TOPOLOGY PROCEEDINGS

Volume 11, 1986 Pages 177–208

http://topology.auburn.edu/tp/

COMPLETIONS OF METRIC SIMPLICIAL COMPLEXES BY USING $\ell_p\text{-}\mathrm{NORMS}$

by

Katsuro Sakai

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

COMPLETIONS OF METRIC SIMPLICIAL COMPLEXES BY USING $\&_{\mathbf{p}}$ -NORMS

Katsuro Sakai

0. Introduction

Let K be a simplicial complex. Here we consider K as an abstract one, that is, a collection of non-empty finite subsets of the set V_K of its vertices such that $\{v\} \in K$ for all $v \in V_K$ and if $\emptyset \neq A \subset B \in K$ then $A \in K$. Then a simplex of K is a non-empty finite set of vertices. The realization |K| of K is the set of all functions $x: V_K \neq I$ such that $C_x = \{v \in V_K | x(v) \neq 0\} \in K$ and $\sum_{v \in V_K} x(v) = 1$. There is a metric d_1 on |K| defined by

$$d_1(x,y) = \sum_{v \in V_K} |x(v) - y(v)|.$$

Then the metric space $(|K|, d_1)$ is a metric subspace the Banach space $\ell_1(V_K)$ which consists all real-valued functions $x: V_K \rightarrow \mathbb{R}$ such that $\Sigma_{v \in V_K} |x(v)| < \infty$, where $\|x\|_1 = \Sigma_{v \in V_K} |x(v)|$ is the norm of $x \in \ell_1(V_K)$. The topology induced by the metric d_1 is the metric topology of |K| and the space |K|with this topology is denoted by $|K|_m$. The completion of the metric space $(|K|, d_1)$ is the closure $c\ell_{\ell_1}(V_K) |K|$ of |K|in $\ell_1(V_K)$. We will call this the ℓ_1 -completion of $|K|_m$ and denoted by $\overline{|K|}^{\ell_1}$. It is well known that $|K|_m$ is an ANR (e.g., see [Hu]). In Section 1, we prove that the ℓ_1 -completion preserves this property, that is,

Sakai

0.1. Theorem. For any simplicial complex K, the ℓ_1 -completion $\overline{|K|}^{\ell_1}$ is an ANR and the inclusion $|K|_m \subset \overline{|K|}^{\ell_1}$ is a fine homotopy equivalence.

Here a map f: X \rightarrow Y is a *fine homotopy equivalence* if for each open cover \mathcal{U} of Y there is a map g: Y \rightarrow X called a \mathcal{U} -inverse of f such that fg is \mathcal{U} -homotopic to id_Y and gf is f⁻¹(\mathcal{U})-homotopic to id_y.

By F(V), we denote the collection of all non-empty finite subsets of V. Then F(V) is a simplicial complex with V the set of vertices. Such a simplicial complex is called a *full simplicial complex*. From the following known result, our theorem makes sense in case K contains an infinite full simplicial complex.

0.2. Proposition. For a simplicial complex K, the following are equivalent:

- (i) $|K|_m$ is completely metrizable;
- (ii) K contains no infinite full simplicial complex;
- (iii) $(|K|,d_1)$ is complete (i.e., $|K| = \overline{|K|}^{l_1}$).

For the proof, refer to [Hu, Ch. III, Lemma 11.5], where only the equivalence between (i) and (ii) are mentioned but the implications (i) \Rightarrow (ii) \Rightarrow (iii) are proved (the implication (iii) \Rightarrow (i) is trivial).

$$\mathfrak{l}_{p}(\mathbb{V}_{K}) = \{\mathbf{x} \in \mathbb{R}^{\mathbb{V}_{K}} | \sum_{\mathbf{v} \in \mathbb{V}_{K}} | \mathbf{x}(\mathbf{v}) |^{p} < \infty \}$$

and the norm of $x \in l_p(V_K)$ is

$$\|\mathbf{x}\|_{p} = (\sum_{v \in V_{K}} |\mathbf{x}(v)|^{p})^{1/p}.$$

Let d_n be the metric defined by the norm $\|\cdot\|_n$. Then the completion of the metric space $(|K|,d_p)$ is $c\ell_{\ell_p}(V_K)|K|$ and denoted by $\overline{|K|}^{p}$. We will call $\overline{|K|}^{p}$ the l_{p} -completion of $|K|_{m}$. And also $|K|_{m}$ can be considered as a topological subspace of the Banach space $m(V_{\mu})$ which consists all bounded real-valued functions x: $v_{\kappa} \rightarrow R$ with the norm $\|\mathbf{x}\|_{\infty} = \sup\{|\mathbf{x}(\mathbf{v})| | \mathbf{v} \in V_{K}\}$. Let $\mathbf{c}_{0}(V_{K})$ be the closed linear subspace of all those x in $m(V_{K})$ such that for each $\epsilon > 0$, $\{v \in V_{K} | | x(v) | > \varepsilon\}$ is finite. Then $|K|_{m} \subset C_{0}(V_{K})$. Let d_∞ be the metric defined by the norm $\left\| \cdot \right\|_\infty.$ The completion of the metric space ($|K|, d_{\infty}$) is $c\ell_{m(V_{K})}|K| = c\ell_{c_{0}}(V_{K})|K|$ and denoted by $\overline{|K|}^{c_0}$. We will call $\overline{|K|}^{c_0}$ the c_0 -completion if $|K|_m$. However the metrics $d_2, d_3, \dots, d_{\infty}$ on |K| are uniformly equivalent. In fact, for each x,y $\in |K|$, $d_{2}(x,y) = ||x - y||_{2} = (\sum_{v \in V_{\kappa}} (x(v) - y(v))^{2})^{1/2}$ $\leq (\sup_{v \in V_{K}} |x(v) - y(v)| \cdot \sum_{v \in V_{K}} |x(v) - y(v)|)^{1/2}$ $\leq (\|\mathbf{x} - \mathbf{y}\|_{\infty} \cdot (\sum_{\mathbf{v} \in \mathbf{V}_{\kappa}} \mathbf{x}(\mathbf{v}) + \sum_{\mathbf{v} \in \mathbf{V}_{\mu}} \mathbf{y}(\mathbf{v})))^{1/2}$

and since $\|\cdot\|_2 \geq \|\cdot\|_3 \geq \cdots \geq \|\cdot\|_{\infty}$,

 $d_2(x,y) \ge d_3(x,y) \ge \cdots \ge d_{\infty}(x,y)$.

 $= (2 \cdot d_m(x,y))^{1/2}$

Therefore the ℓ_p -completions of $|K|_m$, p > 1, are the same as the c_0 -completion, that is, $\overline{|K|}^{\ell p} = \overline{|K|}^{c_0}$ for p > 1.

For the c₀-completion, Section 2 is devoted. In relation to Proposition 0.2, the following is shown.

0.3. Proposition. For a simplicial complex K, the metric space $(|K|,d_{\infty})$ is complete if and only if K is finite-dimensional.

From Propositions 0.2 and 0.3, it follows that $\overline{|\mathbf{K}|}^{L_{1}} \neq \overline{|\mathbf{K}|}^{C_{0}}$ for an infinite-dimensional simplicial complex. And it is also seen that in general, $\overline{|\mathbf{K}|}^{C_{0}}$ is not an ANR, actually not locally connected (2.8). This is related to the existence of arbitrarily high dimensional principal simplexes and the fact that $\overline{|\mathbf{K}|}^{C_{0}}$ contains $0 \in c_{0}(K_{V})$. In Section 2, we have the following

0.4. Theorem. Let K be a simplicial complex. If K has no prinicpal simplex than $\overline{|K|}^{c_0}$ is an AR, in particular, contractible. And if all principal simplexes of K have bounded dimension then $\overline{|K|}^{c_0}$ is an ANR.

0.5. Theorem. For any simplicial complex K, $\overline{|K|}^{c_0} \{0\}$ is an ANR and the inclusion $|K| \subset \overline{|K|}^{c_0} \{0\}$ is a homotopy equivalence.

By Sd K, we denote the barycentric subdivision of a simplicial complex K. Let $\theta: |Sd K| \rightarrow |K|$ be the natural bijection. As well known, $\theta: |Sd K|_m \rightarrow |K|_m$ is a homeomorphism. For the ℓ_1 - and c_0 -completions of the barycentric subdivision, we have the following result in Section 3.

0.6. Theorem. For any infinite-dimensional simplicial complex K, the natural homeomorphism θ : $|Sd K|_m + |K|_m$ extends to a homeomorphism $\overline{\theta}$: $\overline{|Sd K|}^{l_1} + \overline{|K|}^{l_1}$ but cannot extend to any homeomorphism h: $\overline{|Sd K|}^{c_0} + \overline{|K|}^{c_0}$.

Let l_2^{f} be the dense linear subspace of the Hilbert space $l_2 = l_2(\mathbb{N})$ consisting of $\{x \in l_2 | x(i) = 0 \text{ except for }$ finitely many i $\in \mathbb{N}$. A Hilbert (space) manifold is a separable manifold modeled on the Hilbert space 1, and simply called an l₂-manifold. A separable manifold modeled on the space l_2^f is called an l_2^f -manifold. An l_2^f -manifold M is characterized as a dense subset of some l_2 -manifold \tilde{M} with the finite-dimensional compact absorption property, so-called an f-d cap set for \tilde{M} (see [Ch₂]). In [Sa_{3,4}], the author has proved that a simplicial complex K is a combinatorial ∞ -manifold if and only if $|K|_m$ is an ℓ_2^{f} -manifold. Here a combinatorial *m-manifold* is a countable simplicial complex such that the star of each vertex is combinatorially equivalent to the countably infinite full simplicial complex $\Delta^{\infty} = F(N)$, that is, they have simplicially isomorphic subdivisions [Sa2]. In Section 4, using the result of [CDM], we see

0.7. Proposition. The pair $(|\Delta^{\infty}|^{\ell_1}, |\Delta^{\infty}|_m)$ is homeomorphic to the pair (ℓ_2, ℓ_2^f) .

