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COMPLETIONS OF METRIC SIMPLICIAL
COMPLEXES BY USING ¢,-NORMS

Katsuro Sakai

0. Introduction

Let K be a simplicial complex. Here we consider X
as an abstract one, that is, a collection of non-empty
finite ;ubsets of the set Vi of its vertices such that

{v} € K for all v ¢ V, and if § # A « B € K then A € K.

K
Then a simplex of K is a non-empty finite set of vertices.
The realization |K| of K is the set of all functions

X: V, » I such that Cx

{v e vglx(v) # 0} € K and

T x(v) = 1. There is a metric d, on |K| defined by

d; (x,y) = ZVEVKIX(V) - y(v)

Then the metric space (|K|,dl) is a metric subspace the

Banach space ll(VK) which consists all real-valued functions

x: V> R such that zvev |x(v)]| <« =, where ﬂle = I [x(v)|

K vEVK

is the norm of x ¢ gl(v ). +“he topology induced by the

K

metric 4, is the metrie topology of |K| and the space |K]|

with this topology is denoted b K| . The completion of
¥ m

the metric space (]K[,dl) is the closure cggl(VK)]K[ of [K]
in kl(V ). We will call this the El—completion of lKlm and

£
denoted b K l. It is well known that [K is an ANR
Y m

K

(e.g., see [Hu]). In Section 1, we prove that the

Kl—completion preserves this property, that is,
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0.1. Theorem. For any simplicial complex K, the

L L

L -completion |K 1 s an aNR and the inclusion |K|m c TK] 1

is a fine homotopy equivalence.

Here a map f: X + Y is a fine homotopy equivalence if for
each open cover { of Y there is a map g: Y - X called a
U-inverse of £ such that fg is (~homotopic to idY and gf
is f_l(U)—homotopic to idy.

By F(V), we denote the collection of all non-empty
finite subsets of V. Then F(V) is a simplicial complex
with V the set of vertices, Such a simplicial complex is
called a full simplicial complex. From the following known
result, our theorem makes sense in case K contains an

infinite full simplicial complex.

0.2. Proposition. For a simplicial complex K, the
following are equivalent:

(1) IKIm 18 completely metrizable;

(ii) K contains no infinite full simplicial complex;

)
(iii) (IK[,d;) is complete (i.e., (k| = TK 1.

For the proof, refer to [Hu, Ch. III, Lemma 11.5], where
only the equivalence between (i) and (ii) are mentioned but
the implications (i) = (ii) = (iii) are proved (the impli-
cation (iii) = (i) is trivial).

We can also consider IKIm as a topological subspace

of the Banach space QP(VK) for any p > 1, where

VK
Qp(VK) = {x ¢ R*|}

P ¢ o
vevle(V)I < =l

and the norm of x € RP(VK) is
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1
Ixl, = x(v) |2 17P,

( |
veVK
Let dp be the metric defined by the norm H-Hp. Then the

completion of the metric space (|K|,dp) is cJL2 (v )IKI and
p K

2 2
denoted by |K P, We will call TRT P the Qp-completion of
|k| - And also |K|_can be considered as a topological

subspace of the Banach space m(V which consists all

k)
bounded real-valued functions x: VK + R with the norm

Ixl, = sup{|x(v)||v € VK}. Let ¢, (V,) be the closed linear

0

subspace of all those x in m(VK) such that for each ¢ > 0,

{v e VK||x(v)| > e} is finite. Then lKlm < ¢y (Vp).  Let

d, be the metric defined by the norm l-:l_. The completion

of the metric space (|K|,d ) is clm(VK)|K| = cho(v )|K|

o o
and denoted by |K . We will call |K the cO-compZetion
if IKlm. However the metrics d2,d3,"°,doo on |K| are

uniformly equivalent, In fact, for each x,y € |K|,

ayGuy) = Ix =yl = ey ) =y 32
< (sup |x(v) =y | - Tey [x(v) =y Y2
VEVK K

/2

1A

1
(Ix =yl * (Quey (V) + Iy y(V)))
K K
= (2« d(x,y)) 12
and since =i, > lelg > ==« > I,

dy(x,y) 2 dy(x,y) 2 ++- 2 d (x,y).

Therefore the Qp-completions of [K[m, p > 1, are the same

. . % c
as the c,-completion, that is, |K P-1x 0 for p > 1.

0

For the co—completion, Section 2 is devoted. 1In

relation to Proposition 0.2, the following is shown.
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0.3. Proposition. For a simplicial complex K, the
metric space (|K|,d]) is complete if and only if K is

finite-dimensional.

