TOPOLOGY PROCEEDINGS

Volume 11, 1986
Pages 177-208
http://topology.auburn.edu/tp/

COMPLETIONS OF METRIC SIMPLICIAL COMPLEXES BY USING ℓ_{p}-NORMS

by
Katsuro Sakai

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

COMPLETIONS OF METRIC SIMPLICIAL COMPLEXES BY USING ${ }^{2} \mathbf{p}$-NORMS

Katsuro Sakai

0. Introduction

Let K be a simplicial complex. Here we consider K as an abstract one, that is, a collection of non-empty finite subsets of the set V_{K} of its vertices such that $\{v\} \in K$ for all $v \in V_{K}$ and if $\varnothing \neq A \subset B \in K$ then $A \in K$. Then a simplex of K is a non-empty finite set of vertices. The realization $|\overrightarrow{\mathrm{K}}|$ of K is the set of all functions $x: V_{K} \rightarrow I$ such that $C_{X}=\left\{v \in V_{K} \mid x(v) \neq 0\right\} \in K$ and $\sum_{v \in V_{K}} x(v)=1 . \quad$ There is a metric d_{1} on $|K|$ defined by

$$
d_{1}(x, y)=\sum_{v \in V_{K}}|x(v)-y(v)|
$$

Then the metric space $\left(|K|, d_{1}\right)$ is a metric subspace the Banach space $\ell_{1}\left(V_{K}\right)$ which consists all real-valued functions $x: V_{K} \rightarrow K$ such that $\sum_{V \in V_{K}}|x(v)|<\infty$, where $\|x\|_{1}=\sum_{V \in V_{K}}|x(v)|$ is the norm of $x \in \ell_{1}\left(V_{K}\right)$. 'ine topology induced by the metric d_{l} is the metric topology of $|K|$ and the space $|K|$ with this topology is denoted by $|K|_{m}$. The completion of the metric space $\left(|K|, d_{1}\right)$ is the closure $c_{\ell_{\ell}{ }_{1}\left(V_{K}\right)}|K|$ of $|K|$ in $\ell_{1}\left(V_{K}\right)$. We will call this the ℓ_{1}-completion of $|K|_{m}$ and denoted by $\overline{|K|}^{\ell}$, It is well known that $|K|_{m}$ is an ANR (e.g., see [Hu]). In Section l, we prove that the ℓ_{1}-completion preserves this property, that is,
0.1. Theorem. For any simplicial complex K , the ℓ_{1}-completion $\overline{K K}^{\ell}{ }^{\ell}$ is an ANR and the inclusion $|\mathrm{K}|_{\mathrm{m}} \subset{\left.\bar{K}\right|^{\ell}}^{\ell}$ is a fine homotopy equivalence.

Here a map $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ is a fine homotopy equivalence if for each open cover U of Y there is a map $g: Y \rightarrow X$ called a $U_{\text {-inverse }}$ of f such that fg is U-homotopic to $i d_{Y}$ and $g f$ is $\mathrm{f}^{-1}(U)$-homotopic to id_{X}.

By $F(V)$, we denote the collection of all non-empty finite subsets of V. Then $F(V)$ is a simplicial complex with V the set of vertices. Such a simplicial complex is called a fuZl simplicial complex. From the following known result, our theorem makes sense in case K contains an infinite full simplicial complex.
0.2. Proposition. For a simplicial complex K , the following are equivalent:
(i) $|\mathrm{K}|_{\mathrm{m}}$ is completely metrizable;
(ii) K contains no infinite full simplicial complex;
(iii) $\left(|K|, \mathrm{d}_{1}\right)$ is comprete (i.e., $|\mathrm{K}|=|\bar{K}|^{\ell} 1$).

For the proof, refer to [Hu, Ch. III, Lemma ll.5], where only the equivalence between (i) and (ii) are mentioned but the implications (i) \Rightarrow (ii) \Rightarrow (iii) are proved (the implication (iii) \Rightarrow (i) is trivial).

We can also consider $|K|_{m}$ as a topological subspace of the Banach space $\ell_{p}\left(V_{K}\right)$ for any $p>1$, where

$$
\ell_{\mathrm{p}}\left(\mathrm{~V}_{\mathrm{K}}\right)=\left\{\left.\mathrm{x} \in \mathrm{R}^{\mathrm{V}_{\mathrm{K}}}\left|\sum_{\mathrm{v} \in \mathrm{~V}_{\mathrm{K}}}\right| \mathrm{x}(\mathrm{v})\right|^{\mathrm{p}}<\infty\right\}
$$

and the norm of $x \in \ell_{p}\left(V_{K}\right)$ is

$$
\|x\|_{p}=\left(\sum_{v \in V_{K}}|x(v)|^{p}\right)^{1 / p}
$$

Let d_{p} be the metric defined by the norm $\|\cdot\|_{p}$. Then the completion of the metric space $\left(|K|, d_{p}\right)$ is $c \ell_{\ell_{p}}\left(V_{K}\right)|K|$ and denoted by $\overline{\mathrm{K}}^{\ell} \mathrm{P}$. We will call $\overline{\mathrm{K}}^{\ell} \mathrm{P}$ the ℓ_{p}-completion of $|\mathrm{K}|_{\mathrm{m}}$. And also $|\mathrm{K}|_{\mathrm{m}}$ can be considered as a topological subspace of the Banach space $m\left(V_{K}\right)$ which consists all bounded real-valued functions $x: V_{K} \rightarrow R$ with the norm $\|x\|_{\infty}=\sup \left\{|x(v)| \mid v \in V_{K}\right\}$. Let $c_{0}\left(V_{K}\right)$ be the closed linear subspace of all those x in $m\left(V_{K}\right)$ such that for each $\varepsilon>0$, $\left\{v \in V_{K}| | x(v) \mid>\varepsilon\right\}$ is finite. Then $|K|_{m} \subset c_{0}\left(V_{K}\right)$. Let d_{∞} be the metric defined by the norm $\|\cdot\|_{\infty}$. The completion of the metric space $\left(|K|, d_{\infty}\right)$ is $c \ell_{m\left(V_{K}\right)}|K|=c \ell_{c_{0}}\left(V_{K}\right)|K|$ and denoted by $\overline{\mathrm{K}}^{\mathrm{C}_{0}}$. We will call $\overline{\mathrm{K}}^{\mathrm{C}_{0}}$ the c_{0}-completion if $|K|_{m}$. However the metrics $\mathrm{a}_{2}, \mathrm{~d}_{3}, \cdots, \mathrm{~d}_{\infty}$ on $|\mathrm{K}|$ are uniformly equivalent. In fact, for each $x, y \in|K|$,

$$
\begin{aligned}
d_{2}(x, y) & =\|x-y\|_{2}=\left(\sum_{v \in V_{K}}(x(v)-y(v))^{2}\right) l / 2 \\
& \leq\left(\sup _{v \in V_{K}}|x(v)-y(v)| \cdot \sum_{v \in V_{K}}|x(v)-y(v)|\right)^{1 / 2} \\
& \leq\left(\|x-y\|_{\infty} \cdot\left(\sum_{v \in V_{K}} x(v)+\sum_{v \in V_{K}} y(v)\right)\right)^{1 / 2} \\
& =\left(2 \cdot d_{\infty}(x, y)\right)^{1 / 2}
\end{aligned}
$$

and since $\|\cdot\|_{2} \geq\|\cdot\|_{3} \geq \cdots \geq\|\cdot\|_{\infty}$,

$$
d_{2}(x, y) \geq d_{3}(x, y) \geq \cdots \geq d_{\infty}(x, y) .
$$

Therefore the ℓ_{p}-completions of $|\mathrm{K}|_{\mathrm{m}}, \mathrm{p}>\mathrm{l}$, are the same as the c_{0}-completion, that is, ${\overline{\mathrm{K}} \mathrm{T}^{\ell} \mathrm{p}=\mid \overline{\mathrm{K}}{ }^{\mathrm{C}}}^{0}$ for $\mathrm{p}>1$.

For the c_{0}-completion, Section 2 is devoted. In relation to Proposition 0.2, the following is shown.
0.3. Proposition. For a simplicial complex K , the metric space $\left(|K|, \mathrm{d}_{\infty}\right)$ is complete if and only if K is finite-dimensional.

From Propositions 0.2 and 0.3 , it follows that ${\overline{\mathrm{K}} \bar{x}^{\ell}}^{1} \neq{\overline{\mathrm{K}}{ }^{\mathrm{C}}}^{0}$ for an infinite-dimensional simplicial complex K which contains no infinite full simplicial complex. And it is also seen that in general, $\mid \overline{\mathrm{K}}{ }^{\mathrm{c}}{ }^{0}$ is not an ANR, actually not locally connected (2.8). This is related to the existence of arbitrarily high dimensional principal simplexes and the fact that ${\overline{\mathrm{K}}{ }^{\mathrm{C}}}^{\mathrm{O}}$ contains $0 \in \mathrm{c}_{0}\left(\mathrm{~K}_{\mathrm{V}}\right)$. In Section 2, we have the following
0.4. Theorem. Let K be a simplicial complex. If K has no prinicpal simplex than ${\overline{\mathrm{K}}{ }^{\mathrm{C}}}^{0}$ is an AR, in particular, contractible. And if all principal simplexes of K have bounded dimension then $\mathrm{TK}^{\mathrm{C}} 0$ is an ANR.
0.5. Theorem. For any simplicial complex $K,|\bar{K}|^{c} 0 \backslash\{0\}$ is an ANR and the inclusion $|\mathrm{K}| \subset \overline{\mathrm{K}}^{\mathrm{c}^{\mathrm{C}}} \backslash\{0\}$ is a homotopy equivalence.

By Sd K, we denote the barycentric subdivision of a simplicial complex K. Let $\theta:|S \bar{\alpha} K| \rightarrow|K|$ be the natural bijection. As well known, $\theta:|S d K|_{\mathrm{m}} \rightarrow|\mathrm{K}|_{\mathrm{m}}$ is a homeomorphism. For the $\ell_{1^{-}}$and c_{0}-completions of the barycentric subdivision, we have the following result in Section 3.
0.6. Theorem. For any infinite-dimensional simplicial complex K , the natural homeomorphism $\theta:|\mathrm{Sd} \mathrm{K}|_{\mathrm{m}} \rightarrow|\mathrm{K}|_{\mathrm{m}}$ extends to a homeomorphism $\bar{\theta}: \overline{\mathrm{Sd} \mathrm{K}}^{\ell} 1 \rightarrow \overline{|\mathrm{~K}|}^{\ell} 1$ but cannot extend to any homeomorphism $\mathrm{h}: \overline{\mathrm{Sd}} \overline{\mathrm{K}} \boldsymbol{T}^{\mathrm{C}} 0 \rightarrow{\left.\overline{\mathrm{~K}}\right|^{\mathrm{C}}}^{0}$.