Thus we conjecture as follows:

181

0.8. Conjecture. For a combinatorial ∞ -manifold K, the ℓ_1 -completion $\overline{|K|}^{\ell_1}$ is an ℓ_2 -manifold and $|K|_m$ is an f-d cap set for $\overline{|K|}^{\ell_1}$.

Similarly as the ℓ_1 -completion of $|\Delta^{\infty}|_m$, we can prove that $(|\Delta^{\infty}|^{c_0}, |\Delta^{\infty}|_m)$ is homeomorphic to the pair (ℓ_2, ℓ_2^f) but the same conjecture as 0.8 does not hold for the c_0 -completion. In fact, let K be a non-contractible combinatorial ∞ -manifold. Then $|\overline{K|}^{c_0} \setminus \{0\}$ is not homotopically equivalent to $|\overline{K|}^{c_0}$ by Theorems 0.4 and 0.5, hence the one-point set $\{0\}$ is not a Z-set in $|\overline{K|}^{c_0}$. Therefore $|\overline{K|}^{c_0}$ is not an ℓ_2 -manifold (cf. $[Ch_1]$).

The second half of Conjecture 0.8 is proved in Section 4 as a corollary of the second half of Theorem 0.1.

0.9. Corollary. For a combinatorial ∞ -manifold K, $|K|_m$ is an f-d cap set for the l_1 -completion $\overline{|K|}^{l_1}$.

1. The l_1 -Completion of a Metric Complex

Recall F(V) is the all of non-empty finite subsets of V, namely, the full simplicial complex with V the set of vertices. For each real-valued function x: V \rightarrow **R**, we denote

$$C_{\mathbf{x}} = \{ \mathbf{v} \in \mathbf{V} | \mathbf{x}(\mathbf{v}) \neq \mathbf{0} \}.$$

If $x \in c_0(V)$ then C_x is countable. The set of vertices of a simplicial complex K is always denoted by V_K .

1.1. Lemma. Let K be a simplicial complex and $x \in \ell_1(V_K)$. Then $x \in \overline{|K|}^{\ell_1}$ if and only if $x(v) \ge 0$ for all $v \in V_K$, $||x||_1 = \Sigma_{v \in C_v} x(v) = 1$ and $F(C_x) \subset K$.

Proof. First we see the "only if" part. For each $v \in V_K$, let v^* : $\ell_1(V_K) \neq R$ be defined by $v^*(x) = x(v)$. Then clearly v^* is continuous, so $x \in \overline{|K|}^{\ell_1}$ implies $x(v) = v^*(x) \ge 0$. And $||x||_1 = 1$ follows from the continuity of the norm $\|\cdot\|_1$. Let $A \in F(C_x)$ and choose $\varepsilon > 0$ so that $x(v) > \varepsilon$ for all $v \in A$. Since $x \in \overline{|K|}^{\ell_1}$, we have $y \in |K|$ with $||x - y||_1 < \varepsilon$. Then $y(v) \ge x(v) - |x(v) - y(v)| > x(v) - \varepsilon > 0$ for all $v \in A$, that is, $A \subset C_y$. This implies $A \in K$ because $C_v \in K$.

Next we see the "if" part. In case C_X is finite obviously $x \in |K|$. In case C_X is infinite, for any $\varepsilon > 0$ choose $A \in F(C_y)$ so that

$$\sum_{\mathbf{v}\in \mathbf{V}_{K}\smallsetminus \mathbf{A}} \mathbf{x}(\mathbf{v}) = \|\mathbf{x}\|_{1} - \sum_{\mathbf{v}\in \mathbf{A}} \mathbf{x}(\mathbf{v}) < \frac{\varepsilon}{2}.$$

Let $v_0 \in A$ and put $\alpha = \sum_{v \in V_K \setminus A} x(v)$. Then $x(v_0) + \alpha \in I$. We define $y \in |K|$ as follows:

 $y(v) = \begin{cases} x(v_0) + \alpha \text{ if } v = v_0, \\ x(v) & \text{ if } v \in A \setminus \{v_0\}, \\ 0 & \text{ otherwise.} \end{cases}$

Then clearly $\|\mathbf{x} - \mathbf{y}\|_{1} = 2\alpha < \varepsilon$. Therefore $\mathbf{x} \in \overline{|\mathbf{K}|}^{\ell_{1}}$.

To prove the first half of Theorem 0.1, we use a local equi-connecting map. A space X is *locally equi*connected (LEC) provided there are a neighborhood U of the diagonal ΔX in X^2 and a map λ : U × I + X called a (*local*) equi-connecting map such that

 $\lambda(x,y,0) = x, \lambda(x,y,1) = y$ for all $(x,y) \in U$, $\lambda(x,x,t) = x$ for all $x \in X$, $t \in I$.

Then a subset A of X is λ -convex if $A^2 \subset U$ and $\lambda (A^2 \times I) \subset A$. The following is well known.

1.2. Lemma [Du]. If a metrizable space X has a local equi-connecting map λ such that each point of X has arbitrarily small λ -convex neighborhoods then X is an ANR. Moreover if λ is defined on $X^2 \times I$ then X is an AR.

Now we prove the first half of Theorem 0.1.

1.3. Theorem. For a simplicial complex K, the ℓ_1 -completion $\overline{|K|}^{\ell_1}$ is an ANR.

Proof. Let $\mu: \ell_1(V_K)^2 \rightarrow \ell_1(V_K)$ be defined by $\mu(\mathbf{x}, \mathbf{y})(\mathbf{v}) = \min\{|\mathbf{x}(\mathbf{v})|, |\mathbf{y}(\mathbf{v})|\}.$

Then μ is continuous. In fact, for each $(x,y), (x',y') \in \ell_1(V_y)^2$ and for each $v \in V_y$,

 $\begin{aligned} &|\min\{|x(v)|, |y(v)|\} - \min\{|x'(v)|, |y'(v)|\}| \\ &\leq \max\{|x(v)| - |x'(v)||, |y(v)| - |y'(v)||\} \\ &\leq \max\{|x(v) - x'(v)|, |y(v) - y'(v)|\} \\ &\leq |x(v) - x'(v)| + |y(v) - y'(v)|, \end{aligned}$

hence we have

 $\| \mu(\mathbf{x}, \mathbf{y}) - \mu(\mathbf{x}', \mathbf{y}') \|_{1} \leq \| \mathbf{x} - \mathbf{x}' \|_{1} + \| \mathbf{y} - \mathbf{y}' \|_{1}.$ And note that $\mu(\mathbf{x}, \mathbf{y}) = 0$ if and only if $\mathbf{x}(\mathbf{v}) = 0$ or $\mathbf{y}(\mathbf{v}) = 0$ for each $\mathbf{v} \in \mathbf{V}_{K}$, which implies $\| \mathbf{x} - \mathbf{y} \|_{1} = \| \mathbf{x} \|_{1} + \| \mathbf{y} \|_{1}.$ Then $\| \mathbf{x} - \mathbf{y} \|_{1} \leq \| \mathbf{x} \|_{1} + \| \mathbf{y} \|_{1}$ implies $\mu(\mathbf{x}, \mathbf{y}) \neq 0$. And observe $C_{\mu}(\mathbf{x}, \mathbf{y}) = C_{\mathbf{x}} \cap C_{\mathbf{y}}$ for each $(\mathbf{x}, \mathbf{y}) \in \ell_{1}(\mathbf{v}_{K})^{2}$. Let

$$U = \{(\mathbf{x}, \mathbf{y}) \in \overline{|\mathbf{K}|}^{\ell_1} | \|\mathbf{x} - \mathbf{y}\|_1 < 2\}.$$

Then U is an open neighborhood of the diagonal $\Delta \overline{|K|}^{\mu}$ in $(\overline{|K|}^{\ell_1})^2$. For each $(x,y) \in U$, $\mu(x,y) \neq 0$ by the preceding observation. And it is easily seen that

x,
$$\frac{\mu(\mathbf{x}, \mathbf{y})}{\|\mu(\mathbf{x}, \mathbf{y})\|_{1}} \in \overline{|\mathbf{F}(\mathbf{C}_{\mathbf{x}})|^{\ell_{1}}} \subset \overline{|\mathbf{K}|^{\ell_{1}}}$$
 and
y, $\frac{\mu(\mathbf{x}, \mathbf{y})}{\|\mu(\mathbf{x}, \mathbf{y})\|_{1}} \in \overline{|\mathbf{F}(\mathbf{C}_{\mathbf{y}})|^{\ell_{1}}} \subset \overline{|\mathbf{K}|^{\ell_{1}}}.$

Since $\overline{|F(C_x)|}^{\ell_1}$ and $\overline{|F(C_v)|}^{\ell_1}$ are convex sets in $\ell_1(V_K)$, we have

$$(1-t)x + \frac{t \cdot \mu(x, y)}{\|\mu(x, y)\|_{1}}, \quad (1-t)y + \frac{t \cdot \mu(x, y)}{\|\mu(x, y)\|_{1}} \in \overline{|K|}^{\chi_{1}}$$

for any t \in I.