From Propositions 0.2 and 0.3, it follows that

L [
K 1 # |K 0 for an infinite-dimensional simplicial com-

plex K which contains no infinite full simplicial complex.

c
And it is also seen that in general, |[K 0 is not an ANR,

actually not locally connected (2.8). This is related to the

existence of arbitrarily high dimensional principal

C
simplexes and the fact that |K 0 contains 0 € c,(

o Ky -

In Section 2, we have the following

0.4. Theorem. Let K be a simplicial complex. If K

c
has no prinicpal simplex than |K 0 ;s an AR, in particular,

contractible. And if all principal simplexes of K have

c
bounded dimension then [K 0 18 an ANR.

c
0.5. Theorem. For any simplicial complex K, [K 0\{0}

c
28 an ANR and the inclusion |K| c [K 0\{0} ts a homotopy

equivalence.

By 8d K, we denote the barycentric subdivision of a
simplicial complex K. Let 6: |Sd K| + |K| be the natural
bijection. As well known, 6: |&d K|m -> |K|m is a homeo-
morphism. For the 21— and co—completions of the barycentric

subdivision, we have the following result in Section 3.



TOPOLOGY PROCEEDINGS vVolume 11 1986 181

0.6. Theorem. For any infinite-dimensional simplicial

eomplex K, the natural homeomorphism g: |Sd K[m + |K|

2 2
extends to a homeomorphism §: [S8d K L, |K| L but cannot

m

c c
extend to any homeomorphism h: |[Sd K 0, TRT 0.

Let 25 be the dense linear subspace of the Hilbert
space &, = QZ(N) consisting of {x € %,|x(i) = 0 except for
finitely many i € N}. A Hilbert (space) manifold is a
separable manifold modeled on the Hilbert space 2, and

simply called an &, -manifold. A separable manifold modeled

2

on the space 25 is called an Qg-manifold. An Qg-manifold M

is characterized as a dense subset of some 22-manifold M with

~

the finite-dimensional compact absorption property, so-called

an f-d cap set for M (see [Ch2]). In [Sa the author

3’4],
has proved that a simplicial complex K is a combinatorial
o—manifold if and only if |K|m is an Qg—manifold. Here a
combinatorial w=-manifold is a countable simplicial complex

such that the star of each vertex is combinatorially

equivalent to the countably infinite full simplicial complex

A” = F(N), that is, they have simplicially isomorphic sub-
divisions [Saz]. In Section 4, using the result of [CDM],
we see

0.7. Proposition. The pair (|A”| ,[Aw|m) is homeo-

morphic to the pair (22,25).

Thus we conjecture as follows:
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0.8. Conjecture. For a combinatorial w-manifold X,
2
. 1 . . .
the zl—completzon [K 18 an zz—manzfold and ]K]m 8 an

2
f-d cap set for K| L

Similarly as the zl-completion of lAwlm' we can prove

C

that (|Aw| ,|Am[m) is homeomorphic to the pair (zz,zg) but

the same conjecture as 0.8 does not hold for the c¢,-comple-

0

tion. In fact, let K be a non-contractible combinatorial

c
o—manifold. Then |K 0\{0} is not homotopically equivalent

c
to IK 0 by Theorems 0.4 and 0.5, hence the one-point set

c c
{0} is not a Z-set in |K 0. Therefore |K 0 is not an
zz—manifold (cf. [Chl]).
The second half of Conjecture 0.8 is proved in Section

4 as a corollary of the second half of Theorem 0.1.

0.9. Corollary. For a combinatorial «-manifold K,

£
K 18 an f-d cap set for the {,-completion |K l.
n p p

1

1. The #;-Completion of a Metric Complex
Recall F(V) is the all of non-empty finite subsets
of V, namely, the full simplicial complex with V the set
of vertices. For each real-valued function x: V - R, we
denote
C, = {v € V|x(v) # 0}.

If x € co(V) then CX is countable. The set of vertices of

a simplicial complex K is always denoted by VK.



TOPOLOGY PROCEEDINGS Volume 11 1986 183

1.1. Lemma. Let K be a simplicial complex and

L
X € zl(VK). Then x ¢ |K 1 if and only 1f x(v) >0 for all

v gV Hx"l = Zvec x(v) =1 and F(Cx) < K.

K)
X
Proof., First we see the "only if" part. For each

Vo€ Vg, let v*: g (V) - R be defined by v*(x) = x(v).

K’
Then clearly v* is continuous, so X ¢ [K| 1 implies

x(v) = v*(x}) > 0. And Hxﬂl = 1 follows from the continuity

of the norm M-Ml. Let A € F(Cx) and choose ¢ > 0 so that

x(v) > ¢ for all v € A. Since x € TKTZl, we have vy € |K|
with fx - yHl < g. Then y(v) > x(v) - |x (v} = y(v)| >
x(v) = ¢ > 0 for all v € A, that is, A c Cy. This implies
A € K because Cy € K.