Let ℓ_{2}^{f} be the dense linear subspace of the Hilbert space $\ell_{2}=\ell_{2}(N)$ consisting of $\left\{x \in \ell_{2} \mid x(i)=0\right.$ except for finitely many i $\in \mathbb{N}\}$. A Hilbert (space) manifold is a separable manifold modeled on the Hilbert space ℓ_{2} and simply called an ℓ_{2}-manifold. A separable manifold modeled on the space ℓ_{2}^{f} is called an $\ell \frac{f}{2}$-manifold. An ℓ_{2}^{f}-manifold M is characterized as a dense subset of some ℓ_{2}-manifold \tilde{M} with the finite-dimensional compact absorption property, so-called an f-d cap set for \tilde{M} (see $\left[\mathrm{Ch}_{2}\right]$). In $\left[\mathrm{Sa}_{3,4}\right]$, the author has proved that a simplicial complex K is a combinatorial ∞-manifold if and only if $|K|_{m}$ is an ℓ_{2}^{f}-manifold. Here a combinatorial m-manifold is a countable simplicial complex such that the star of each vertex is combinatorially equivalent to the countably infinite full simplicial complex $\Delta^{\infty}=F(\mathbb{N})$, that is, they have simplicially isomorphic subdivisions [Sa_{2}]. In Section 4, using the result of [CDM], we see
0.7. Proposition. The pair $\left({\overline{\left|\Delta^{\infty}\right|}}^{\ell},\left|\Delta^{\infty}\right|_{m}\right)$ is homeomorphic to the pair $\left(\ell_{2}, \ell_{2}\right)$.

Thus we conjecture as follows:
0.8. Conjecture. For a combinatorial m-manifold K , the ℓ_{1}-completion ${\overline{|K|^{\ell}}}^{\ell}$ is an ℓ_{2}-manifold and $|K|_{\mathrm{m}}$ is an f-d cap set for ${\overline{|K|^{\ell}}}^{\ell}$.

Similarly as the ℓ_{1}-completion of $\left|\Delta^{\infty}\right|_{m}$, we can prove \left. that ${\overline{\left|\Delta^{\infty}\right|}}^{C},\left|\Delta^{\infty}\right|_{m}\right)$ is homeomorphic to the pair $\left(\ell_{2}, \ell_{2}^{f}\right)$ but the same conjecture as 0.8 does not hold for the c_{0}-completion. In fact, let K be a non-contractible combinatorial $\infty-m a n i f o l d$. Then $\overline{K T}^{C_{0}} \backslash\{0\}$ is not homotopically equivalent to $\overline{\mid K T}^{C_{0}}$ by Theorems 0.4 and 0.5 , hence the one-point set $\{0\}$ is not a Z-set in $\overline{K T}^{C_{0}}$. Therefore $\overline{T K T}^{C_{0}}$ is not an ℓ_{2}-manifold (cf. [Ch ${ }_{1}$).

The second half of Conjecture 0.8 is proved in Section 4 as a corollary of the second half of Theorem 0.1.
0.9. Corozzary. For a combinatorial m-manifold K , $|\mathrm{K}|_{\mathrm{m}}$ is an $\mathrm{f}-\mathrm{d}$ cap set for the ℓ_{1}-completion $\overline{\left.\mathrm{K}\right|^{\ell}}{ }^{\ell}$.

1. The ℓ_{1}-Completion of a Metric Complex

Recall $F(V)$ is the all of non-empty finite subsets of V, namely, the full simplicial complex with V the set of vertices. For each real-valued function $x: V \rightarrow R$, we denote

$$
C_{x}=\{v \in v \mid x(v) \neq 0\}
$$

If $x \in C_{0}(V)$ then C_{x} is countable. The set of vertices of a simplicial complex K is always denoted by V_{K}.
1.1. Lemma. Let K be a simplicial complex and
 $\mathrm{v} \in \mathrm{V}_{\mathrm{K}},\|\mathrm{x}\|_{\mathrm{l}}=\sum_{\mathrm{v} \in \mathrm{C}_{\mathrm{X}}} \mathrm{x}(\mathrm{v})=1$ and $\mathrm{F}\left(\mathrm{C}_{\mathrm{x}}\right) \subset \mathrm{K}$.

Proof. First we see the "only if" part. For each $v \in V_{K}$, let $v^{*}: \ell_{1}\left(V_{K}\right) \rightarrow R$ be defined by $v^{*}(x)=x(v)$.
 $x(v)=v^{*}(x) \geq 0$. And $\|x\|_{1}=1$ follows from the continuity of the norm $\|\cdot\|_{1}$. Let $A \in F\left(C_{x}\right)$ and choose $\varepsilon>0$ so that $x(v)>\varepsilon$ for all $v \in A$. Since $x \in|K|^{\ell}{ }^{l}$, we have $y \in|K|$ with $\|x-y\|_{1}<\varepsilon$. Then $y(v) \geq x(v)-|x(v)-y(v)|>$ $x(v)-\varepsilon>0$ for all $v \in A$, that is, $A \subset C_{Y}$. This implies $A \in K$ because $C_{y} \in K$.

Next we see the "if" part. In case C_{x} is finite obviously $x \in|K|$. In case C_{x} is infinite, for any $\varepsilon>0$ choose $A \in F\left(C_{x}\right)$ so that

$$
\sum_{v \in V_{K} \backslash A^{x}(v)}=\|x\|_{l}-\sum_{v \in A} x(v)<\frac{\varepsilon}{2} .
$$

Let $v_{0} \in A$ and put $\alpha=\Sigma_{v \in V_{K} \backslash} \mathrm{x}(\mathrm{v})$. Then $\mathrm{x}\left(\mathrm{v}_{0}\right)+\alpha \in \mathrm{I}$. We define $y \in|K|$ as follows:

$$
y(v)= \begin{cases}x\left(v_{0}\right)+\alpha & \text { if } v=v_{0}, \\ x(v) & \text { if } v \in A \backslash\left\{v_{0}\right\}, \\ 0 & \text { otherwise } .\end{cases}
$$

Then clearly $\|x-y\|_{1}=2 \alpha<\varepsilon$. Therefore $x \in \prod_{K}{ }^{\ell} 1$.

To prove the first half of Theorem 0.l, we use a local equi-connecting map. A space X is locally equiconnected (LEC) provided there are a neighborhood U of the diagonal ΔX in X^{2} and a map $\lambda: U X I+X$ called a (ZocaZ)
equi-connecting map such that

$$
\begin{aligned}
& \lambda(x, y, 0)=x, \lambda(x, y, l)=y \text { for all }(x, y) \in U, \\
& \lambda(x, x, t)=x \text { for all } x \in x, t \in I .
\end{aligned}
$$

Then a subset A of X is λ-convex if $A^{2} \subset U$ and $\lambda\left(A^{2} x I\right) \subset A$. The following is well known.
1.2. Lemma [Du]. If a metrizable space X has a local equi-connecting map λ such that each point of x has arbitrarily small λ-convex neighborhoods then X is an ANR. Moreover if λ is defined on $\mathrm{X}^{2} \times \mathrm{I}$ then X is an AR.

Now we prove the first half of Theorem 0.l.
1.3. Theorem. For a simplicial complex K , the ℓ_{1}-completion $\overline{K T}^{\ell}{ }^{1}$ is an ANR.

Proof. Let $\mu: \ell_{1}\left(V_{K}\right)^{2} \rightarrow \ell_{1}\left(V_{K}\right)$ be defined by $\mu(x, y)(v)=\min \{|x(v)|,|y(v)|\}$.

Then μ is continuous. In fact, for each (x, y), (x ', y^{\prime}) \in $\ell_{1}\left(V_{K}\right)^{2}$ and for each $v \in V_{K}$,

$$
\begin{aligned}
& \left|\min \{|x(v)|,|y(v)|\}-\min \left\{\left|x^{\prime}(v)\right|,\left|y^{\prime}(v)\right|\right\}\right| \\
& \leq \max \left\{| | x(v)\left|-\left|x^{\prime}(v)\right|\right|,\left||y(v)|-\left|y^{\prime}(v)\right|\right|\right\} \\
& \leq \max \left\{\left|x(v)-x^{\prime}(v)\right| \cdot\left|y(v)-y^{\prime}(v)\right|\right\} \\
& \leq\left|x(v)-x^{\prime}(v)\right|+\left|y(v)-y^{\prime}(v)\right|,
\end{aligned}
$$

hence we have
$\left\|\mu(x, y)-\mu\left(x^{\prime}, y^{\prime}\right)\right\|_{1} \leq\left\|x-x^{\prime}\right\|_{1}+\left\|y-y^{\prime}\right\|_{1}$.
And note that $\mu(x, y)=0$ if and only if $x(v)=0$ or $y(v)=0$ for each $v \in V_{K}$, which implies $\|x-y\|_{1}=\|x\|_{1}+\|y\|_{1}$. Then $\|x-y\|_{l}<\|x\|_{1}+\|y\|_{l}$ implies $\mu(x, y) \neq 0$. And observe $c_{\mu(x, y)}=c_{x} \cap C_{y}$ for each $(x, y) \in \ell_{1}\left(V_{K}\right)^{2}$. Let

$$
U=\left\{(x, y) \in{\left.\overline{\mid K}\right|^{\ell} 1}^{U} \mid\|x-y\|_{1}<2\right\} .
$$

Then U is an open neighborhood of the diagonal $\Delta|K|^{\ell}{ }_{l}$ in $\left({\left.\bar{K}\right|^{\ell}}^{\ell}\right)^{2}$. For each $(x, y) \in U, \mu(x, y) \neq 0$ by the preceding observation. And it is easily seen that

$$
\begin{aligned}
& x, \frac{\mu(x, y)}{\pi \mu(x, y) \|_{1}} \in{\overline{F\left(C_{x}\right)}}^{\ell} \subset \overline{K K}^{\ell}{ }^{l} \text { and } \\
& \left.y, \frac{\mu(x, y)}{\|\mu(x, y)\|_{1}} \in \overline{F(C} y\right)^{l}{ }^{\ell} \in \overline{K T}^{\ell} 1 .
\end{aligned}
$$

 have

$$
\begin{aligned}
& (1-t) x+\frac{t \cdot \mu(x, y)}{\pi_{\mu}(x, y) \|_{1}}, \quad(1-t) y+\frac{t}{\pi_{\mu}} \cdot \frac{\mu(x, y)}{(x, y) \|_{1}} \in \overline{, K T}^{\ell} 1 \\
& \text { for any } t \in I \text {. }
\end{aligned}
$$

Thus we can define a local equi-connecting map $\lambda: U \times I \rightarrow$ $\overline{\left.\mathrm{K}\right|^{\ell}}{ }^{l}$ as follows

$$
\lambda(x, y, t)= \begin{cases}(1-2 t) x+\frac{2 t_{\mu}(x, y)}{\left\|_{\mu}(x, y)\right\|_{1}} & \text { if } 0 \leq i \leq \frac{1}{2} \\ (2 t-1) y+\frac{(2-2 t) \mu(x, y)}{\left\|_{\mu}(x, y)\right\|_{1}} & \text { if } \frac{1}{2} \leq t \leq 1 .\end{cases}
$$