Thus we can define a local equi-connecting map λ : U × I \rightarrow $\overline{|K|}^{\ell_1}$ as follows

$$A(x,y,t) = \begin{cases} (1-2t)x + \frac{2t\mu(x,y)}{\|\mu(x,y)\|_{1}} & \text{if } 0 \leq t \leq \frac{1}{2}, \\ (2t-1)y + \frac{(2-2t)\mu(x,y)}{\|\mu(x,y)\|_{1}} & \text{if } \frac{1}{2} \leq t \leq 1. \end{cases}$$

Now we show that each point of $\frac{1}{|K|}^{\ell}$ has arbitrarily small λ -convex neighborhoods. Let $z \in \overline{[K]}^{\ell_1}$ and $\varepsilon > 0$. Choose an A \in F(C_z) so that $\sum_{v \in A} z(v) > 1 - 2^{-1} \varepsilon$ and select $0 < \alpha(v) < z(v)$ for all $v \in A$ so that $\sum_{v \in A} \alpha(v) > 1 - 2^{-1} \varepsilon$. Let

$$W = \{x \in \overline{|K|}^{l_1} | x(v) > \alpha(v) \text{ for all } v \in A\}.$$

Then W is an open neighborhood of z in $\frac{1}{|K|}^{\ell}$. For each x,y ∈ ₩,

$$\|\mathbf{x} - \mathbf{y}\|_{1} \leq \sum_{\mathbf{v} \in \mathbf{A}} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})| + \sum_{\mathbf{v} \in \mathbf{V}_{K} \setminus \mathbf{A}} \mathbf{x}(\mathbf{v}) \\ + \sum_{\mathbf{v} \in \mathbf{V}_{K} \setminus \mathbf{A}} \mathbf{y}(\mathbf{v}) \\ \leq \sum_{\mathbf{v} \in \mathbf{A}} (\mathbf{x}(\mathbf{v}) - \alpha(\mathbf{v})) + \sum_{\mathbf{v} \in \mathbf{A}} (\mathbf{y}(\mathbf{v}) - \alpha(\mathbf{v})) \\ + 1 - \sum_{\mathbf{v} \in \mathbf{A}} \mathbf{x}(\mathbf{v}) + 1 - \sum_{\mathbf{v} \in \mathbf{A}} \mathbf{y}(\mathbf{v}) \\ = 2 - 2 \sum_{\mathbf{v} \in \mathbf{A}} \alpha(\mathbf{v}) < \varepsilon.$$
Therefore diam W < c = To see that W is proposed by

$$\begin{array}{l} \left| \left(x,y,t \right) \in \mathbb{W}^{2} \times \mathbb{I} \text{ and } v \in \mathbb{A}. \text{ Note } \left\| \mu(x,y) \right\|_{1} \leq 1. \text{ If } t \leq 1/2, \\ \lambda(x,y,t)(v) = (1-2t)x(v) + \frac{2t \cdot \min\{x(v),y(v)\}}{\left\| \mu(x,y) \right\|_{1}} \\ \geq (1-2t) \cdot \min\{x(v),y(v)\} \\ + 2t \cdot \min\{x(v),y(v)\} \\ = \min\{x(v),y(v)\} > \alpha(v). \end{array}$$

If t $\geq 1/2$, similarly $\lambda(x,y,t)(v) > \alpha(v)$. Then $\lambda(x,y,t) \in W$. Therefore W is λ -convex. The result follows from Lemma 1.2.

To prove the second half of Theorem 0.1, we use a SAP-family introduced in $[Sa_1]$. Let \mathcal{F} be a family of closed sets in a space X. We call \mathcal{F} a SAP-family for X if \mathcal{F} is directed, that is, for each $F_1, F_2 \in \mathcal{F}$ there is an $F \in \mathcal{F}$ with $F_1 \cap F_2 \subset F$, and \mathcal{F} has the simplex absorption property, that is, for each map f: $|\Delta^n| \to X$ of any n-simplex such that $f(\partial |\Delta^n|) \subset F$ for some $F \in \mathcal{F}$ and for each open cover \mathcal{U} of X there exists a map g: $|\Delta^n| \to X$ such that $g(|\Delta^n|) \subset F$ for some $F \in \mathcal{F}, g ||\Delta^n| = f|\partial |\Delta^n|$ and g is \mathcal{U} -near to f. Let L be a subcomplex of a simplicial complex K. We say that L is full in K if any simplex of K with vertices of L belongs to L. For a subcomplex L of K, we always consider $|L| \subset |K|$, that is, $x \in |L|$ is a function $x: V_L \to I$ but is considered a function $x: V_K \to I$ with $x(V_K \sim V_L) = 0$.

1.4. Lemma (cf. [Sa₁, Lemma 3]). Let K be a simplicial complex. Then the family

is a SAP-family for $\overline{|K|}^{k_1}$.

Proof. It is clear that $\mathcal{F}(K)$ is a direct family of closed (compact) set in $\overline{|K|}^{\ell_1}$. Let $|L| \in \mathcal{F}(K)$ and define a map $\phi_L : \overline{|K|}^{\ell_1} \rightarrow I$ by

$$\phi_{L}(x) = \sum_{v \in V_{\tau}} x(v).$$

Then $\phi_{L}^{-1}(1) = |L|$. In fact, if $x \in |L|$ then $\phi_{L}(x) = ||x||_{1} = 1$. Conversely if $\phi_{L}(x) = 1$ then $C_{x} \subset V_{L}$ and $C_{x} \in K$ by Lemma 1.1. Since L is full in K, $C_{x} \in L$, which implies $x \in |L|$. Let N(|L|, 2) be the 2-neighborhood of |L| in $\overline{|K|}^{\ell}$, that is,

$$N(|L|,2) = \{x \in \overline{|K|}^{\times 1} | d_1(x,|L|) < 2\}.$$

Then $\phi_{T}(x) \neq 0$ for all $x \in N(|L|,2)$ because if $\phi_{T}(x)$

then x(v) = 0 for all $v \in V_L$, hence for any $y \in |L|$,

We define a retraction r_{L} : N(C|L|,2) \rightarrow |L| (\subset |K|) by

$$r_{L}(x)(v) = \begin{cases} \frac{x(v)}{\phi_{L}(x)} & \text{if } v \in V_{L}, \\ \\ 0 & \text{otherwise.} \end{cases}$$

Then for each $x \in N(|L|, 2)$,

II.

$$\|\mathbf{r}_{\mathrm{L}}(\mathbf{x}) - \mathbf{x}\|_{1} = \sum_{\mathbf{v} \in \mathrm{V}_{\mathrm{L}}} \left|\frac{\mathbf{x}(\mathbf{v})}{\phi_{\mathrm{L}}(\mathbf{x})} - \mathbf{x}(\mathbf{v})\right| + \sum_{\mathbf{v} \in \mathrm{V}_{\mathrm{K}} \setminus \mathrm{V}_{\mathrm{L}}} \mathbf{x}(\mathbf{v})$$
$$= \left(\frac{1}{\phi_{\mathrm{L}}(\mathbf{x})} - 1\right) \sum_{\mathbf{v} \in \mathrm{V}_{\mathrm{L}}} \mathbf{x}(\mathbf{v}) + 1 - \phi_{\mathrm{L}}(\mathbf{x})$$

= 0

$$= (\frac{1}{\phi_{L}(x)} - 1)\phi_{L}(x) + 1 - \phi_{L}(x)$$
$$= 2 - 2\phi_{L}(x).$$

On the other hand 1 - $\varphi_L(x) \ \leq \ d_1(x, |L|)$ since for any y $\varepsilon \ |L|$,

$$\|\mathbf{x} - \mathbf{y}\|_{1} = \sum_{\mathbf{v} \in \mathbf{V}_{K}} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})|$$
$$= \sum_{\mathbf{v} \in \mathbf{V}_{K} \setminus \mathbf{V}_{L}} \mathbf{x}(\mathbf{v}) + \sum_{\mathbf{v} \in \mathbf{V}_{L}} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})|$$
$$\geq 1 - \sum_{\mathbf{v} \in \mathbf{V}_{L}} \mathbf{x}(\mathbf{v})$$
$$= 1 - \phi_{L}(\mathbf{x}).$$

Therefore we have

$$\begin{split} \mathbf{d}_{1}(\mathbf{r}_{L}(\mathbf{x}),\mathbf{x}) &\leq 2 \cdot \mathbf{d}_{1}(\mathbf{x},|\mathbf{L}|) \text{ for each } \mathbf{x} \in \mathbb{N}(|\mathbf{L}|,2). \\ \text{By Lemma 2 in } [Sa_{1}], \ \mathcal{F}(\mathbf{K}) \text{ is a SAP-family in } \overline{|\mathbf{K}|}^{\pounds_{1}}. \end{split}$$

Now we prove the second half of Theorem 0.1.

1.5. Theorem. For a simplicial complex K, the inclusion i: $|K|_m \subset \overline{|K|}^{\ell_1}$ is a fine homotopy equivalence.

Proof. By $|K|_{w}$, we denote the space |K| with the weak (or Whitehead) topology. Then the identity of |K| induces a fine homotopy equivalence j: $|K|_{w} + |K|_{m}$ [Sa₁, Theorem 1]. By the same arguments in the proof of [Sa₁, Theorem 1] using the above lemma instead of [Sa₁, Lemma 3], ij: $|K|_{w} + \overline{|K|}^{\ell_{1}}$ is also a fine homotopy equivalence. Then the result follows from the following lemma.

1.6. Lemma. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be maps. If f and gf are fine homotopy equivalences then so is g. *Proof.* Let ℓ be an open cover of Z. Then gf has a ℓ -inverse h: Z \rightarrow X. Let ℓ be an open cover of Y which refines both $g^{-1}(\ell)$ and $g^{-1}h^{-1}f^{-1}g^{-1}(\ell)$. Then f has a ℓ -inverse k: Y \rightarrow X. Since hgf is $f^{-1}g^{-1}(\ell)$ -homotopic to id_X, fhgfk is $g^{-1}(\ell)$ -homotopic to fk which is $g^{-1}(\ell)$ -homotopic to id_Y. Since fk is $g^{-1}h^{-1}f^{-1}g^{-1}(\ell)$ -homotopic to id_Y, fhgfk is $g^{-1}(\ell)$ -homotopic to fhg. Hence fhg is st $g^{-1}(\ell)$ -homotopic to id_Y. Recall gfh is ℓ -homotopic to id_Z. Therefore g is a fine homotopy equivalence.

2. The c₀-Completion of a Metric Complex

As seen in Introduction, for any p > 1, the l_p -completion of a metric simplicial complex is the same as the c_0 -completion. In this section, we clarify the difference between the l_1 -completion and the c_0 -completion. The "only if" part of Proposition 0.3 is contained in the following

2.1. Proposition. Let K be a simplicial complex. Then K is infinite-dimensional if and only if $0 \in \overline{|K|}^{c_0}$.

