delta & \text{if } \mathbf{v} = \mathbf{v}_{n+1}, \\ \mathbf{x}(\mathbf{v}) & \text{otherwise.} \end{cases}$$ Then clearly $\|\mathbf{x} - \mathbf{x}_n\|_1 = 2\delta < \varepsilon$ for each $n \in \mathbb{N}$ and $\|\mathbf{x}_n - \mathbf{x}_m\|_1 = 2\delta$ if $n \neq m$. The second half of Conjecture 0.8 (i.e., Corollary 0.9) is a direct consequence of Theorem 1.5 and the following 4.3. Proposition. Let M be an l_2^f -manifold which is contained in a metrizable space \widetilde{M} . If for each open cover l of \widetilde{M} there is a map $f: \widetilde{M} \to M$ which is l-near to id, then M is an f-d cap set for \widetilde{M} . Proof. By [Sa $_3$, Lemma 2], M has a strongly universal tower $\{X_n\}_{n\in\mathbb{N}}$ for finite-dimensional compact such that $M=\bigcup_{n\in\mathbb{N}}X_n$ and each X_n is a finite-dimensional compact strong Z-set in M. From the condition, it is easy to see that each X_n is a strong Z-set in M. Let U be an open cover of M and M a finite-dimensional compact set in M. Since M is an ANR, M has an open cover V such that any two V-near maps from an arbitrary space to M are U-homotopic [Hu, Ch. IV, Theorem 1.1]. For each $V \in V$, choose an open set V of M so that $V \cap M = V$ and define an open cover V of M by $\tilde{V} = \{\tilde{\mathbf{v}} \mid \mathbf{v} \in V, \mathbf{v} \cap \mathbf{x}_n \neq \emptyset\} \cup \{\tilde{\mathbf{M}} \setminus \mathbf{x}_n\}.$ Let \mathscr{W} be an open cover of $\overset{\circ}{M}$ which refines \mathscr{U} and $\overset{\circ}{V}$. From the condition, there is a map $f \colon \overset{\circ}{M} \to M$ which is \mathscr{W} -near to id. Observe that $f \mid Z \cap X_n \colon Z \cap X_n \to M$ and the inclusion $Z \cap X_n \subset M$ are \mathscr{V} -near, hence \mathscr{U} -homotopic. By the Homotopy Extension Theorem [Hu, Ch. IV, Theorem 2.2 and its proof], we have a map $g \colon Z \to M$ such that $g \mid A \cap X_n = id$ and $g \mid S$ \mathcal{U} -homotopic to f|Z. From the strong universality of the tower $\{X_n\}_{n\in \mathbb{N}}$, we have an embedding h: Z \rightarrow X_m of Z into some X_m such that h|Z \cap X_n = g|Z \cap X_n = id and h is \mathcal{U} -near to g, hence st \mathcal{U} -near to id. 4.4. Remark. In connection with Conjecture 0.8 and our results, one might conjecture more generally that a completion M of an ℓ_2^f -manifold M is an ℓ_2 -manifold if the inclusion $M \subset M$ is a fine homotopy equivalence. However this conjecture is false. In fact, let M be a complete ANR such that $M \cap A$ is a ℓ_2 -manifold for some \mathbb{Z} -set \mathbb{A} in \mathbb{M} but \mathbb{M} is not an ℓ_2 -manifold. Such an example is constructed in [BBMW]. And let \mathbb{M} be an \mathbb{M} -d cap set for $\mathbb{M} \cap A$. Then \mathbb{M} is also an \mathbb{M} -d cap set for \mathbb{M} by the same arguments in Proposition 4.4. Using [Sa₃, Lemma 5], it is easily seen that the inclusion $\mathbb{M} \subset \mathbb{M}$ is a fine homotopy equivalence. And \mathbb{M} is an ℓ_2^f -manifold by [Ch₂, Theorem 2.15]. Addendum: Recently, Conjecture 0.8 has been proved in [Sa₅]. In fact, it is proved that $\overline{|K|}^{l_1}$ is an l_2 -manifold if and only if K is a combinatorial ∞ -manifold. #### References - [BBMW] M. Bestvina, P. Bowers, J. Mogilski and J. Walsh, Characterization of Hilbert space manifold revisited, Topology Appl. 24 (1986), 53-69. - [Ch₁] T. A. Chapman, Infinite deficiency in Fréchet manifolds, Trans. Amer. Math. Soc. 148 (1970), 137-146. - [Ch₂] ____, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399-425. [CDM] D. Curtis, T. Dobrowalski and J. Mogilski, Some applications of the topological characterizations of the sigma-compact spaces $\ell_{\rm f}^2$ and Σ , Trans. Amer. Math. Soc. 284 (1984), 837-846. - [Du] J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 57 (1965), 187-193. - [Hu] S.-T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965. - [Sa₁] K. Sakai, Fine homotopy equivalences of simplicial complexes, Bull. Polish Acad. Sci. 34 (1986), 89-97. - [Sa $_2$] _____, Combinatorial infinite-dimensional manifolds and $R^{^\infty}$ -manifolds, Topology Appl. 26 (1987), in press. - [Sa₃] _____, On topologies of triangulated infinitedimensional manifolds, J. Math. Soc. Japan 39 (1987), in press. - [Sa₄] _____, Simplicial complexes triangulating infinitedimensional manifolds, (preprint). - [Sa₅] _____, The k_1 -completion of a metric combinatorial ∞ -manifold, Proc. Amer. Math. Soc. (to appear). - [Wh] J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc. 55 (1949), 213-245. Institute of Mathematics University of Tsukuba Sakura-mura, Ibaraki, 305 JAPAN (Current Address) and Louisiana State University Baton Rouge, Louisiana 70803