Now we show that each point of $\overline{K T}^{\ell}$ has arbitrarily small λ-convex neighborhoods. Let $z \epsilon{\left.\overline{K K}\right|^{\ell}}^{l}$ and $\varepsilon>0$. Choose an $A \in F\left(C_{z}\right)$ so that $\sum_{V \in A} z(v)>1-2^{-l} \varepsilon$ and select $0<\alpha(v)<z(v)$ for all $v \in A$ so that $\Sigma_{v \in A^{\alpha}}(v)>1-2^{-1} \varepsilon$. Let

$$
W=\left\{x \in \overline{K K}^{\ell} 1 \mid x(v)>\alpha(v) \text { for all } v \in A\right\} \text {. }
$$

Then W is an open neighborhood of z in ${\left.\overline{K K}\right|^{\ell}}^{l}$. For each $x, y \in W$,

$$
\begin{aligned}
\|x-y\|_{1} \leq & \sum_{V \in A}|x(v)-y(v)|+\sum_{V \in V_{K} \backslash A} x(v) \\
& +\sum_{V \in V_{K}, A} y(v) \\
\leq & \sum_{V \in A}(x(v)-\alpha(v))+\sum_{V \in A}(y(v)-\alpha(v)) \\
& +1-\sum_{V \in A} x(v)+1-\sum_{V \in A} Y(v) \\
= & 2-2 \sum_{V \in A} \alpha(v)<\varepsilon .
\end{aligned}
$$

Therefore diam $W \leq \varepsilon$. To see that W is λ-convex, let $(x, y, t) \in W^{2} \times I$ and $v \in A$. Note $\left\|_{\mu}(x, y)\right\|_{1} \leq 1$. If $t \leq 1 / 2$,

$$
\begin{aligned}
\lambda(x, y, t)(v) & =(1-2 t) x(v)+\frac{2 t \cdot \min \{x(v), y(v)\}}{\|\mu(x, y)\|_{1}} \\
& \geq(1-2 t) \cdot \min \{x(v), y(v)\} \\
& +2 t \cdot \min \{x(v), y(v)\} \\
& =\min \{x(v), y(v)\}>\alpha(v) .
\end{aligned}
$$

If $t \geq 1 / 2$, similarly $\lambda(x, y, t)(v)>\alpha(v)$. Then $\lambda(x, y, t) \in W$. Therefore W is λ-convex. The result follows from Lemma 1.2.

To prove the second half of Theorem 0.1 , we use a SAP-family introduced in [Sa $]$. Let $子$ be a family of closed sets in a space X. We call $子$ a SAP-famizy for X if \mathcal{f} is directed, that is, for each $F_{1}, F_{2} \in \mathcal{F}$ there is an $F \in \mathcal{F}$ with $\mathrm{F}_{1} \cap \mathrm{~F}_{2} \subset \mathrm{~F}$, and f has the simplex absorption property, that is, for each map $f:\left|\Delta^{n}\right| \rightarrow X$ of any $n-s i m p l e x$ such that $f\left(\partial\left|\Delta^{n}\right|\right) \subset F$ for some $F \in \exists$ and for each open cover U of X there exists a map $g:\left|\Delta^{n}\right| \rightarrow X$ such that $g\left(\left|\Delta^{n}\right|\right) \subset F$ for some $F \in \mathcal{F}, \mathrm{~g}| | \Delta^{\mathrm{n}}|=\mathrm{f}| \partial\left|\Delta^{\mathrm{n}}\right|$ and g is U-near to f. Let L be a subcomplex of a simplicial complex K. We say that L is full in K if any simplex of K with vertices of L belongs to L. For a subcomplex L of K, we always consider $|L| \subset|K|$, that is, $x \in|L|$ is a function $x: V_{L} \rightarrow I$ but is considered a function $x: V_{K} \rightarrow I$ with $x\left(V_{K} \backslash V_{L}\right)=0$.
1.4. Lemma (cf. [Sa ${ }_{1}$, Lemma 3]). Let K be a simplicial complex. Then the family

$$
\begin{aligned}
\exists(\mathrm{K})= & \{|\mathrm{L}| \mid \mathrm{L} \text { is a finite subcomplex of } \mathrm{K} \text { which } \\
& \text { is fu乙l in } \mathrm{K}\}
\end{aligned}
$$

is a SAP-family for ${\overline{\mathrm{K}}{ }^{\ell}}^{\ell}$.
Proof. It is clear that $7(K)$ is a direct family of ciosed (compact) set in $|K|^{\ell} 1$. Let $|L| \in \mathcal{F}(K)$ and define a map $\phi_{L}:|K|^{\ell} 1 \rightarrow I$ by

$$
\phi_{L}(x)=\sum_{v \in V_{L}} x(v) .
$$

Then $\phi_{L}^{-l}(1)=|L|$. In fact, if $x \in|L|$ then $\phi_{L}(x)=\|x\|_{l}=1$. Conversely if $\phi_{L}(x)=1$ then $C_{x} \subset V_{L}$ and $C_{x} \in K$ by Lemma l.l. Since L is full in $K, C_{X} \in L$, which implies $x \in|L|$. Let $N(|L|, 2)$ be the 2 -neighborhood of $|L|$ in $|\bar{K}|^{\ell} 1$, that is,

$$
N(|L|, 2)=\left\{x \in \overline{K K}{ }^{\ell} 1 \mid d_{1}(x,|L|)<2\right\} .
$$

Then $\phi_{L}(x) \neq 0$ for all $x \in N(|L|, 2)$ because if $\phi_{L}(x)=0$ then $x(v)=0$ for all $v \in V_{L}$, hence for any $y \in|L|$,

$$
\begin{aligned}
\|x-y\|_{1} & =\sum_{v \in V_{K}}|x(v)-y(v)| \\
& =\sum_{v \in V_{K}} x(v)+\sum_{v \in V_{K}} y(v)=2 .
\end{aligned}
$$

We define a retraction $r_{L}: N(C|L|, 2) \rightarrow|L|(C|K|)$ by

$$
r_{L}(x)(v)= \begin{cases}\frac{x(v)}{\phi_{L}(x)} & \text { if } v \in V_{L^{\prime}} \\ 0 & \text { otherwise }\end{cases}
$$

Then for each $x \in N(|L|, 2)$,

$$
\begin{aligned}
\left\|r_{L}(x)-x\right\|_{1} & =\sum_{v \in V_{L}}\left|\frac{x(v)}{\phi_{L}(x)}-x(v)\right|+\sum_{v \in V_{K} / V_{L}} x(v) \\
& =\left(\frac{1}{\phi_{L}(x)}-1\right) \sum_{v \in V_{L}} x(v)+1-\phi_{L}(x)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{1}{\phi_{L}(x)}-1\right) \phi_{L}(x)+1-\phi_{L}(x) \\
& =2-2 \phi_{L}(x)
\end{aligned}
$$

On the other hand $1-\phi_{L}(x) \leq d_{1}(x,|L|)$ since for any $y \in|L|$,

$$
\begin{aligned}
\|x-y\|_{1} & =\sum_{v \in V_{K}}|x(v)-y(v)| \\
& =\sum_{v \in V_{K} \backslash V_{L}} x(v)+\sum_{v \in V_{L}}|x(v)-y(v)| \\
& \geq 1-\sum_{V \in V_{L}} x(v) \\
& =1-\phi_{L}(x) .
\end{aligned}
$$

Therefore we have

$$
d_{1}\left(r_{L}(x), x\right) \leq 2 \cdot d_{1}(x,|L|) \text { for each } x \in N(|L|, 2) \text {. }
$$

By Lemma 2 in $\left[S a_{1}\right], f(K)$ is a SAP-family in $|\bar{K}|^{\ell} 1$.

Now we prove the second half of Theorem 0.l.
1.5. Theorem. For a simplicial complex K , the inclusion i: $|\mathrm{K}|_{\mathrm{m}} \subset \overline{\mathrm{K}}^{\ell}{ }^{1}$ is a fine homotopy equivalence.

Proof. By $|K|_{w}$, we denote the space $|K|$ with the weak (or Whitehead) topology. Then the identity of $|K|$ induces a fine homotopy equivalence $j:|K|_{W} \rightarrow|K|_{\mathrm{m}}\left[S a_{1}\right.$, Theorem l]. By the same arguments in the proof of $\left[S a_{1}\right.$, Theorem l] using the above lemma instead of $\left[S a_{1}\right.$, Lemma 3], $i j:|K|_{w} \rightarrow \overline{K T}^{\ell}{ }^{l}$ is also a fine homotopy equivalence. Then the result follows from the following lemma.
1.6. Lemma. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ and $\mathrm{g}: \mathrm{Y} \rightarrow \mathrm{Z}$ be maps. If f and gf are fine homotopy equivalences then so is g.

Proof. Let U be an open cover of Z. Then $g f$ has a U-inverse $h: Z \rightarrow X$. Let V be an open cover of X which refines both $g^{-1}(U)$ and $g^{-1} h^{-1} f^{-1} g^{-1}(U)$. Then f has a V-inverse $k: Y \rightarrow X$. Since hgf is $\mathrm{f}^{-1} \mathrm{~g}^{-1}(\|)$-homotopic to $i d_{X}$, fhgfk is $g^{-1}(U)$-homotopic to fk which is $\mathrm{g}^{-1}(U)$-homotopic to id X_{F}. Since fk is $\mathrm{g}^{-1} \mathrm{~h}^{-1} \mathrm{f}^{-1} \mathrm{~g}^{-1}(U)$-homotopic to id ${ }_{Y}$, fhgfk is $g^{-1}(U)$-homotopic to fhg. Hence fhg is st $\mathrm{g}^{-1}(U)$-homotopic to id_{Y}. Recall g fh is U-homotopic to id Z . Therefore g is a fine homotopy equivalence.