Proof. To see the "if" part, let $n \in \mathbb{N}$. From $0 \in \overline{|K|}^{C_0}$, we have $x \in |K|$ with $||x||_{\infty} < n^{-1}$. Then $C_x \in K$ and dim $C_x \ge n$ because

 $1 = \sum_{v \in C_X} x(v) \leq \|x\|_{\infty} (\dim C_X + 1) < n^{-1} (\dim C_X + 1).$ Therefore K is infinite-dimensional.

To see the "only if" part, let $\varepsilon > 0$ and choose $n \in \mathbb{N}$ so that $(n+1)^{-1} < \varepsilon$. Since K is infinite-dimensional, we have $A \in K$ with dim A = n. Let \hat{A} be the barycenter of |A|, that is,

$$\hat{A}(v) = \begin{cases} (n+1)^{-1} & \text{if } v \in A, \\ 0 & \text{otherwise.} \end{cases}$$

Then $\|\hat{A}\|_{\infty} = (n+1)^{-1} < \varepsilon$. Hence $0 \in \overline{|K|}^{C_0}$.

2.2. Lemma. Let K be a simplicial complex and $x \in \overline{|K|}^{C_0}$. Then $x(v) \ge 0$ for all $v \in V_K$, $||x||_1 = \sum_{v \in C_x} x(v) \le 1$ and $F(C_x) \subset K$.

Proof. The first and the last conditions can be seen similarly as the "only if" part of Lemma 1.1. To see the second condition, assume $1 < \Sigma_{v \in C_x} x(v) \leq \infty$. Then there are $v_1, \dots, v_n \in C_x$ such that $\Sigma_{i=1}^n x(v_i) > 1$. Since $x \in \overline{|K|}^{c_0}$, we have $y \in |K|$ with

$$\|x - y\|_{\infty} < n^{-1} (\sum_{i=1}^{n} x(v_i) - 1).$$

Then it follows that

$$\begin{split} \sum_{i=1}^{n} \mathbf{y}(\mathbf{v}_{i}) &\geq \sum_{i=1}^{n} \mathbf{x}(\mathbf{v}_{i}) - \sum_{i=1}^{n} |\mathbf{x}(\mathbf{v}_{i}) - \mathbf{y}(\mathbf{v}_{i})| \\ &\geq \sum_{i=1}^{n} \mathbf{x}(\mathbf{v}_{i}) - \mathbf{n} \cdot \|\mathbf{x} - \mathbf{y}\|_{\infty} > 1. \end{split}$$

This is contrary to $\mathbf{y} \in |\mathbf{K}|$. Therefore $\sum_{\mathbf{v} \in \mathbf{C}_{\mathbf{v}}} \mathbf{x}(\mathbf{v}) \leq 1$.

Now we prove the "if" part of Proposition 0.3, that is,

2.3. Proposition. Let K be a finite-dimensional simplicial complex. Then $\overline{|K|}^{C_0} = |K|$, that is, $(|K|, d_{\infty})$ is complete.

Proof. Let dim K = n and x $\in \overline{[K]}^{C_0}$. By Proposition 2.1, x \neq 0, that is, $C_x \neq \emptyset$. And C_x is finite, otherwise K contains an (n+1)-simplex by Lemma 2.2. Therefore $C_x \in K$ by Lemma 2.2. For any $\varepsilon > 0$, we have $y \in [K]$ with $||x - y||_{\infty} < 2^{-1}(n+1)^{-1}\varepsilon$. Note $C_x \cup C_y$ contains at most 2(n+1) vertices. Then it follows that

$$\begin{split} |\sum_{\mathbf{v}\in\mathbf{C}_{\mathbf{X}}}\mathbf{x}(\mathbf{v}) - \mathbf{1}| &= |\sum_{\mathbf{v}\in\mathbf{V}_{\mathbf{K}}}\mathbf{x}(\mathbf{v}) - \sum_{\mathbf{v}\in\mathbf{V}_{\mathbf{K}}}\mathbf{y}(\mathbf{v})| \\ &\leq \sum_{\mathbf{v}\in\mathbf{V}_{\mathbf{K}}}|\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})| \\ &= \sum_{\mathbf{v}\in\mathbf{C}_{\mathbf{X}}\cup\mathbf{C}_{\mathbf{Y}}}|\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})| \\ &\leq 2(n+1)\cdot\|\mathbf{x} - \mathbf{y}\|_{\infty} < \varepsilon. \end{split}$$

Therefore $\|\mathbf{x}\|_{1} = \sum_{\mathbf{v}\in\mathbf{C}_{\mathbf{X}}}\mathbf{x}(\mathbf{v}) = 1$. By Lemma 2.2, $\mathbf{x}(\mathbf{v}) \geq$
for all $\mathbf{v} \in \mathbf{V}_{\mathbf{K}}$. Hence $\mathbf{x} \in |\mathbf{K}|$.

1986

Thus Proposition 0.3 is obtained. As a corollary, we have the following

2.4. Corollary. Let L be a finite-dimensional subcomplex of a simplicial complex K. Then |L| is closed in $\frac{1}{|K|}^{C_0}$.

Before proving Theorems 0.4 and 0.5, we decide the difference between the l_1 -completion and the c_0 -completion as sets. Let K be a simplicial complex and let A \in K. The star St(A) of A is the subcomplex defined by

St(A) = {B \in K | A,B \subset C for some C \in K}. We say that A is *principal* if A $\not\in$ B for any B \in K $\{A\}$, that is, A is *maximal* with respect to c. By Max(K), we denote all of principal simplexes of K. We define the subcomplexes ID(K) and P(K) of K as follows:

 $ID(K) = \{A \in K | \dim St(A) = \infty\},\$

 $P(K) = \{A \in K | A \subset B \text{ for some } B \in Max(K) \}.$ Then clearly $K = P(K) \cup ID(K)$. Observe ID(K) = K if and only if $P(K) = \emptyset$, however P(K) = K does not imply $ID(K) = \emptyset$

0

(the converse implication obviously holds). For example, let

$$K_1 = F(\{0,1\}), K_2 = F(\{0,2,3\}),$$

 $K_3 = F(\{0,4,5,6\}), \cdots$

and let $K = \bigcup_{n \in \mathbb{N}} K_n$. Then P(K) = K but dim $St(\{0\}) = \infty$. In general, for any A,B \in K, St(A) \subset St(B) if and only if B \subset A. Then ID(K) = Ø if and only if dim $St(\{v\}) < \infty$ for each $v \in V_K$, that is, K is locally finite-dimensional.

2.5. Theorem. Let K be an infinite-dimensional and locally finite-dimensional simplicial complex, namely $ID(K) = \emptyset$, then $\overline{|K|}^{c_0} = |K| \cup \{0\}$.

Proof. By Proposition 2.1, $|K| \cup \{0\} \subset \overline{|K|}^{c_0}$. Let $x \in \overline{|K|}^{c_0} \setminus |K|$. Assume $x \neq 0$, that is, $C_x \neq \emptyset$. From ID(K) = \emptyset , K has no infinite full simplicial complex. Then C_x is finite because $F(C_x) \subset K$ by Lemma 2.2. This implies $C_x \in K$. Put dim $St(C_x) = n$. From $x \notin |K|$, it follows $\sum_{v \in C_x} x(v) < 1$. Let

$$S = \min\{(n+1)^{-1}(1 - \sum_{v \in C_x} x(v)), \min_{v \in C_v} x(v)\} > 0.$$

If $\|\mathbf{x} - \mathbf{y}\|_{\infty} < \delta$ then $\mathbf{y}(\mathbf{v}) > 0$ for all $\mathbf{v} \in C_{\mathbf{x}}$, that is, $C_{\mathbf{x}} \subset C_{\mathbf{y}}$. From dim $St(C_{\mathbf{x}}) = \mathbf{n}$, we have dim $C_{\mathbf{y}} \leq \mathbf{n}$. Hence $\sum_{\mathbf{v} \in C_{\mathbf{y}}} \mathbf{y}(\mathbf{v}) \leq \sum_{\mathbf{v} \in C_{\mathbf{y}}} \mathbf{x}(\mathbf{v}) + \sum_{\mathbf{v} \in C_{\mathbf{y}}} |\mathbf{x}(\mathbf{v}) - \mathbf{y}(\mathbf{v})|$ $\leq \sum_{\mathbf{v} \in C_{\mathbf{x}}} \mathbf{x}(\mathbf{v}) + (\dim C_{\mathbf{y}} + 1) \cdot \|\mathbf{x} - \mathbf{y}\|_{\infty}$ $< \sum_{\mathbf{v} \in C_{\mathbf{x}}} \mathbf{x}(\mathbf{v}) + (\mathbf{n} + 1) \delta$ $\leq \sum_{\mathbf{v} \in C_{\mathbf{y}}} \mathbf{x}(\mathbf{v}) + (1 - \sum_{\mathbf{v} \in C_{\mathbf{y}}} \mathbf{x}(\mathbf{v})) = 1.$ This is contrary to $y \in |K|$. Therefore x = 0.

2.6. Lemma. Let K be a simplicial complex with no principal simplex, namely ID(K) = K. Then

$$\frac{\mathbf{C}^{\mathbf{C}}}{|\mathbf{K}|} = \mathbf{I} \cdot \overline{|\mathbf{K}|}^{\ell_1} = \{ \mathbf{t} \mathbf{x} \mid \mathbf{x} \in \overline{|\mathbf{K}|}^{\ell_1}, \mathbf{t} \in \mathbf{I} \}.$$

Proof. Let $x \in \overline{|K|}^{c_0}$. If x = 0 then clearly $x \in I \cdot \overline{|K|}^{\ell_1}$. If $x \neq 0$ then $\|x\|_1^{-1}x \in \overline{|K|}^{\ell_1}$ by Lemmas 2.2 and 1.1. Since $\|x\|_1 \leq 1$ by Lemma 2.2, $x = \|x\|_1(\|x\|_1^{-1}x) \in I \cdot \overline{|K|}^{\ell_1}$. Conversely let $x \in \overline{|K|}^{\ell_1}$ and $t \in I$. For any $\varepsilon > 0$, we have $y \in |K|$ with $\|x - y\|_1 < \varepsilon$, hence $\|x - y\|_{\infty} < \varepsilon$. Choose $n \in \mathbb{N}$ so that $(n+1)^{-1} < \varepsilon$. Since $C_y \in K = ID(K)$ we have $A \in K$ such that $C_y \subset A$ and dim $A \geq n$. Let

 $z = ty + (1-t)\hat{A} \in |A| \subset |K|,$

where \hat{A} is the barycenter of |A|. Since $\|\hat{A}\|_{\infty} \leq (n+1)^{-1} < \varepsilon$ (see the proof of Proposition 2.1),

 $\| tx - z \|_{\infty} = \| tx - ty - (1-t) \widehat{A} \|_{\infty}$ $\leq t \cdot \| x - y \|_{\infty} + (1-t) \cdot \| \widehat{A} \|_{\infty}$ $< t_{\varepsilon} + (1-t)_{\varepsilon} = \varepsilon.$ Therefore $tx \in \overline{|K|}^{C_0}$.