2. The $\mathbf{c}_{\boldsymbol{0}}$-Completion of a Metric Complex

As seen in Introduction, for any $p>1$, the ℓ_{p}-completion of a metric simplicial complex is the same as the c_{0}-completion. In this section, we clarify the difference between the ℓ_{1}-completion and the c_{0}-completion. The "only if" part of Proposition 0.3 is contained in the following
2.1. Proposition. Let K be a simplicial complex. Then K is infinite-dimensional if and only if $0 \in \mid \overline{\mathrm{K}}{ }^{\mathrm{c}}{ }^{0}$. Proof. To see the "if" part, let $n \in \mathbb{N}$. From $0 \in \overline{K K}^{c} 0$, we have $x \in|K|$ with $\|x\|_{\infty}<n^{-1}$. Then $c_{x} \in K$ and $\operatorname{dim} C_{x} \geq \mathrm{n}$ because

$$
l=\sum_{v \in C_{X}} x(v) \leq\|x\|_{\infty}\left(\operatorname{dim} C_{x}+l\right)<n^{-1}\left(\operatorname{dim} C_{x}+l\right) .
$$

Therefore K is infinite-dimensional.
To see the "only if" part, let $\varepsilon>0$ and choose $n \in \mathbb{N}$ so that $(n+1)^{-1}<\varepsilon$. Since K is infinite-dimensional, we have $A \in K$ with $\operatorname{dim} A=n$. Let \hat{A} be the barycenter of $|A|$, that is,

$$
\hat{A}(v)= \begin{cases}(n+1)^{-1} & \text { if } v \in A \\ 0 & \text { otherwise }\end{cases}
$$

Then $\|\hat{A}\|_{\infty}=(n+1)^{-1}<\varepsilon$. Hence $0 \in{\left.\overline{\mathrm{~K}}\right|^{\mathrm{C}}}^{\mathrm{C}}$.
2.2. Lemma. Let K be a simplicial complex and
$\mathrm{x} \in{\left.\mathrm{TK}\right|^{\mathrm{C}}}^{0}$. Then $\mathrm{x}(\mathrm{v}) \geq 0$ for all $\mathrm{v} \in \mathrm{V}_{\mathrm{K}},\|\mathrm{x}\|_{1}=$ $\Sigma_{v \in C_{X}} x(v) \leq 1$ and $F\left(C_{X}\right) \subset K$.

Proof. The first and the last conditions can be seen similarly as the "only if" part of Lemma l.l. To see the second condition, assume $l<\Sigma_{v \in C_{X}} x(v) \leq \infty$. Then there are $v_{1}, \cdots, v_{n} \in C_{x}$ such that $\sum_{i=1}^{n} x\left(v_{i}\right)>1$. since $x \in T \bar{K} T^{c} 0$, we have $y \in|K|$ with

$$
\|x-y\|_{\infty}<n^{-1}\left(\sum_{i=1}^{n} x\left(v_{i}\right)-1\right) .
$$

Then it follows that

$$
\begin{aligned}
\sum_{i=1}^{n} y\left(v_{i}\right) & \geq \sum_{i=1}^{n} x\left(v_{i}\right)-\sum_{i=1}^{n}\left|x\left(v_{i}\right)-y\left(v_{i}\right)\right| \\
& \geq \sum_{i=1}^{n} x\left(v_{i}\right)-n \cdot\left\|_{x}-y\right\|_{\infty}>l .
\end{aligned}
$$

This is contrary to $y \in|K|$. Therefore $\Sigma_{v} \epsilon_{C_{X}} x(v) \leq 1$.
Now we prove the "if" part of Proposition 0.3, that is,
2.3. Proposition. Let K be a finite-dimensional
simplicial complex. Then $\overline{\mathrm{K} \mid}^{\mathrm{C}} 0=|\mathrm{K}|$, that is, $\left(|\mathrm{K}|, \mathrm{a}_{\infty}\right)$ is complete.

Proof. Let $\operatorname{dim} K=n$ and $x \in \bar{K}^{c}{ }^{c}$. By Proposition 2.1, $x \neq 0$, that is, $C_{x} \neq \emptyset$. And C_{x} is finite, otherwise K contains an $(n+1)$-simplex by Lemma 2.2. Therefore $C_{x} \in K$ by Lemma 2.2. For any $\varepsilon>0$, we have $y \in|K|$ with $\|x-y\|_{\infty}<2^{-1}(n+1)^{-1} \varepsilon$. Note $C_{X} \cup C_{Y}$ contains at most
$2(\mathrm{n}+1)$ vertices. Then it follows that

$$
\begin{aligned}
\left|\sum_{v \in C_{x}} x(v)-l\right| & =\left|\sum_{v \in V_{K}} x(v)-\sum_{v \in V_{K}} y(v)\right| \\
& \leq \sum_{v \in V_{K}}|x(v)-y(v)| \\
& =\sum_{v \in C_{x} u C_{y}|x(v)-y(v)|} \\
& \leq 2(n+1) \cdot\|x-y\|_{\infty}<\varepsilon .
\end{aligned}
$$

Therefore $\|x\|_{1}=\Sigma_{v \in C_{x}} x(v)=1$. By Lemma 2.2, $x(v) \geq 0$ for all $v \in V_{K}$. Hence $x \in|K|$.

Thus Proposition 0.3 is obtained. As a corollary, we have the following
2.4. Corollary. Let L be a finite-dimensional subcomplex of a simplicial complex K . Then $|\mathrm{L}|$ is closed in $\overline{K T}^{c}{ }^{\mathrm{C}}$.

Before proving Theorems 0.4 and 0.5 , we decide the difference between the ℓ_{1}-completion and the c_{0}-completion as sets. Let K be a simplicial complex and let $A \in K$. The star St(A) of A is the subcomplex defined by

$$
\text { St }(A)=\{B \in K \mid A, B \subset C \text { for some } C \in K\}
$$

We say that A is principal if $A \notin B$ for any $B \in K \backslash\{A\}$, that is, A is maximal with respect to C. By $\operatorname{Max}(\mathrm{K})$, we denote all of principal simplexes of K . We define the subcomplexes $I D(K)$ and $P(K)$ of K as follows:

$$
\begin{aligned}
\operatorname{ID}(K) & =\{A \in K \mid \operatorname{dim} S t(A)=\infty\} \\
P(K) & =\{A \in K \mid A \subset B \text { for some } B \in \operatorname{Max}(K)\}
\end{aligned}
$$

Then clearly $K=P(K) U I D(K)$. Observe $I D(K)=K$ if and only if $P(K)=\varnothing$, however $P(K)=K$ does not imply $I D(K)=\varnothing$
(the converse implication obviously holds). For example, let

$$
\begin{aligned}
& K_{1}=F(\{0,1\}), K_{2}=F(\{0,2,3\}), \\
& K_{3}=F(\{0,4,5,6\}), \ldots
\end{aligned}
$$

and let $K=U_{n \in N^{K}}$. Then $P(K)=K$ but $\operatorname{dim} \operatorname{St}(\{0\})=\infty$. In general, for any $A, B \in K, S t(A) \subset S t(B)$ if and only if $B \subset A$. Then $\operatorname{ID}(K)=\varnothing$ if and only if $\operatorname{dim} S t(\{v\})<\infty$ for each $v \in V_{K}$, that is, K is locally finite-dimensional.
2.5. Theorem. Let K be an infinite-dimensional and locally finite-dimensional simplicial complex, namely $\operatorname{ID}(\mathrm{K})=\emptyset$, then $|\bar{K}|^{\mathrm{C}}=|\mathrm{K}| \mathrm{U}\{0\}$.

Proof. By Proposition 2.1, $|K| \cup\{0\} \subset{\left.\bar{K}\right|^{c}}^{0}$. Let $x \in\left|K T^{c}{ }^{c}\right| K \mid$. Assume $x \neq 0$, that is, $C_{x} \neq \emptyset$. From $I D(K)=\varnothing, K$ has no infinite full simplicial complex. Then C_{x} is finite because $F\left(C_{x}\right) \subset K$ by Lemma 2.2. This implies $C_{x} \in K$. Put dim $S t\left(C_{x}\right)=n$. From $x \notin|K|$, it follows $\Sigma_{v \in C_{x}} x(v)<1$. Let

$$
\delta=\min \left((n+1)^{-1}\left(1-\sum_{v \in C_{x}} x(v)\right), \min _{v \in C_{x}} x(v)\right\}>0 .
$$

If $\|x-y\|_{\infty}<\delta$ then $y(v)>0$ for all $v \in C_{x}$, that is, $C_{x} \subset C_{y}$. From $\operatorname{dim} \operatorname{St}\left(C_{x}\right)=n$, we have $\operatorname{dim} C_{y} \leq n$. Hence $\sum_{v \in C_{y}} y(v) \leq \sum_{v \in C_{y}} x(v)+\sum_{v \in C_{y}}|x(v)-y(v)|$ $\leq \sum_{\mathrm{v} \in \mathrm{C}_{\mathrm{X}}} \mathrm{x}(\mathrm{v})+\left(\operatorname{dim} \mathrm{C}_{\mathrm{y}}+1\right) \cdot\left\|_{\mathrm{x}}-\mathrm{y}\right\|_{\infty}$ $<\sum_{v \in C_{x}} x(v)+(n+1) \delta$ $\leq \sum_{v \in C_{X}} x(v)+\left(1-\sum_{v \in C_{X}} x(v)\right)=1$.

This is contrary to $y \in|K|$. Therefore $x=0$.
2.6. Lemma. Let K be a simplicial complex with no principal simplex, name $l_{y} \operatorname{ID}(\mathrm{~K})=\mathrm{K}$. Then

$$
\left.\overline{\mid K}\right|^{C_{0}}=I \cdot|K|^{\ell} 1=\left\{t x \mid x \in{\left.\bar{K}\right|^{\ell}}^{\ell}, t \in I\right\} .
$$

 $x \in I \cdot|K|^{\ell} 1$. If $x \neq 0$ then $\|x\|_{1}^{-1} x \in\left|K^{1}\right|^{\ell}$ by Lemmas 2.2 and 1.1. Since $\|x\|_{1} \leq 1$ by Lemma $2.2, x=\|x\|_{1}\left(\|x\|_{1}^{-1} x\right) \epsilon$
 $\varepsilon>0$, we have $y \in|K|$ with $\|x-y\|_{1}<\varepsilon$, hence $\|x-y\|_{\infty}<\varepsilon$. Choose $n \in \mathbb{N}$ so that $(n+1)^{-1}<\varepsilon$. Since $C_{Y} \in K=I D(K)$ we have $A \in K$ such that $C_{y} \subset A$ and $\operatorname{dim} A \geq n$. Let

$$
z=t y+(1-t) \hat{A} \in|A| \subset|K|
$$

where \hat{A} is the barycenter of $|A|$. Since $\|\hat{A}\|_{\infty} \leq(n+1)^{-1}<\varepsilon$ (see the proof of Proposition 2.1),

$$
\begin{aligned}
\|t x-z\|_{\infty} & =\|t x-t y-(1-t) \hat{A}\|_{\infty} \\
& \leq t \cdot\|x-y\|_{\infty}+(1-t) \cdot\|\hat{A}\|_{\infty} \\
& <t \varepsilon+(1-t)_{\varepsilon}=\varepsilon .
\end{aligned}
$$

Therefore tx $\in{\overline{\mathrm{K}}\rceil^{\mathrm{c}}}^{0}$.
In Lemma 2.6, we should remark that $\left.\left|\bar{K} T^{c_{0}} \neq \mathrm{I} \cdot\right| \overline{\mathrm{K}}\right|^{\ell}{ }^{1}$ as spaces. In fact, for each $n \in \mathbb{N}$, let $A_{n} \in K$ with $\operatorname{dim} A=n$. Then the set $\left\{\hat{A}_{n} \mid n \in N\right\}$ is discrete in $\left.\overline{\{K}\right\}^{\ell} 1$ but has the cluster point 0 in ${\overline{\mathrm{K}}{ }^{\mathrm{C}}}^{0}$.

As general case, we have the following
2.7. Theorem. Let K be a simplicial complex with $\mathrm{ID}(\mathrm{K})=\varnothing$. Then ${\overline{\mathrm{K}}{ }^{\mathrm{C}}}^{0}=\left.|\mathrm{P}(\mathrm{K})| \mathrm{UI} \cdot \overline{\mid \mathrm{ID}(\mathrm{K})}\right|^{\ell} \mathrm{I}$.

Proof. Since $I \cdot \overline{\left.\operatorname{ID}(K)\right|^{\ell} 1}=\overline{|I D(K)|}^{C_{0}} \subset{\overline{\mathrm{~K}}{ }^{\mathrm{c}}}^{0}$ by Lemma
 If $x=0$ then clearly $x \in I \cdot \mid \overline{T D(K) \mid}{ }^{\ell}$. In case $x \neq 0$, if C_{x} is finite and $C_{x} \notin I D(K), C_{x} \in K \backslash I D(K)$ by Lemma 2.2, hence $\operatorname{dim} S t\left(C_{x}\right)<\infty$. The arguments in the proof of Theorem 2.5 lead a contradiction. Thus C_{x} is infinite or $C_{X} \in \operatorname{ID}(K)$. In both cases, clearly $F\left(C_{X}\right) \subset I D(K)$. Then using Lemmas 1.1 and 2.2 as in the proof of Lemma 2.6, we can see $x \in I \cdot|\overline{I D}(K)|^{\ell} 1$. since $|K|=|P(K)| U|I D(K)|$, we have ${\left.\overline{T K}\right|^{c}}^{c} \in|P(K)| U I \cdot \overline{T D}(K)^{\ell}{ }^{\ell}$.

Next we show that Theorem 0.1 does not hold for the c_{0}-completion.
2.8. Lemma. Let x be a dense subspace of a Hausdorff space \tilde{X}. Then any locally compact open subset of X is open in \tilde{X}. Hence for a locally compact set $A \subset X$, int $_{\tilde{X}} A=$ int $_{X} A$.

Proof. Let Y be a locally compact open subset of X and $y \in Y$. We have an open set U in X such that $y \in U \in Y$ and $c l_{Y} U$ is compact. Let \tilde{U} be an open set in \tilde{X} with $U=\tilde{U} \cap X$. Since $c \ell_{Y} U$ is closed in $\tilde{X}, \tilde{U} \backslash c l_{Y} U$ is open in \tilde{X}. Observe that

$$
\left(\tilde{U} \backslash \mathrm{c} \ell_{\mathrm{Y}} \mathrm{U}\right) \quad \mathrm{n} \mathrm{X}=\mathrm{U} \backslash \mathrm{c} \ell_{\mathrm{Y}} \mathrm{U}=\varnothing .
$$

Then $\tilde{U} \backslash c \ell_{Y} U=\varnothing$ because X is dense in \tilde{X}. Hence $\tilde{U} \backslash X=\varnothing$, that is, $\tilde{U}=U$. Therefore Y is open in \tilde{X}.

Let K be a simplicial complex. Then for each $A \in K$,

$$
\text { int } \overline{T K \mid} c_{0}|A|=\text { int }|K|_{m}|A|=|A| \cup\{|B| \mid B \in K, B \notin A\} .
$$

Thereby abbreviating subscripts, we write int|A| and also $\operatorname{bd}|A|=|A|$ int $|A|$. Notice that int $|A| \neq \varnothing$ if and only if A is principal. We define the subcomplex $B P(K)$ of $P(K)$ as follows:

$$
\begin{aligned}
B P(K)= & \{A \in P(K)||A| \subset b d| B \mid \text { for some } \\
& B \in \operatorname{Max}(K)\} .
\end{aligned}
$$

By the following proposition, we can see that Theorem 0.1 does not hold for the c_{0}-completion.
2.8. Proposition. Let K be a simplicial complex. If $\operatorname{dim} P(K)=\infty$ and $\operatorname{dim} B P(K)<\infty$ then $\overline{\mathrm{K}}^{{ }^{C}}{ }^{0}$ is not localzy connected at 0 .

Proof. By Corollary 2.4, |BP(K)| is closed in ${\overline{\mathrm{K}}{ }^{\mathrm{C}}}^{0}$. Put

$$
\delta=d_{\infty}(0,|B P(K)|)>0 .
$$

and let U be a neighborhood of 0 in $\overline{\mathrm{K}}{ }^{C_{0}}$ with daim $U>\delta$. Similarly as the proof of Proposition 2.l, we have a principal simplex $A \in K$ with $\hat{A} \in U . \quad$ Since $b d|A| \subset|B P(K)|$. $U \cap \operatorname{bd}|A|=\varnothing$, hence $U \cap|A|$ is open and closed in U. And $\emptyset \neq U \cap|A| \underset{F}{G} U$ because $\hat{A} \in U \cap|A|$ and $0 \notin U \cap|A|$. Therefore U is disconnected.

Now we prove the first statement of Theorem 0.4.
2.9. Theorem. Let K be a simplicial complex with no principal simplex. Then the c_{0}-completion ${\overline{T K} \bar{T}^{\mathrm{C}_{0}}}$ is an AR.

Proof. (Cf. the proof of Theorem 1.3). Define $\mu: c_{0}\left(V_{K}\right)^{2} \rightarrow c_{0}\left(V_{K}\right)$ exactly as Theorem 1.3 , that is, as follows:

$$
\mu(x, y)(v)=\min \{|x(v)|,|y(v)|\} .
$$

Then for each $(x, y),\left(x^{\prime}, y^{\prime}\right) \in c_{0}\left(V_{K}\right)^{2}$,

$$
\left\|\mu(x, y)-\mu\left(x^{\prime}, y^{\prime}\right)\right\|_{\infty} \leq \max \left\{\left\|x-x^{\prime}\right\|_{\infty},\left\|y-y^{\prime}\right\|_{\infty}\right\},
$$

hence μ is continuous. Here we define an equi-connecting $\operatorname{map} \lambda: c_{0}\left(V_{K}\right)^{2} \times I \rightarrow c_{0}\left(V_{K}\right)$ as follows:

$$
\lambda(x, y, t)= \begin{cases}(1-2 t) x+2 t \mu(x, y) & \text { if } 0 \leq t \leq \frac{1}{2} \\ (2 t-1) y+(2-2 t) \mu(x, y) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

Using Lemmas 1.1 and 2.6 , it is easy to see that
 the ε-neighborhood of z is λ-convex. In fact, let $x, y \in{\left.\bar{K}\right|^{c}}^{c}{ }^{c}$ such that $\|x-z\|_{\infty},\|y-z\|_{\infty}<\varepsilon$. Observe

$$
\begin{aligned}
\|\mu(x, y)-z\|_{\infty} & =\|\mu(x, y)-\mu(z, z)\|_{\infty} \\
& \leq \max \left\{\|x-z\|_{\infty},\left\|_{Y}-z\right\|_{\infty}\right\}<\varepsilon .
\end{aligned}
$$

For $0 \leq t \leq 1 / 2$,

$$
\|\lambda(x, y, t)-z\|_{\infty}=\|(1-2 t) x+2 t \mu(x, y)-z\|_{\infty}
$$

$$
\leq(1-2 t)\|x-z\|_{\infty}+2 t \| \mu(x, y)
$$

$$
-z \|_{\infty}<\varepsilon \text {. }
$$

For $1 / 2 \leq t \leq 1$, similarly $\|\lambda(x, y, t)-z\|_{\infty}<\varepsilon$. By Lemma 1.2, $\overline{\mathrm{K}}^{\mathrm{c}}{ }^{0}$ is an AR.

As corollaries, we have the second statement of Theorem 0.4 and the first half of Theorem 0.5.
2.10. Corollary. Let K be a simplicial complex with $\operatorname{dim} \mathrm{P}(\mathrm{K})<\infty$. Then the c_{0}-completion ${\overline{\mathrm{K}}{ }^{\mathrm{C}}}^{\mathrm{c}}{ }^{0}$ is an ANR. Proof. By Corollary 2.4, $|\mathrm{P}(\mathrm{K})|$ is closed in ${T_{\mathrm{K}}}^{\mathrm{c}}{ }^{0}$.

By Theorem 2.9, $\overline{\operatorname{ID}(\bar{K}) \mid}^{\mathrm{C}} 0$ is an AR. Since $|P(K)|$ and $|P(K)| \cap \overline{|D(K)|}^{C_{0}}=|P(K) \cap I D(K)|$ are ANR's, so is $\overline{T K \mid}^{C_{0}}$ (cf., [Hu]).
2.ll. Corollary. For any simplicial complex K, $\overline{\mathrm{K}}^{\mathrm{C}}{ }^{0}\{0\}$ is an ANR.

Proof. By Theorems 2.5 and $2.7, \overline{\mathrm{~K}}^{\mathrm{C}} 0\{0\}=|\mathrm{P}(\mathrm{K})| \mathrm{U}$ $\left(\overline{I D(K) ~}^{\mathrm{C}} 0,\{0\}\right)$. Then similarly as the above corollary, we have the result.

The following is the second half of Theorem 0.5.
2.12. Theorem. For any simplicial complex K , the inclusion $\mathrm{i}:|\mathrm{K}|_{\mathrm{m}} \subset \overline{\mathrm{K} \mid}^{\mathrm{C}}{ }^{0}\{0\}$ is a homotopy equivalence.