In Lemma 2.6, we should remark that $\overline{|K|}^{c_0} \neq I \cdot \overline{|K|}^{\ell_1}$ as spaces. In fact, for each $n \in \mathbb{N}$, let $A_n \in K$ with dim A = n. Then the set $\{\widehat{A}_n | n \in \mathbb{N}\}$ is discrete in $\overline{|K|}^{\ell_1}$ but has the cluster point 0 in $\overline{|K|}^{c_0}$.

As general case, we have the following

2.7. Theorem. Let K be a simplicial complex with $ID(K) = \emptyset$. Then $\overline{|K|}^{C_0} = |P(K)| \cup I \cdot \overline{|ID(K)|}^{\ell_1}$.

Proof. Since $I \cdot \overline{|ID(K)|}^{\ell_1} = \overline{|ID(K)|}^{c_0} \subset \overline{|K|}^{c_0}$ by Lemma 2.5, we have $|P(K)| \cup I \cdot \overline{|ID(K)|}^{\ell_1} \subset \overline{|K|}^{c_0}$. Let $x \in \overline{|K|}^{c_0} |K|$. If x = 0 then clearly $x \in I \cdot \overline{|ID(K)|}^{\ell_1}$. In case $x \neq 0$, if C_x is finite and $C_x \notin ID(K)$, $C_x \in K \setminus ID(K)$ by Lemma 2.2, hence dim $St(C_x) < \infty$. The arguments in the proof of Theorem 2.5 lead a contradiction. Thus C_x is infinite or $C_x \in ID(K)$. In both cases, clearly $F(C_x) \subset ID(K)$. Then using Lemmas 1.1 and 2.2 as in the proof of Lemma 2.6, we can see $x \in I \cdot \overline{|ID(K)|}^{\ell_1}$. Since $|K| = |P(K)| \cup |ID(K)|$, we have $\overline{|K|}^{c_0} \subset |P(K)| \cup I \cdot \overline{|ID(K)|}^{\ell_1}$.

Next we show that Theorem 0.1 does not hold for the $\ensuremath{\mathtt{c}_{0}}\xspace$ -completion.

2.8. Lemma. Let X be a dense subspace of a Hausdorff space \tilde{X} . Then any locally compact open subset of X is open in \tilde{X} . Hence for a locally compact set $A \subset X$, $int_{\tilde{Y}}A = int_{X}A$.

Proof. Let Y be a locally compact open subset of X and $y \in Y$. We have an open set U in X such that $y \in U \subset Y$ and cl_YU is compact. Let \widetilde{U} be an open set in \widetilde{X} with $U = \widetilde{U} \cap X$. Since cl_YU is closed in \widetilde{X} , $\widetilde{U} \setminus cl_YU$ is open in \widetilde{X} . Observe that

 $(\widetilde{U} \ cl_Y U) \cap X = U \ cl_Y U = \emptyset.$ Then $\widetilde{U} \ cl_Y U = \emptyset$ because X is dense in \widetilde{X} . Hence $\widetilde{U} \ X = \emptyset$, that is, $\widetilde{U} = U$. Therefore Y is open in \widetilde{X} .

Let K be a simplicial complex. Then for each $A \in K$, $int \frac{c_0 |A| = int_{|K|} |A| = |A| \cup \{|B| | B \in K, B \neq A\}.$ Thereby abbreviating subscripts, we write int|A| and also $bd|A| = |A| \cdot int|A|$. Notice that $int|A| \neq \emptyset$ if and only if A is principal. We define the subcomplex BP(K) of P(K) as follows:

$$BP(K) = \{A \in P(K) \mid |A| \subset bd |B| \text{ for some} \\ B \in Max(K) \}.$$

By the following proposition, we can see that Theorem 0.1 does not hold for the c_0 -completion.

2.8. Proposition. Let K be a simplicial complex. If dim P(K) = ∞ and dim BP(K) < ∞ then $\overline{|K|}^{c_0}$ is not locally connected at 0.

Proof. By Corollary 2.4, |BP(K)| is closed in $\overline{|K|}^{c_0}$. Put

 $\delta = d_{m}(0, |BP(K)|) > 0.$

and let U be a neighborhood of 0 in $\overline{|K|}^{C_0}$ with daim U > δ . Similarly as the proof of Proposition 2.1, we have a principal simplex A \in K with $\hat{A} \in U$. Since $bd|A| \subset |BP(K)|$, U $\cap bd|A| = \emptyset$, hence U $\cap |A|$ is open and closed in U. And $\emptyset \neq U \cap |A| \subsetneq U$ because $\hat{A} \in U \cap |A|$ and $0 \notin U \cap |A|$. Therefore U is disconnected.

Now we prove the first statement of Theorem 0.4.

2.9. Theorem. Let K be a simplicial complex with no principal simplex. Then the c_0 -completion $\overline{|K|}^{c_0}$ is an AR.

Proof. (Cf. the proof of Theorem 1.3). Define $\mu: c_0(V_K)^2 \rightarrow c_0(V_K)$ exactly as Theorem 1.3, that is, as follows: $\mu(\mathbf{x}, \mathbf{y}) (\mathbf{v}) = \min\{ |\mathbf{x}(\mathbf{v})|, |\mathbf{y}(\mathbf{v})| \}.$ Then for each $(\mathbf{x}, \mathbf{y}), (\mathbf{x}', \mathbf{y}') \in c_0 (V_{\mathbf{k}})^2$,

$$\begin{split} \|\mu(\mathbf{x},\mathbf{y}) - \mu(\mathbf{x}',\mathbf{y}')\|_{\infty} &\leq \max\{\|\mathbf{x} - \mathbf{x}'\|_{\infty}, \|\mathbf{y} - \mathbf{y}'\|_{\infty}\}, \\ \text{hence } \mu \text{ is continuous. Here we define an equi-connecting} \\ \max \lambda: c_0 (\mathbf{V}_K)^2 \times \mathbf{I} + c_0 (\mathbf{V}_K) \text{ as follows:} \\ \lambda(\mathbf{x},\mathbf{y},\mathbf{t}) &= \begin{cases} (1-2\mathbf{t})\mathbf{x} + 2\mathbf{t}\mu(\mathbf{x},\mathbf{y}) & \text{if } 0 \leq \mathbf{t} \leq \frac{1}{2}, \\ (2\mathbf{t}-1)\mathbf{y} + (2-2\mathbf{t})\mu(\mathbf{x},\mathbf{y}) & \text{if } \frac{1}{2} \leq \mathbf{t} \leq 1. \end{cases} \\ \end{split}$$
Using Lemmas 1.1 and 2.6, it is easy to see that $\lambda((|\overline{\mathbf{K}|}^{\mathbf{C}}_{0})^2 \times \mathbf{I}) \subset |\overline{\mathbf{K}|}^{\mathbf{C}}_{0}. \text{ Let } \mathbf{z} \in |\overline{\mathbf{K}|}^{\mathbf{C}}_{0} \text{ and } \varepsilon > 0. \text{ Then} \\ \text{the } \varepsilon \text{-neighborhood of } \mathbf{z} \text{ is } \lambda \text{-convex. In fact, let } \mathbf{x},\mathbf{y} \in |\overline{\mathbf{K}|}^{\mathbf{C}}_{0} \end{split}$

such that $\|\mathbf{x} - \mathbf{z}\|_{\infty}$, $\|\mathbf{y} - \mathbf{z}\|_{\infty} < \varepsilon$. Observe

$$\|\mu(\mathbf{x},\mathbf{y}) - \mathbf{z}\|_{\infty} = \|\mu(\mathbf{x},\mathbf{y}) - \mu(\mathbf{z},\mathbf{z})\|_{\infty}$$

$$\leq \max\{\|\mathbf{x} - \mathbf{z}\|_{\infty}, \|\mathbf{y} - \mathbf{z}\|_{\infty}\} < \varepsilon.$$

For $0 \le t \le 1/2$, $\|\lambda(x,y,t) - z\|_{\infty} = \|(1 - 2t)x + 2t\mu(x,y) - z\|_{\infty}$ $\le (1 - 2t)\|x - z\|_{\infty} + 2t\|\mu(x,y)$ $- z\|_{\infty} < \varepsilon$. For $1/2 \le t \le 1$, similarly $\|\lambda(x,y,t) - z\|_{\infty} < \varepsilon$. By Lemma

1.2, $\overline{|K|}^{c_0}$ is an AR.

As corollaries, we have the second statement of Theorem 0.4 and the first half of Theorem 0.5.

2.10. Corollary. Let K be a simplicial complex with dim $P(K) < \infty$. Then the c_0 -completion $\frac{c_0}{|K|} is$ an ANR. *Proof.* By Corollary 2.4, |P(K)| is closed in $\frac{c_0}{|K|} c_0$.

Then $\overline{|K|}^{c_0} = \overline{|P(K)|}^{c_0} \cup \overline{|ID(K)|}^{c_0} = |P(K)| \cup \overline{|ID(K)|}^{c_0}$.

By Theorem 2.9, $\overline{|\text{ID}(K)|}^{C_0}$ is an AR. Since |P(K)| and $|P(K)| \cap \overline{|\text{ID}(K)|}^{C_0} = |P(K) \cap \text{ID}(K)|$ are ANR's, so is $\overline{|K|}^{C_0}$ (cf., [Hu]).