Proof. Since both spaces are ANR's, by the Whitehead I'heorem [Wh], it is sufficient to see that i: $|\mathrm{K}|_{m} \subset \overline{\mathrm{~K}}^{\mathrm{C}} 0 \backslash\{0\}$ is a weak homotopy equivalence, that is, i induces isomorphisms

$$
i_{*}: \pi_{n}\left(|K|_{m}\right) \rightarrow \pi_{n}\left(\overline{K \mid}^{c} 0,\{0\}\right), n \in \mathbb{N} .
$$

Let $f(K)$ be the family of Lemma 1.4. And for each $|L| \in \exists(K)$, let $\phi_{L}:{\left.\overline{T K}\right|^{c}}^{0} \rightarrow$ I be the map defined as Lemma 1.4. (Since V_{L} is finite, the continuity of ϕ_{L} is clear.) Then $\phi_{L}^{-1}(1)=L$. Let

$$
U(L)=\left\{x \in \overline{T K}^{c} 0 \mid c_{x} \cap V_{L} \neq \varnothing\right\}
$$

Then $U(L)$ is an open neighborhood of $|L|$ in $\mid \overline{K T}{ }^{c} 0$. In fact, for each $x \in U(L)$, choose $v \in C_{x} \cap V_{L}$. If $\|x-y\|_{\infty}<x(v)$ then $v \in C_{Y} \cap V_{L}$ because $y(v)>0$, hence $y \in U(L)$. Since $\phi_{L}(x) \neq 0$ for each $x \in U(L)$, we can define a retraction
$r_{L}: U(L) \rightarrow|L|$ similarly as Lemma 1.4. Observe for each $x \in U(L)$ and $t \in I$,

$$
C_{(1-t) x}+t r_{L}(x) \subset C_{x}
$$

Then using Lemma 1.1 and Theorem 2.7, it is easily seen that $(1-t) x+\operatorname{tr}_{L}(x) \in \overline{K T}^{c}{ }^{0}\{\{0\}$. Since

$$
C_{(I-t) x}+t r_{L}(s) \cap V_{L} \neq \varnothing,
$$

it follows that $(1-t) x+\operatorname{tr}_{L}(x) \in U(L)$. Thus we have a deformation $h_{L}: U(L) \times I \rightarrow U(L)$ defined by

$$
h_{L}(x, t)=(1-t) x+t r_{L}(x)
$$

It is easy to see that $T K T^{C}{ }^{0}\{0\}=U\{U(L)| | L \mid \in \mathcal{F}(K)\}$. Now we show that $i_{*}: \pi_{n}\left(|K|_{m}\right) \rightarrow \pi_{n}\left(\overline{K T}^{C_{0}}\{0\}\right)$ is an isomorphism. By s^{n} and B^{n+1}, we denote the unit n-sphere and the unit $(n+1)-$ ball. Let $\alpha: s^{n} \rightarrow|K|_{m}$ and $\beta: B^{n+1} \rightarrow$ $\left.\overline{T K}\right|^{c}{ }^{0}\{0\}$ be maps such that $\beta \mid S^{n}=\alpha$. Note α is nomotopic to a map $\alpha^{\prime}: s^{n} \rightarrow|K|_{m}$ such that $\alpha^{\prime}\left(S^{n}\right) \subset\left|L^{\prime}\right|$ for some $\left|L^{\prime}\right| \in \mathcal{Z}(\mathrm{K})$. By the Homotopy Extension Theorem, α^{\prime} extends to a map $\beta^{\prime}: B^{n+1} \rightarrow T K T^{c} 0\{0\}$. From compactness of $\beta^{\prime}\left(B^{n+1}\right)$, we have an $|L| \in \mathcal{J}(K)$ such that $\left|L^{\prime}\right| \subset|L|$ and $\beta^{\prime}\left(B^{n+1}\right) \subset U(L)$. Then α^{\prime} extends to $r_{L^{\prime}} \beta^{\prime}: B^{n+l} \rightarrow|L| \subset|K|_{m}$. Therefore i_{*} is a monomorphism. Next let $\alpha: s^{n} \rightarrow \overline{K T}^{c}{ }^{0} \backslash\{0\}$ be a map. From compactness of $\alpha\left(S^{n}\right)$, we have an $|I| \in \mathcal{Z}(K)$ such that $\alpha\left(S^{n}\right) \subset U(L)$. Then $r_{L}{ }^{\alpha}: S^{n} \rightarrow|L| \subset|K|_{m}$ is homotopic to α in $U(L)$. This implies that i_{*} is an epimorphism.

3. Completions of the Barycentric Subdivisions

By Sd K, we denote the barycentric subdivision of a simplicial complex K, that is, Sd K is the collection of
non-empty finite sets $\left\{A_{0}, \cdots, A_{n}\right\} \subset K=V_{\text {Sd }}$. such that $A_{0} \varsubsetneqq \cdots \xi A_{n}$. We have the natural homeomorphism
$\theta:|S d K|_{\mathrm{m}} \rightarrow|\mathrm{K}|_{\mathrm{m}}$ defined by

$$
\theta(\xi)(v)=\sum_{v \in A \in K} \frac{\xi(A)}{d i m A+I} .
$$

The inverse $\theta^{-1}:|\mathrm{K}|_{\mathrm{m}} \rightarrow \mid$ Sd $\left.\mathrm{K}\right|_{\mathrm{m}}$ of θ is given by

$$
\theta^{-1}(x)(A)=(\operatorname{dim} A+1) \cdot \max \left\{\min _{v \in A} x(v)-\max _{v \notin A} x(v), 0\right\}
$$

In fact, let $x \in|K|$ and write $C_{x}=\left\{v_{0}, \cdots, v_{n}\right\}$ so
that $x\left(v_{0}\right) \geq \cdots \geq x\left(v_{n}\right)$. For each $v \in V_{K}$,

$$
\left.\theta \theta^{-1}(x)(v)=\sum_{v \in A \in K} \max _{u \in A} \min _{u \in A} x(u)-\max _{u \& A} x(u), 0\right\}
$$

If $v \notin C_{x}$ then $\min _{u \in A} x(u)=0$ for $v \in A \in K$, hence $\theta \theta^{-1}(x)(v)$
$=0$. For $A \in K$, if $A \neq\left\{v_{0}, \ldots, v_{j}\right\}$ for any $j=0, \ldots, n$ then $\min x(u)-\max x(u)=0$. Hence $u \in A \quad u \notin A$

$$
\theta \theta^{-1}(x)\left(v_{i}\right)=\sum_{j=i}^{n-1}\left(x\left(v_{j}\right)-x\left(v_{j+1}\right)\right)+x\left(v_{n}\right)=x\left(v_{i}\right)
$$

Therefore $\theta \theta^{-1}(x)=x$.
Conversely let $\xi \in|S d K|$ and write $C_{\xi}=\left\{A_{0}, \cdots, A_{n}\right\}$
so that $A_{0} \varsubsetneqq \cdots \varsubsetneqq A_{n}$. For each $A \in K$,

$$
\begin{aligned}
\theta^{-1} \theta(\xi)^{\top}(A) & =(\operatorname{dim} A+1) \cdot \max \left\{\min _{v \in A} \theta(\xi)(v)\right. \\
& \left.=\max _{v \notin A} \theta(\xi)(v), 0\right\} .
\end{aligned}
$$

If $A \notin C_{\xi}$ then $A \notin A_{n}$ or $A_{i-1} \not \supset A \varsubsetneqq A_{i}$ for some $i=0, \ldots, n$, where $A_{-1}=\varnothing$. In case $A \notin A_{n}$, we have $v_{0} \in A \cap A_{n}$. If $v_{0} \in B \in K$ then $\xi(B)=0$ because $B \neq A_{i}$ for any $\mathbf{i}=0, \ldots, n$. Therefore

$$
\theta(\xi)\left(v_{0}\right)=\sum_{v_{0} \in B \in K} \frac{\xi(B)}{\operatorname{dim} B+1}=0,
$$

hence $\theta^{-1} \theta(\xi)(A)=0$. Observe if $v \in A_{i} \backslash A_{i-1}$ then

$$
\theta(\xi)(v)=\sum_{v \in B \in K} \frac{\xi(B)}{\operatorname{dim} B+I}=\sum_{j=i}^{n} \frac{\xi\left(A_{j}\right)}{\operatorname{dim} A_{j}+I} .
$$

In case $A_{i-1} \not \supset A \underset{A_{i}}{ }$ for some $i=0, \ldots, n$, we have $v_{1} \in A \backslash A_{i-1}$ and $v_{2} \in A_{i} \backslash A$. Since

$$
\begin{aligned}
\min _{v \in A} \theta(\xi)(v) & \leq \theta(\xi)\left(v_{1}\right)=\sum_{j=i}^{n} \frac{\xi\left(A_{j}\right)}{\operatorname{dim} A_{j}+1} \\
& =\theta(\xi)\left(v_{2}\right) \leq \max _{v \notin A} \theta(\xi)(v), \\
\text { it follows } \theta^{-1} \theta(\xi)(A) & =0 \text {. It is easy to see that } \\
\min _{v \in A_{i}} \theta(\xi)(v) & =\sum_{j=i}^{n} \frac{\xi\left(A_{j}\right)}{\operatorname{dim~} A_{j}+1} \text { and } \\
\max _{v \notin A_{i}} \theta(\xi)(v) & =\sum_{j=i+1}^{n} \frac{\xi\left(A_{j}\right)}{\operatorname{dim} A_{j}+1}
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\theta^{-1} \theta(\xi)\left(A_{i}\right) & =\left(\operatorname{dim} A_{i}+l\right)\left(\sum_{j=i}^{n} \frac{\xi\left(A_{j}\right)}{\operatorname{dim} A_{j}+1}\right. \\
& -\sum_{j=i+1}^{n} \frac{\xi\left(A_{j}\right)}{\operatorname{dim} A_{j}+1} \\
& =\left(\operatorname{dim} A_{i}+1\right) \frac{\xi\left(A_{i}\right)}{\operatorname{dim} A_{i}+I}=\xi\left(A_{i}\right)
\end{aligned}
$$

Therefore $\theta^{-1} \theta(\xi)=\xi$.
3.1. Theorem. For a simplicial complex K , the natural homeomorphism $\theta:|\mathrm{Sd} \mathrm{K}|_{\mathrm{m}} \rightarrow|\mathrm{K}|_{\mathrm{m}}$ induces a homeomorphism

$$
\left.\begin{aligned}
& \text { Proof. For each } \xi, \eta \in \mid \text { Sd } K \mid \\
& \|\theta(\xi)-\theta(\eta)\|_{1}
\end{aligned}=\sum_{V \in V_{K}} \right\rvert\, \sum_{V \in A \in K} \frac{\xi(A)}{\operatorname{dim} A+1}, ~\left(\left.\sum_{V \in A \in K} \frac{\eta(A)}{\operatorname{dim}+1} \right\rvert\,\right.
$$

Then θ is uniformly continuous with respect to the metrics d_{1} on $|S d K|_{m}$ and $|K|_{m}$. Hence θ induces a map
$\bar{\theta}:{\left.\overline{S d K}\right|^{\ell}}^{\ell}{\left.\overline{T K}\right|^{\ell}}^{\ell}$. (However, we should remark that θ^{-1} is not uniformly continuous in case $\operatorname{dim} K=\infty$. In fact, let $A \in K$ be an n-simplex and $B \subset A$ an ($n-1$)-face. Ther for the barycenters $\hat{A} \in|A|$ and $\hat{B} \in|B|$, we have $\|\hat{A}-\hat{B}\|_{1}=$ $2 / \mathrm{n}$ but $\left.\left\|\theta^{-1}(\hat{A})-\theta^{-1}(\hat{B})\right\|_{1}=\|A-B\|_{1}=2.\right)$ since θ is injective, so is $\bar{\theta}$. In order to show that $\bar{\theta}$ is surjective,
 Then C_{X} is infinite. Otherwise $C_{x} \in|K|$ by Lemma 2.2, so $x \in|K|$ because $x(v) \geq 0$ for all $v \in V_{K}$ and $\|x\|_{1}=1$. Recall C_{X} is countable. Then write $C_{x}=\left\{v_{n} \mid n \in \mathbb{N}\right\}$ so that $x\left(v_{1}\right) \geq x\left(v_{2}\right) \geq \cdots>0$. Observe

$$
n \cdot x\left(v_{n+1}\right)+\sum_{i=n+1}^{\infty} x\left(v_{i}\right) \leq \sum_{i=1}^{\infty} x\left(v_{i}\right)=1 .
$$

Moreover $n \cdot x\left(v_{n}\right)$ converges to 0 . If not, we have $\varepsilon>0$ and $l \leq n_{l}<n_{2}<\cdots$ such that $n_{i} x\left(v_{n_{i}}\right)>\varepsilon$ for each $i \in N$. We may assume $\Sigma_{n>n_{l}} x\left(v_{n}\right)<\varepsilon / 2$. Since

$$
\begin{aligned}
\left(n_{i+1}-n_{i}\right) \frac{\varepsilon}{n_{i+1}} & \leq\left(n_{i+1}-n_{i}\right) \cdot x\left(v_{n_{i+1}}\right) \\
& \leq \sum_{n=n_{i}+1}^{n_{i+1}} x\left(v_{n}\right)<\frac{\varepsilon}{2},
\end{aligned}
$$

$$
2\left(n_{i+1}-n_{i}\right)<n_{i+1} \text { hence } n_{i+1}<2 n_{i} \text {. Observe }
$$

$$
\sum_{n=n_{1}}^{n_{i+1}^{-l}} \frac{\varepsilon}{2 n}
$$

$$
=\left(\frac{1}{2 n_{1}}+\cdots+\frac{1}{2\left(2 n_{2}-1\right)}\right) \varepsilon+\cdots+\left(\frac{1}{2 n_{i}}+\cdots+\frac{1}{2\left(n_{i+1}-1\right)}\right) \varepsilon
$$

$$
<\frac{n_{2}-n_{1}}{2 n_{1}} \cdot \varepsilon+\cdots+\frac{n_{i+1}-n_{i}}{2 n_{i}} \cdot \varepsilon
$$

$$
\left\langle\frac{n_{2}-n_{1}}{n_{2}} \cdot \varepsilon+\cdots+\frac{n_{i+1}-n_{i}}{n_{i+1}} \cdot \varepsilon\right.
$$

$$
<\left(n_{2}-n_{1}\right) \cdot x\left(v_{n_{2}}\right)+\cdots+\left(n_{i+1}-n_{i}\right) \cdot x\left(v_{n_{i+1}}\right)
$$

$$
\begin{aligned}
& \leq\left(x\left(v_{n_{1}+1}\right)+\cdots+x\left(v_{n_{2}}\right)\right)+\cdots+\left(x\left(v_{n_{i}+1}\right)\right. \\
& \left.+\cdots+x\left(v_{n_{i+1}}\right)\right) \\
& =\sum_{n=n_{1}+1}^{n_{i+1}} x\left(v_{n}\right)<\frac{\varepsilon}{2} .
\end{aligned}
$$

This contradicts to the fact $\sum_{n=n_{1}}^{\infty} n^{-1}$ is not convergent. For each $n \in \mathbb{N}$, let $A_{n}=\left\{v_{1}, \cdots, v_{n}\right\}$. Define $\xi_{n} \in|S d K|$, $n \in \mathbb{N}$ and $\xi \in \ell_{1}(K)$ as follows:

$$
\xi_{n}(A)= \begin{cases}i\left(x\left(v_{i}\right)-x\left(v_{i+1}\right)\right) & \text { if } A=A_{i}, i \leq n, \\ (n+1) x\left(v_{n+1}\right)+\sum_{i=n+2}^{\infty} x\left(v_{i}\right) & \text { if } A=A_{n+1}, \\ 0 & \text { otherwise },\end{cases}
$$

and

$$
\xi(A)= \begin{cases}n\left(x\left(v_{n}\right)-x\left(v_{n+1}\right)\right) & \text { if } A=A_{n}, n \in N, \\ 0 & \text { otherwise. }\end{cases}
$$

Since $n \cdot x\left(v_{n}\right)$ converges to 0 , we have

$$
\left\|\xi_{n}-\xi\right\|_{1}=2 \sum_{i=n+2}^{\infty} x\left(v_{i}\right) .
$$

Then $\left\|\xi_{\mathrm{n}}-\xi\right\|_{1}$ converges to 0 , that is, ξ_{n} converges to ξ. Hence $\xi \in{\overline{S d K} T^{\ell}}^{\ell}$. It is easy to see that

$$
\theta\left(\xi_{n}\right)(v)= \begin{cases}x\left(v_{i}\right)+\frac{\sum_{n+2}^{\infty} x\left(v_{i}\right)}{n+1} & \text { if } v=v_{i}, i \leq n+1 \\ 0 & \text { otherwise, }\end{cases}
$$

and

$$
\left\|\theta\left(\xi_{n}\right)-x\right\|_{1}=2 \sum_{n+2}^{\infty} x\left(v_{i}\right)
$$

Then $\theta\left(\xi_{n}\right)$ converges to x. This implies $\bar{\theta}(\xi)=x$.
Finally, we see the continuity of θ^{-1}. Let $x \in \mid{\left.\bar{K}\right|^{\ell}}^{\ell}$, $\xi=\theta^{-1}(x) \in{\left.\overline{S d K}\right|^{l}}^{\ell}$ and $\varepsilon>0$. Write $C_{x}=\left\{v_{i} \mid i \in \mathbb{N}\right\}$ so that $x\left(v_{1}\right) \geq x\left(v_{2}\right) \geq \cdots$ Recall $i \cdot x\left(v_{i}\right)$ converges to 0 . We can choose $n \in N$ so that $(n+1) \cdot x\left(v_{n+1}\right)<\varepsilon / 6$,

$$
\begin{aligned}
\sum_{i=n+2}^{\infty} x\left(v_{i}\right) & <\varepsilon / 6 \text { and } x\left(v_{n}\right)>x\left(v_{n+1}\right) . \\
\delta=\min \left\{x\left(v_{i}\right)-x\left(v_{i+1}\right) \mid\right. & x\left(v_{i}\right)>x\left(v_{i+1}\right) \\
& i=1, \cdots, n\}>0 .
\end{aligned}
$$

Let $y \in{\left.\bar{K}\right|^{\ell}}^{\ell}$ with

$$
\|x-y\|_{1}<\min \left\{\frac{\delta}{2}, \frac{\varepsilon}{6 n(n+1)}\right\}
$$

and $n=\bar{\theta}-1(y) \in \overline{S d K}^{l} 1$. Remark that for $1 \leq i<j \leq n+1$, $x\left(v_{i}\right)>x\left(v_{j}\right)$ implies $y\left(v_{i}\right)>y\left(v_{j}\right)$ because

$$
\begin{aligned}
y\left(v_{i}\right)-y\left(v_{j}\right) & >\left(x\left(v_{i}\right)-\frac{\delta}{2}\right)-\left(x\left(v_{j}\right)+\frac{\delta}{2}\right) \\
& =\left(x\left(v_{i}\right)-x\left(v_{j}\right)\right)-\delta>0 .
\end{aligned}
$$

Then, reordering v_{1}, \cdots, v_{n}, we can assume that

$$
y\left(v_{1}\right) \geq y\left(v_{2}\right) \geq \cdots \geq y\left(v_{n}\right)>y\left(v_{n+1}\right)
$$

For each $i \in \mathbb{N}$, let $A_{i}=\left\{v_{1}, \cdots, v_{i}\right\}$. Then $C_{\xi} \subset\left\{A_{i} \mid i \in N\right\}$,

$$
\begin{aligned}
& \xi\left(A_{i}\right)=i \cdot\left(x\left(v_{i}\right)-x\left(v_{i+1}\right)\right) \text { for all } i \in N \text {, and } \\
& \eta\left(A_{i}\right)=i \cdot\left(y\left(v_{i}\right)-y\left(v_{i+1}\right)\right) \text { for } i=1, \cdots, n .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|\xi\left(A_{i}\right)-n\left(A_{i}\right)\right| \\
& =\sum_{i=1}^{n}\left|i \cdot\left(x\left(v_{i}\right)-x\left(v_{i+1}\right)\right)-i \cdot\left(y\left(v_{i}\right)-y\left(v_{i+1}\right)\right)\right| \\
& \leq \sum_{i=1}^{n} i \cdot\left|x\left(v_{i}\right)-y\left(v_{i}\right)\right|+\sum_{i=1}^{n} i \cdot\left|x\left(v_{i+1}\right)-y\left(v_{i+1}\right)\right| \\
& \leq 2\left(\sum_{i=1}^{n} i\right) \cdot\left\|_{x}-y\right\|_{l}=n(n+1) \cdot\left\|_{x}-y\right\|_{1}<\frac{\varepsilon}{6} .
\end{aligned}
$$

Since $i \cdot x\left(v_{i}\right)$ converges to 0 ,

$$
\sum_{i=n+1}^{\infty} \xi\left(A_{i}\right)=(n+1) x\left(v_{n+1}\right)+\sum_{i=n+2}^{\infty} x\left(v_{i}\right)<\frac{\varepsilon}{6}+\frac{\varepsilon}{6}=\frac{\varepsilon}{3} .
$$

Then $\sum_{i=1}^{n} \zeta\left(A_{i}\right)=\|\xi\|_{1}-\sum_{i=n+1}^{\infty} \xi\left(A_{i}\right)>1-\frac{\varepsilon}{3}$, hence

$$
\begin{aligned}
\sum_{i=1}^{n} n\left(A_{i}\right) & \geq \sum_{i=1}^{n} \xi\left(A_{i}\right)-\sum_{i=1}^{n}\left|\xi\left(A_{i}\right)-\eta\left(A_{i}\right)\right| \\
& >\left(1-\frac{\varepsilon}{3}\right)-\frac{\varepsilon}{6}=1-\frac{\varepsilon}{2} .
\end{aligned}
$$

This implies $\left.\Sigma_{A \in K \backslash\left\{A_{1}\right.}, \cdots, A_{n}\right\}^{n(A)}<\frac{\varepsilon}{2}$. Thus we have

$$
\begin{aligned}
& \left\|\theta^{-1}(x)-\theta^{-1}(y)\right\|_{1}=\|\xi-\eta\|_{1} \\
& \leq \sum_{i=1}^{n}\left|\xi\left(A_{i}\right)-n\left(A_{i}\right)\right|+\sum_{i=n+1}^{\infty}\left|\xi\left(A_{i}\right)\right| \\
& +\sum_{A \in K \backslash\left\{A_{1}, \cdots, A_{n}\right\}}|n(A)| \\
& \leq \frac{\varepsilon}{6}+\frac{\varepsilon}{3}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

The proof is completed.