2.11. Corollary. For any simplicial complex K, $\overline{[K]}^{C_0} \{0\}$ is an ANR.

Proof. By Theorems 2.5 and 2.7, $\overline{|K|}^{C_0} < \{0\} = |P(K)| \cup (\overline{|ID(K)|}^{C_0} < \{0\})$. Then similarly as the above corollary, we have the result.

The following is the second half of Theorem 0.5.

2.12. Theorem. For any simplicial complex K, the inclusion i: $|K|_m \subset \overline{|K|}^{C_0} \{0\}$ is a homotopy equivalence.

Proof. Since both spaces are ANR's, by the Whitehead Theorem [Wh], it is sufficient to see that i: $|K|_m \subset \overline{|K|}^{c_0} \{0\}$ is a weak homotopy equivalence, that is, i induces isomorphisms

$$i_*: \pi_n(|\kappa|_m) \rightarrow \pi_n(\overline{|\kappa|}^{c_0} \setminus \{0\}), n \in \mathbb{N}.$$

Let $\mathcal{F}(K)$ be the family of Lemma 1.4. And for each $|L| \in \mathcal{F}(K)$, let $\phi_L : \overline{|K|}^C \to I$ be the map defined as Lemma 1.4. (Since V_L is finite, the continuity of ϕ_L is clear.) Then $\phi_L^{-1}(1) = L$. Let

 $U(L) = \{x \in \overline{[K]}^{C_0} \mid C_x \cap V_L \neq \emptyset\}.$

Then U(L) is an open neighborhood of |L| in $\overline{|K|}^{c_0}$. In fact, for each $x \in U(L)$, choose $v \in C_x \cap V_L$. If $||x - y||_{\infty} < x(v)$ then $v \in C_y \cap V_L$ because y(v) > 0, hence $y \in U(L)$. Since $\phi_L(x) \neq 0$ for each $x \in U(L)$, we can define a retraction r_L: U(L) \rightarrow |L| similarly as Lemma 1.4. Observe for each x \in U(L) and t \in I,

$$C(1-t)x + tr_{1}(x) \subset C_{x}$$

Then using Lemma 1.1 and Theorem 2.7, it is easily seen that $(1-t)x + tr_{L}(x) \in \overline{|K|}^{C_{0}} \{0\}$. Since

$$C_{(1-t)x + tr_{L}(s)} \cap V_{L} \neq \emptyset,$$

it follows that $(1-t)x + tr_L(x) \in U(L)$. Thus we have a deformation $h_L: U(L) \times I \to U(L)$ defined by

$$h_{L}(x,t) = (1-t)x + tr_{L}(x).$$

It is easy to see that $\overline{|K|}^{c_0} < \{0\} = \bigcup \{ \bigcup \{ L \} \in \mathcal{F}(K) \}$.

Now we show that $i_*: \pi_n(|K|_m) \to \pi_n(\overline{|K|}^{C_0} \{0\})$ is an isomorphism. By S^n and B^{n+1} , we denote the unit n-sphere and the unit (n+1)-ball. Let $\alpha: S^n \to |K|_m$ and $\beta: B^{n+1} \to \overline{|K|}^{C_0} \{0\}$ be maps such that $\beta | S^n = \alpha$. Note α is homotopic to a map $\alpha': S^n \to |K|_m$ such that $\alpha'(S^n) \in |L'|$ for some $|L'| \in \mathcal{F}(K)$. By the Homotopy Extension Theorem, α' extends to a map $\beta': B^{n+1} \to \overline{|K|}^{C_0} \{0\}$. From compactness of $\beta'(B^{n+1})$, we have an $|L| \in \mathcal{F}(K)$ such that $|L'| \in |L|$ and $\beta'(B^{n+1}) \in U(L)$. Then α' extends to $r_L\beta': B^{n+1} \to |L| \in |K|_m$. Therefore i_* is a monomorphism. Next let $\alpha: S^n \to \overline{|K|}^{C_0} \{0\}$ be a map. From compactness of $\alpha(S^n)$, we have an $|L| \in \mathcal{F}(K)$ such that $\alpha(S^n) \in U(L)$. Then $r_L\alpha: S^n \to |L| \in |K|_m$ is homotopic to α in U(L). This implies that i_* is an epimorphism.

3. Completions of the Barycentric Subdivisions

By Sd K, we denote the barycentric subdivision of a simplicial complex K, that is, Sd K is the collection of

non-empty finite sets $\{A_0, \dots, A_n\} \subset K = V_{Sd K}$ such that $A_0 \not\subseteq \cdots \not\subseteq A_n$. We have the natural homeomorphism $\theta: |Sd K|_m \rightarrow |K|_m$ defined by $\theta(\xi)(\mathbf{v}) = \sum_{\mathbf{v} \in A \in K} \frac{\xi(A)}{\dim A + 1}$ The inverse θ^{-1} : $|K|_m \rightarrow |Sd K|_m$ of θ is given by $\theta^{-1}(x)(A) = (\dim A + 1) \cdot \max\{\min_{v \in A} x(v) - \max_{v \notin A} x(v), 0\}.$ In fact, let $x \in |K|$ and write $C_x = \{v_0, \dots, v_n\}$ so that $x(v_0) \ge \cdots \ge x(v_n)$. For each $v \in V_{\kappa}$, $\theta \theta^{-1}(\mathbf{x})(\mathbf{v}) = \sum_{\mathbf{v} \in A \in K} \max\{\min_{\mathbf{u} \in A} \mathbf{x}(\mathbf{u}) - \max_{\mathbf{u} \notin A} \mathbf{x}(\mathbf{u}), 0\}.$ If $v \notin C_x$ then min x(u) = 0 for $v \in A \in K$, hence $\theta \theta^{-1}(x)(v)$ $u \in A$ = 0. For $A \in K$, if $A \neq \{v_0, \dots, v_j\}$ for any $j = 0, \dots, n$ then min x(u) - max x(u) = 0. Hence u€A $\theta \theta^{-1}(x) (v_i) = \sum_{j=i}^{n-1} (x(v_j) - x(v_{j+1})) + x(v_n) = x(v_i).$ Therefore $\theta \theta^{-1}(\mathbf{x}) = \mathbf{x}$. Conversely let $\xi \in |Sd K|$ and write $C_{\xi} = \{A_0, \dots, A_n\}$ so that $A_0 \not\subseteq \cdots \not\subseteq A_n$. For each $A \in K$, $\theta^{-1}\theta(\xi)(A) = (\dim A + 1) \cdot \max\{\min \theta(\xi)(v)\}$ - max $\theta(\xi)(v),0$. v $\notin A$ If $A \notin C_{\varepsilon}$ then $A \neq A_n$ or $A_{i-1} \neq A \not\in A_i$ for some $i = 0, \dots, n$,

where $A_{-1} = \emptyset$. In case $A \neq A_n$, we have $v_0 \in A \setminus A_n$. If $v_0 \in B \in K$ then $\xi(B) = 0$ because $B \neq A_i$ for any $i = 0, \dots, n$. Therefore

$$\begin{aligned} \theta\left(\xi\right)\left(v_{0}\right) &= \sum_{v_{0}\in B\in K} \frac{\xi\left(B\right)}{\dim B + 1} = 0, \\ hence \ \theta^{-1}\theta\left(\xi\right)\left(A\right) &= 0. \quad \text{Observe if } v\in A_{i} \land A_{i-1} \text{ then} \\ \theta\left(\xi\right)\left(v\right) &= \sum_{v\in B\in K} \frac{\xi\left(B\right)}{\dim B + 1} = \sum_{j=i}^{n} \frac{\xi\left(A_{j}\right)}{\dim A_{i} + 1} \end{aligned}$$

In case $A_{i-1} \neq A \notin A_i$ for some $i = 0, \dots, n$, we have $v_1 \in A \land A_{i-1}$ and $v_2 \in A_i \land A$. Since $\min_{v \in A} \theta(\xi)(v) \leq \theta(\xi)(v_1) = \sum_{j=i}^n \frac{\xi(A_j)}{\dim A_j + 1}$ $= \theta(\xi)(v_2) \leq \max_{v \notin A} \theta(\xi)(v),$ it follows $\theta^{-1}\theta(\xi)(A) = 0$. It is easy to see that $\min_{v \in A_i} \theta(\xi)(v) = \sum_{j=i}^n \frac{\xi(A_j)}{\dim A_j + 1}$ and $\max_{v \notin A_i} \theta(\xi)(v) = \sum_{j=i+1}^n \frac{\xi(A_j)}{\dim A_j + 1}.$ Thus we have

-1

$$\theta^{-1}\theta(\xi)(A_{i}) = (\dim A_{i} + 1)(\sum_{j=i}^{n} \frac{\xi(A_{j})}{\dim A_{j} + 1}) - \sum_{j=i+1}^{n} \frac{\xi(A_{j})}{\dim A_{j} + 1} = (\dim A_{i} + 1) \frac{\xi(A_{i})}{\dim A_{i} + 1} = \xi(A_{i}).$$

Therefore $\theta^{-1}\theta(\xi) = \xi$.

3.1. Theorem. For a simplicial complex K, the natural homeomorphism θ : $|Sd K|_m \rightarrow |K|_m$ induces a homeomorphism $\overline{\theta}$: $\overline{|Sd K|}^{\ell_1} \rightarrow \overline{|K|}^{\ell_1}$.