Thus the ℓ_{1}-completion well behaves in the barycentric subdivision of a metric simplicial complex. However the c_{0}-completion does not.
3.2. Proposition. Let K be an infinite-dimension simplicial complex. Then there is no homeomorphism $\mathrm{h}: \mid \overline{\mathrm{Sd} \mathrm{K}}{ }^{\mathrm{C}} 0 \rightarrow{\left.\overline{\mathrm{~K}}\right|^{\mathrm{C}}}^{0}$ extending the natural homeomorphism $\theta:|S d K|_{m} \rightarrow|K|_{m}$.

Proof. Assume there is a homeomorphism h: $\overline{S d ~ K \mid}^{c} 0 \rightarrow$ $|\overline{\mathrm{K}}|^{\mathrm{C}} 0$ such that $\mathrm{h}||\mathrm{Sd} \mathrm{K}|=\theta$. For each simplex $A \in K$, we define $A^{*} \in|S d K|$ by $A^{*}(A)=1$. Note $h\left(A^{*}\right)=\theta\left(A^{*}\right)$ is the barycenter of \hat{A} of $|A|$. For each $n \in \mathbb{N}$, take an n-simplex $A_{n} \in K$. Then as seen in the proof of Proposition 2.1, $h\left(A_{n}^{*}\right)=\hat{A}_{n}$ converges to 0 . However $\left\|A_{n}^{*}-A_{m}^{*}\right\|_{\infty}=1$ for any $n \neq m \in N$. This shows that h^{-1} is not continuous at 0 .

In the above, h^{-1} is not continuous at $x \neq 0$ either. For example, let $A_{0} \in K$ with $\operatorname{dim} \operatorname{St}\left(A_{0}\right)=\infty$ and for each $n \in N$ take an n-simplex $A_{n} \in \operatorname{St}\left(A_{0}\right)$. We define $\xi_{n}=\frac{1}{2} A_{0}^{\star}+$ $\frac{1}{2} A_{n}^{\star} \in|S d K|, n \in \mathbb{N}$. Then $h\left(\xi_{n}\right)=\frac{1}{2} \hat{A}_{0}+\frac{1}{2} \hat{A}_{n}$ converges to $\frac{1}{2} \hat{A}_{0}$ but $\left\|\xi_{n}-\xi_{m}\right\|_{\infty}=\frac{1}{2}$ for any $n \neq m \in \mathbb{N}$. This implies h^{-1} is not continuous at \hat{A}_{0}.

4. The ℓ_{1}-Completion of a Metric Combinatorial ω-Manifold

Let Δ^{∞} be the countable-infinite full simplicial complex, that is, $\Delta^{\infty}=F(N)$. For the ℓ_{1}-completion and the c_{0}-completion of $\left|\Delta^{\infty}\right|_{m}$, we have
4.1. Proposition. The pairs $\left({\overline{\mid \Delta^{\infty}}}^{\ell} 1,\left|\Delta^{\infty}\right|_{\mathrm{m}}\right)$ and ${\overline{\left|\Delta^{\infty}\right|}}^{c_{0}},\left|\Delta^{\infty}\right|_{m}$) are homeomorphic to the pair $\left(l_{2}, l_{2}^{f}\right)$.

Using the result of [CDM], this follows from the following
4.2. Lemma. Let K be a simplicial complex with no principal simplex. Then $\mid \overline{\mathrm{K}}{ }^{\ell} 1$ and $\overline{\mathrm{K} \mid}^{\mathrm{C}} 0$ are nowhere locally compact.

Proof. Because of similarity, we show only the ℓ_{1}-case. Let $x \in{\overline{\mathrm{~K}}{ }^{\ell}}^{\ell}$ and $\varepsilon>0$. It suffices to construct a discrete sequence $\left.x_{n} \in T_{K}\right|^{\ell} 1, n \in N$, so that $\left\|x-x_{n}\right\|_{1}<\varepsilon$. If C_{x} is infinite, write $C_{x}=\left\{v_{n} \mid n \in N\right\}$ so that $x\left(v_{1}\right) \geq$ $x\left(v_{2}\right) \geq \cdots$. If C_{x} is finite, choose a countable-infinite subset V of V_{K} such that $C_{X} \subset V$ and $F(V) \subset K$ and then write $V=\left\{v_{n} \mid n \in N\right\}$ so that $x\left(v_{1}\right) \geq x\left(v_{2}\right) \geq \cdots$. (Such a V exists because K has no principal simplex.) Note that $x\left(v_{1}\right)>0$ and $x\left(v_{n}\right) \leq n^{-1}$ for each $n \in N$. Put

$$
\delta=\min \left\{\frac{\varepsilon}{3}, x\left(v_{1}\right), \frac{1}{2}\right\}>0 .
$$

$$
x_{n}(v)= \begin{cases}x\left(v_{1}\right)-\delta & \text { if } v=v_{1}, \\ x\left(v_{n+1}\right)+\delta & \text { if } v=v_{n+1} \\ x(v) & \text { otherwise. }\end{cases}
$$

Then clearly $\left\|x-x_{n}\right\|_{l}=2 \delta<\varepsilon$ for each $n \in N$ and $\left\|x_{n}-x_{m}\right\|_{l}=2 \delta$ if $n \neq m$.

The second half of Conjecture 0.8 (i.e., Corollary $0.9)$ is a direct consequence of Theorem 1.5 and the following
4.3. Proposition. Let M be an $\mathrm{l}_{2}^{\mathrm{f}}$-manifold which is contained in a metrizable space \tilde{M}. If for each open cover U of \tilde{M} there is a map $\mathrm{f}: \tilde{\mathrm{M}} \rightarrow \mathrm{M}$ which is U-near to id, then M is an $\mathrm{f}-\mathrm{d}$ cap set for $\tilde{\mathrm{M}}$.

Proof. By [Sa ${ }_{3}$, Lemma 2], M has a strongly universal tower $\left\{X_{n}\right\}_{n \in N}$ for finite-dimensional compact such that $M=U_{n \in N} X_{n}$ and each X_{n} is a finite-dimensional compact strong Z-set in M. From the condition, it is easy to see that each X_{n} is a strong Z-set in \tilde{M}. Let U be an open cover of \tilde{M} and Z a finite-dimensional compact set in \tilde{M}. Since M is an ANR, M has an open cover V such that any two V-near maps from an arbitrary space to M are U-homotopic [Hu, Ch. IV, Theorem l.l]. For each $V \in V$, choose an open set $\tilde{\mathrm{V}}$ of \tilde{M} so that $\tilde{\mathrm{V}} \cap \mathrm{M}=\mathrm{V}$ and define an open cover \tilde{V} of \tilde{M} by

$$
\tilde{V}=\left\{\tilde{v} \mid V \in V, V \cap x_{n} \neq \varnothing\right\} \cup\left\{\tilde{M} \cdot x_{n}\right\}
$$

Let W be an open cover of \tilde{M} which refines U and \tilde{V}. From the condition, there is a map $f: \tilde{M} \rightarrow M$ which is W-near to id. Observe that $f \mid Z \cap X_{n}: Z \cap X_{n} \rightarrow M$ and the inclusion $Z \cap X_{n} \subset M$ are V-near, hence U-homotopic. By the Homotopy Extension Theorem [Hu, Ch. IV, Theorem 2.2 and its proof], we have a map $g: Z \rightarrow M$ such that $g \mid A \cap X_{n}=i d$ and g is

U-homotopic to $\mathrm{f} \mid \mathrm{Z}$. From the strong universality of the tower $\left\{X_{n}\right\}_{n \in \mathbb{N}}$, we have an embedding $h: Z \rightarrow X_{m}$ of Z into some X_{m} such that $h\left|Z \cap X_{n}=g\right| Z \cap X_{n}=i d$ and h is U-near to g, hence st U-near to id.
4.4. Remark. In connection with Conjecture 0.8 and our results, one might conjecture more generally that a completion \tilde{M} of an ℓ_{2}^{f}-manifold M is an ℓ_{2}-manifold if the inclusion $M \subset \tilde{M}$ is a fine homotopy equivalence. However this conjecture is false. In fact, let \tilde{M} be a complete ANR such that $\tilde{M} \backslash A$ is ℓ_{2} manifold for some $Z-s e t A$ in \tilde{M} but \tilde{M} is not an ℓ_{2}-manifold. Such an example is constructed in [BBMW]. And let M be an $f-d$ cap set for $M A$. Then M is also an fid cap set for M by the same arguments in Proposition 4.4. Using $\left[\mathrm{Sa}_{3}\right.$, Lemma 5], it is easily seen that the inclusion $M \subset \tilde{M}$ is a fine homotopy equivalence. And M is an ℓ_{2}^{f}-manifold by $\left[\mathrm{Ch}_{2}\right.$, Theorem 2.15].

Addendum: Recently, Conjecture 0.8 has been proved in $\left[\mathrm{Sa}_{5}\right]$. In fact, it is proved that $\overline{\mathrm{K}}^{\ell} 1$ is an ℓ_{2}-manifold if and only if K is a combinatorial m-manifold.

References

[BBMW] M. Bestvina, P. Bowers, J. Mogilski and J. Walsh, Characterization of Hilbert space manifold revisited, Topology Appl. 24 (1986), 53-69.
[Ch ${ }_{1}$] T^{A}. Chapman, Infinite deficiency in Fréchet manifolds, Trans. Amer. Math. Soc. 148 (1970), 137-146.
$\left[\mathrm{Ch}_{2}\right]$ ___ Dense sigma-compact subsets of infinitedimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399-425.
[CDM] D. Curtis, T. Dobrowalski and J. Mogilski, Some applications of the topological characterizations of the sigma-compact spaces ℓ_{f}^{2} and Σ, Trans. Amer. Math. Soc. 284 (1984), 837-846.
[Du] J. Dugundji, Locally equiconnected spaces and absolute neighborhood retracts, Fund. Math. 57 (1965), 187-193.
[Hu] S.-T. Hu, Theory of retracts, Wayne State Univ. Press, Detroit, 1965.
[Sa ${ }_{1}$] K. Sakai, Fine homotopy equivalences of simplicial complexes, Bull. Polish Acad. Sci. 34 (1986), 89-97.
$\left[\mathrm{Sa}_{2}\right]$ \qquad , Combinatorial infinite-dimensional manifolds and $\mathrm{R}^{(1)}$-manifolds, Topology Appl. 26 (1987), in press.
$\left[\mathrm{Sa}_{3}\right]$ \qquad , On topologies of triangulated infinitedimensional manifolds, J. Math. Soc. Japan 39 (1987), in press.
[Sa ${ }_{4}$] , Simplicial complexes triangulating infinitedimensional manifolds, (preprint).
$\left[\mathrm{Sa}_{5}\right\rfloor$, The ℓ_{1}-completion of a metric combinatorial
$\infty-m a n i f o l d$, Proc. Amer. Math. Soc. (to appear).
[Wh] J. H. C. Whitehead, Combinatorial homotopy I, Bull. Amer. Math. Soc. 55 (1949), 213-245.

Institute of Mathematics
University of Tsukuba
Sakura-mura, Ibaraki, 305 JAPAN (Current Address)
and
Louisiana State University
Baton Rouge, Louisiana 70803