Proof. For each
$$\xi, \eta \in |Sd K|$$
,
 $\|\theta(\xi) - \theta(\eta)\|_{1} = \sum_{v \in V_{K}} |\sum_{v \in A \in K} \frac{\xi(A)}{\dim A + 1}$
 $- \sum_{v \in A \in K} \frac{\eta(A)}{\dim A + 1}|$
 $\leq \sum_{v \in V_{K}} \sum_{v \in A \in K} \frac{|\xi(A) - \eta(A)|}{\dim A + 1}$
 $= \sum_{A \in K} |\xi(A) - \eta(A)| = \|\xi - \eta\|_{1}$

Then θ is uniformly continuous with respect to the metrics d_1 on $|Sd K|_m$ and $|K|_m$. Hence θ induces a map

 $\overline{\theta}: \overline{|Sd|K|}^{\ell_1} \rightarrow \overline{|K|}^{\ell_1}.$ (However, we should remark that θ^{-1} is not uniformly continuous in case dim $K = \infty$. In fact, let $A \in K$ be an n-simplex and $B \subset A$ an (n-1)-face. Then for the barycenters $\hat{A} \in |A|$ and $\hat{B} \in |B|$, we have $\|\hat{A} - \hat{B}\|_1 = 2/n$ but $\|\theta^{-1}(\hat{A}) - \theta^{-1}(\hat{B})\|_1 = \|A - B\|_1 = 2.$) Since θ is injective, so is $\overline{\theta}$. In order to show that $\overline{\theta}$ is surjective, it suffices to see $\overline{|K|}^{\ell_1} \backslash |K| \subset \overline{\theta}(\overline{|Sd|K|}^{\ell_1})$. Let $x \in \overline{|K|}^{\ell_1} \backslash |K|$. Then C_x is infinite. Otherwise $C_x \in |K|$ by Lemma 2.2, so $x \in |K|$ because $x(v) \ge 0$ for all $v \in V_K$ and $\|x\|_1 = 1$. Recall C_x is countable. Then write $C_x = \{v_n \mid n \in \mathbb{N}\}$ so that $x(v_1) \ge x(v_2) \ge \cdots > 0$. Observe

$$\mathbf{n} \cdot \mathbf{x} (\mathbf{v}_{n+1}) + \sum_{i=n+1}^{\infty} \mathbf{x} (\mathbf{v}_i) \leq \sum_{i=1}^{\infty} \mathbf{x} (\mathbf{v}_i) = 1.$$

Moreover $n \cdot x(v_n)$ converges to 0. If not, we have $\varepsilon > 0$ and $1 \le n_1 < n_2 < \cdots$ such that $n_i x(v_n) > \varepsilon$ for each $i \in \mathbb{N}$. We may assume $\sum_{n>n_1} x(v_n) < \varepsilon/2$. Since

$$(n_{i+1} - n_i) \frac{\varepsilon}{n_{i+1}} \leq (n_{i+1} - n_i) \cdot x(v_{n_{i+1}})$$
$$\leq \sum_{n=n_i+1}^{n_{i+1}} x(v_n) < \frac{\varepsilon}{2},$$

$$2(n_{i+1} - n_{i}) < n_{i+1} \text{ hence } n_{i+1} < 2n_{i}. \text{ Observe}$$

$$\sum_{n=n_{1}}^{n_{i+1}-1} \frac{\varepsilon}{2n}$$

$$= (\frac{1}{2n_{1}} + \cdots + \frac{1}{2(2n_{2}-1)})\varepsilon + \cdots + (\frac{1}{2n_{i}} + \cdots + \frac{1}{2(n_{i+1}-1)})\varepsilon$$

$$< \frac{n_{2}-n_{1}}{2n_{1}} \cdot \varepsilon + \cdots + \frac{n_{i+1}-n_{i}}{2n_{i}} \cdot \varepsilon$$

$$< \frac{n_{2}-n_{1}}{n_{2}} \cdot \varepsilon + \cdots + \frac{n_{i+1}-n_{i}}{n_{i+1}} \cdot \varepsilon$$

$$< (n_{2}-n_{1}) \cdot x(v_{n_{2}}) + \cdots + (n_{i+1}-n_{i}) \cdot x(v_{n_{i+1}})$$

$$\leq (x(v_{n_{1}+1}) + \cdots + x(v_{n_{2}})) + \cdots + (x(v_{n_{i}+1}) + \cdots + x(v_{n_{i+1}}))$$

$$= \sum_{n=n_{1}+1}^{n_{i+1}} x(v_{n}) < \frac{\varepsilon}{2}.$$

This contradicts to the fact $\sum_{n=n_{1}}^{\infty} n^{-1}$ is not convergent. For each $n \in \mathbb{N}$, let $A_{n} = \{v_{1}, \dots, v_{n}\}$. Define $\xi_{n} \in |Sd K|$, $n \in \mathbb{N}$ and $\xi \in \ell_{1}(K)$ as follows:

$$\xi_{n}(A) = \begin{cases} i(x(v_{i}) - x(v_{i+1})) & \text{if } A = A_{i}, i \leq n, \\ (n+1)x(v_{n+1}) + \sum_{i=n+2}^{\infty} x(v_{i}) & \text{if } A = A_{n+1}, \\ 0 & \text{otherwise,} \end{cases}$$

and

$$\xi(A) = \begin{cases} n(x(v_n) - x(v_{n+1})) & \text{if } A = A_n, n \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$$

Since $n \cdot x(v_n)$ converges to 0, we have

$$\|\xi_n - \xi\|_1 = 2 \sum_{i=n+2}^{\infty} x(v_i).$$

Then $\|\xi_n - \xi\|_1$ converges to 0, that is, ξ_n converges to ξ . Hence $\xi \in \overline{|Sd|K|}^{\ell_1}$. It is easy to see that

$$\theta(\xi_{n})(v) = \begin{cases} x(v_{i}) + \frac{\sum_{n+2}^{\infty} x(v_{i})}{n+1} & \text{if } v = v_{i}, i \leq n+1 \\ 0 & \text{otherwise,} \end{cases}$$

and

 $\|\theta(\xi_n) - x\|_1 = 2 \sum_{n+2}^{\infty} x(v_i).$ Then $\theta(\xi_n)$ converges to x. This implies $\overline{\theta}(\xi) = x$.

Finally, we see the continuity of θ^{-1} . Let $x \in \overline{|K|}^{\ell_1}$, $\xi = \theta^{-1}(x) \in \overline{|Sd|K|}^{\ell_1}$ and $\varepsilon > 0$. Write $C_x = \{v_i | i \in \mathbb{N}\}$ so that $x(v_1) \ge x(v_2) \ge \cdots$. Recall $i \cdot x(v_i)$ converges to 0. We can choose $n \in \mathbb{N}$ so that $(n+1) \cdot x(v_{n+1}) < \varepsilon/6$,

Let $y \in \overline{[K]}^{\ell_1}$ with

$$\|\mathbf{x} - \mathbf{y}\|_{1} < \min\{\frac{\delta}{2}, \frac{\varepsilon}{6n(n+1)}\}$$

and
$$\eta = \overline{\theta}^{-1}(y) \in \overline{|Sd|K|}^{-1}$$
. Remark that for $1 \le i < j \le n+1$,
 $x(v_i) > x(v_j)$ implies $y(v_i) > y(v_j)$ because
 $y(v_i) - y(v_j) > (x(v_i) - \frac{\delta}{2}) - (x(v_j) + \frac{\delta}{2})$
 $= (x(v_i) - x(v_j)) - \delta > 0$.

Then, reordering v_1, \dots, v_n , we can assume that

$$y(v_1) \ge y(v_2) \ge \cdots \ge y(v_n) > y(v_{n+1}).$$

For each
$$i \in \mathbb{N}$$
, let $A_i = \{v_1, \dots, v_i\}$. Then $C_{\xi} \subset \{A_i \mid i \in \mathbb{N}\}$,
 $\xi(A_i) = i \cdot (x(v_i) - x(v_{i+1}))$ for all $i \in \mathbb{N}$, and
 $\eta(A_i) = i \cdot (y(v_i) - y(v_{i+1}))$ for $i = 1, \dots, n$.

Therefore

$$\begin{split} & \sum_{i=1}^{n} |\xi(A_{i}) - \eta(A_{i})| \\ &= \sum_{i=1}^{n} |i \cdot (x(v_{i}) - x(v_{i+1})) - i \cdot (y(v_{i}) - y(v_{i+1}))| \\ &\leq \sum_{i=1}^{n} i \cdot |x(v_{i}) - y(v_{i})| + \sum_{i=1}^{n} i \cdot |x(v_{i+1}) - y(v_{i+1})| \\ &\leq 2(\sum_{i=1}^{n} i) \cdot \|x - y\|_{1} = n(n+1) \cdot \|x - y\|_{1} < \frac{\varepsilon}{6} \end{split}$$

Since $i \cdot x(v_i)$ converges to 0,

$$\begin{split} \sum_{i=n+1}^{\infty} \xi(\mathbf{A}_{i}) &= (n+1) \mathbf{x} (\mathbf{v}_{n+1}) + \sum_{i=n+2}^{\infty} \mathbf{x} (\mathbf{v}_{i}) < \frac{\varepsilon}{6} + \frac{\varepsilon}{6} = \frac{\varepsilon}{3} \text{ .} \\ \text{Then } \sum_{i=1}^{n} \xi(\mathbf{A}_{i}) &= \| \xi \|_{1} - \sum_{i=n+1}^{\infty} \xi(\mathbf{A}_{i}) > 1 - \frac{\varepsilon}{3}, \text{ hence} \\ \sum_{i=1}^{n} \eta(\mathbf{A}_{i}) &\geq \sum_{i=1}^{n} \xi(\mathbf{A}_{i}) - \sum_{i=1}^{n} | \xi(\mathbf{A}_{i}) - \eta(\mathbf{A}_{i}) | \\ &> (1 - \frac{\varepsilon}{3}) - \frac{\varepsilon}{6} = 1 - \frac{\varepsilon}{2} \text{ .} \\ \text{This implies } \sum_{\mathbf{A} \in K \smallsetminus \{\mathbf{A}_{1}, \cdots, \mathbf{A}_{n}\}^{\eta}(\mathbf{A}) < \frac{\varepsilon}{2}. \end{split}$$

$$\begin{split} \| \theta^{-1}(\mathbf{x}) - \theta^{-1}(\mathbf{y}) \|_{1} &= \| \xi - \eta \|_{1} \\ &\leq \sum_{i=1}^{n} |\xi(\mathbf{A}_{i}) - \eta(\mathbf{A}_{i})| + \sum_{i=n+1}^{\infty} |\xi(\mathbf{A}_{i})| \\ &+ \sum_{\mathbf{A} \in \mathbf{K} \setminus \{\mathbf{A}_{1}, \cdots, \mathbf{A}_{n}\}} |\eta(\mathbf{A})| \\ &\leq \frac{\varepsilon}{6} + \frac{\varepsilon}{3} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

The proof is completed.

Thus the l_1 -completion well behaves in the barycentric subdivision of a metric simplicial complex. However the c_0 -completion does not.

3.2. Proposition. Let K be an infinite-dimension simplicial complex. Then there is no homeomorphism h: $\overline{|Sd K|}^{C_0} \rightarrow \overline{|K|}^{C_0}$ extending the natural homeomorphism θ : $|Sd K|_m \rightarrow |K|_m$.

Proof. Assume there is a homeomorphism h: $\overline{|Sd K|}^{c_0} \rightarrow \overline{|K|}^{c_0}$ such that $h||Sd K| = \theta$. For each simplex $A \in K$, we define $A^* \in |Sd K|$ by $A^*(A) = 1$. Note $h(A^*) = \theta(A^*)$ is the barycenter of \hat{A} of |A|. For each $n \in \mathbb{N}$, take an n-simplex $A_n \in K$. Then as seen in the proof of Proposition 2.1, $h(A_n^*) = \hat{A}_n$ converges to 0. However $||A_n^* - A_m^*||_{\infty} = 1$ for any $n \neq m \in \mathbb{N}$. This shows that h^{-1} is not continuous at 0.

In the above, h^{-1} is not continuous at $x \neq 0$ either. For example, let $A_0 \in K$ with dim $St(A_0) = \infty$ and for each $n \in \mathbb{N}$ take an n-simplex $A_n \in St(A_0)$. We define $\xi_n = \frac{1}{2} A_0^* + \frac{1}{2} A_n^* \in |Sd K|$, $n \in \mathbb{N}$. Then $h(\xi_n) = \frac{1}{2} \hat{A}_0 + \frac{1}{2} \hat{A}_n$ converges to $\frac{1}{2} \hat{A}_0$ but $||\xi_n - \xi_m||_{\infty} = \frac{1}{2}$ for any $n \neq m \in \mathbb{N}$. This implies h^{-1} is not continuous at \hat{A}_0 .

4. The ℓ_1 -Completion of a Metric Combinatorial ∞ -Manifold

Let Δ^{∞} be the countable-infinite full simplicial complex, that is, $\Delta^{\infty} = F(\mathbb{N})$. For the ℓ_1 -completion and the c₀-completion of $|\Delta^{\infty}|_m$, we have

4.1. Proposition. The pairs $(|\Delta^{\infty}|^{\ell_1}, |\Delta^{\infty}|_m)$ and $(|\Delta^{\infty}|^{c_0}, |\Delta^{\infty}|_m)$ are homeomorphic to the pair (ℓ_2, ℓ_2^f) .

Using the result of [CDM], this follows from the following

4.2. Lemma. Let K be a simplicial complex with no principal simplex. Then $\overline{|K|}^{l_1}$ and $\overline{|K|}^{c_0}$ are nowhere locally compact.

Proof. Because of similarity, we show only the ℓ_1 -case. Let $x \in \overline{|K|}^{\ell_1}$ and $\varepsilon > 0$. It suffices to construct a discrete sequence $x_n \in \overline{|K|}^{\ell_1}$, $n \in \mathbb{N}$, so that $||x - x_n||_1 < \varepsilon$. If C_x is infinite, write $C_x = \{v_n | n \in \mathbb{N}\}$ so that $x(v_1) \ge x(v_2) \ge \cdots$. If C_x is finite, choose a countable-infinite subset V of V_K such that $C_x \subset V$ and $F(V) \subset K$ and then write $V = \{v_n | n \in \mathbb{N}\}$ so that $x(v_1) \ge x(v_2) \ge \cdots$. (Such a V exists because K has no principal simplex.) Note that $x(v_1) > 0$ and $x(v_n) \le n^{-1}$ for each $n \in \mathbb{N}$. Put $\delta = \min\{\frac{\varepsilon}{3}, x(v_1), \frac{1}{2}\} > 0$.

By Lemma 1.1, we can define $x_n \in \overline{|K|}^{\ell_1}$, $n \in \mathbb{N}$, as follows:

$$\mathbf{x}_{n}(\mathbf{v}) = \begin{cases} \mathbf{x}(\mathbf{v}_{1}) - \delta & \text{if } \mathbf{v} = \mathbf{v}_{1}, \\ \mathbf{x}(\mathbf{v}_{n+1}) + \delta & \text{if } \mathbf{v} = \mathbf{v}_{n+1}, \\ \mathbf{x}(\mathbf{v}) & \text{otherwise.} \end{cases}$$

Then clearly $\|\mathbf{x} - \mathbf{x}_n\|_1 = 2\delta < \varepsilon$ for each $n \in \mathbb{N}$ and $\|\mathbf{x}_n - \mathbf{x}_m\|_1 = 2\delta$ if $n \neq m$.

The second half of Conjecture 0.8 (i.e., Corollary 0.9) is a direct consequence of Theorem 1.5 and the following

4.3. Proposition. Let M be an ℓ_2^{f} -manifold which is contained in a metrizable space \widetilde{M} . If for each open cover U of \widetilde{M} there is a map f: $\widetilde{M} \rightarrow M$ which is U-near to id, then M is an f-d cap set for \widetilde{M} .

Proof. By $[Sa_3, Lemma 2]$, M has a strongly universal tower $\{X_n\}_{n \in \mathbb{N}}$ for finite-dimensional compact such that $M = \bigcup_{n \in \mathbb{N}} X_n$ and each X_n is a finite-dimensional compact strong Z-set in M. From the condition, it is easy to see that each X_n is a strong Z-set in \tilde{M} . Let l' be an open cover of \tilde{M} and Z a finite-dimensional compact set in \tilde{M} . Since M is an ANR, M has an open cover l' such that any two l'-near maps from an arbitrary space to M are l'-homotopic [Hu, Ch. IV, Theorem 1.1]. For each $V \in l'$, choose an open set \tilde{V} of \tilde{M} so that $\tilde{V} \cap M = V$ and define an open cover $\tilde{l'}$ of \tilde{M} by

 $\widetilde{V} = \{\widetilde{V} \mid V \in V, V \cap X_n \neq \emptyset\} \cup \{\widetilde{M} \setminus X_n\}.$ Let \mathscr{W} be an open cover of \widetilde{M} which refines \mathscr{U} and $\widetilde{\mathcal{V}}$. From the condition, there is a map f: $\widetilde{M} \rightarrow M$ which is \mathscr{W} -near to id. Observe that $f \mid Z \cap X_n$: $Z \cap X_n \rightarrow M$ and the inclusion $Z \cap X_n \subset M$ are \mathscr{V} -near, hence \mathscr{U} -homotopic. By the Homotopy Extension Theorem [Hu, Ch. IV, Theorem 2.2 and its proof], we have a map g: $Z \rightarrow M$ such that $g \mid A \cap X_n = \text{id and } g$ is

206

U-homotopic to f|Z. From the strong universality of the tower $\{X_n\}_{n \in \mathbb{N}}$, we have an embedding h: $Z \neq X_m$ of Z into some X_m such that $h|Z \cap X_n = g|Z \cap X_n = id$ and h is *U*-near to g, hence st *U*-near to id.

4.4. Remark. In connection with Conjecture 0.8 and our results, one might conjecture more generally that a completion \tilde{M} of an ℓ_2^f -manifold M is an ℓ_2 -manifold if the inclusion $M \subset \tilde{M}$ is a fine homotopy equivalence. However this conjecture is false. In fact, let \tilde{M} be a complete ANR such that \tilde{M} -A is a ℓ_2 -manifold for some Z-set A in \tilde{M} but \tilde{M} is not an ℓ_2 -manifold. Such an example is constructed in [BBMW]. And let M be an f-d cap set for \tilde{M} -A. Then M is also an f-d cap set for M by the same arguments in Proposition 4.4. Using [Sa₃, Lemma 5], it is easily seen that the inclusion M $\subset \tilde{M}$ is a fine homotopy equivalence. And M is an ℓ_2^f -manifold by [Ch₂, Theorem 2.15].

Addendum: Recently, Conjecture 0.8 has been proved in $[Sa_5]$. In fact, it is proved that $\overline{|K|}^{l_1}$ is an l_2 -manifold if and only if K is a combinatorial ∞ -manifold.

References

- [BBMW] M. Bestvina, P. Bowers, J. Mogilski and J. Walsh, Characterization of Hilbert space manifold revisited, Topology Appl. 24 (1986), 53-69.
- [Ch₁] T. A. Chapman, Infinite deficiency in Fréchet manifolds, Trans. Amer. Math. Soc. 148 (1970), 137-146.
- [Ch2] _____, Dense sigma-compact subsets of infinitedimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399-425.

207

- [CDM] D. Curtis, T. Dobrowalski and J. Mogilski, Some applications of the topological characterizations of the sigma-compact spaces l_f^2 and Σ , Trans. Amer. Math. Soc. 284 (1984), 837-846.
- [Du] J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 57 (1965), 187-193.
- [Hu] S.-T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965.
- [Sa1] K. Sakai, Fine homotopy equivalences of simplicial complexes, Bull. Polish Acad. Sci. 34 (1986), 89-97.
- [Sa₂] _____, Combinatorial infinite-dimensional manifolds and \mathbb{R}^{∞} -manifolds, Topology Appl. 26 (1987), in press.

- [Sa₄] ____, Simplicial complexes triangulating infinitedimensional manifolds, (preprint).
- [Sa₅] ____, The l₁-completion of a metric combinatorial [∞]-manifold, Proc. Amer. Math. Soc. (to appear).
- [Wh] J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc. 55 (1949), 213-245.

Institute of Mathematics

University of Tsukuba

Sakura-mura, Ibaraki, 305 JAPAN (Current Address)

and

Louisiana State University

Baton Rouge, Louisiana 70803