Next we see the "if" part. In case Cy is finite

obviously x € |K

. In case C/ is infinite, for any ¢ > 0

choose A € F(Cx) so that

Njm
B

ZVEVK\AX(V) = lxl; - zveAx(v) <

Let V0 € A and put o = % x(v). Then x(vo) + q € I.

VEVK\A

We define y € |K| as follows:

x(vO) + g if v=uyv

OI
y{v) = 4x(v) if v € A\{VO},
0 otherwise.

2

Then clearly lx - yIIl = 234 < g¢. Therefore x € |K l.

To prove the first half of Theorem 0.1, we use a
local equi-connecting map. A space X is locally equi-
connected (LEC) provided there are a neighborhood U of the

diagonal AX in X2 and a map A: U x I » X called a (local)
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equi-connecting map such that
A(x,y,0) = x, A(x,y,1l) =y for all (x,y) € U,
Al{x,x,t) = x for all x€ X, t € I.

Then a subset A of X is A-convex if A2 < U and A(A2 x I) < A.

The following is well known.

1.2. Lemma [Dul. If a metrizable space X has a local
equi-connecting map A such that each point of X has arbi-

trarily small A-convex neighborhoods then X s an ANR.

2

Moreover if A is defined on X° x I them X Zs an AR.

Now we prove the first half of Theorem 0.1.

1.3. Theorem. For a simplicial complex K, the
21
Ql-completion K is an ANR.

Proof. Let u: Zl(VK)2

wix,y) (v) = min{|x(v)|,|y(v)]|}.

> Zl(VK) be defined by

Then u is continuous. In fact, for each (x,y),(x',y') €

ll(VK)2 and for each v € V

K’
Imin{|x(v) |,y (v) |} = min{|x* (v} |,|y' (v)|}]
<max{||x(v)| - [x" (. lyo) | = |y o) ||}
< max{|x(v) - x'(v) |, yv) -y (v)|}

|x(v) = x" ()| + |y(v) = y'(v) |,

A

hence we have
lu(x,y) - u(x',y')lll < lIx - x'Hl + by - y'Hl.
And note that u(x,y) = 0 if and only if x(v) = 0 or y(v) =0
for each v € V., which implies lx - yHl = Hx"l + Hy"l.
Then Ix - yHl < Hx"l + HyHl implies k(x,y) # 0. And observe

- .2
Chix,y) = Cx N Cy for each (x,y) € %, (Vp)". Let
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___11

U= {(x,y) € [K| 7| Ix -yl < 2}.

£
Then U is an open neighborhood of the diagonal A|K| L in

£
(K l)2. For each (x,y) € U, u(xX,y) # 0 by the preceding

observation. And it is easily seen that
oY) ¢ Trre A |
X, TI'E‘—X'—'Y-—‘H'— € F(C )T c K and
Hx,y) Iy X
y, &) ¢ TR L e TRT -
SE2AN y ’

2 3
. 1 1
Since F(CX) and F(Cy) are convex getsin zl(VK), we
have

2
_ teul(x,y) _ tep(x,y) 1
(1-t)x + u(X,y)Tq’ (1-t)y + T, G,y N € K

for any t € I.

Thus we can define a local equi-connecting map A: U x I =

4
K as follows

_ 2ty (x,y) . 1
(1-2t)x + oY) N if 0 <t < 5
/\(XIYIt) = )
- (2-2t) u(x,y) e 1
(2t-1)y + (%, Y) 1 if 7 < t < 1.

2

Now we show that each point of K] 1 has arbitrarily

£
small A~convex neighborhoods. Let z € ]K 1 and ¢ > 0.

1

(v) > 1 - 277¢ and select

0 < al(v) < z(v) for all v € A so that znga(v) > 1 - 2_15.

Choose an A € F(Cz) so that zngz
Let
4y
W= {xX € ]K |x(v) > og(v) for all v € A}.

2
Then W is an open neighborhood of z in [K]| l. For each

X,y € W,
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Ix = vyl < zveAlx(v) -y | o+ zveVK\Ax(V)
+ ZVEVK\AY v)
< ZVEA(X(V) = alv)) + ZVEA(Y(V) - alv)

+ 1 - ZveAx(v) + 1 - zveAy(V)

2 - 2 ZVEAG(V) < Ee
Therefore diam W < €. To see that W is )=-convex, let

(x,y,t) € w2 x I and v ¢ A. Note "u(X,Y)”l <1l. Ift<l/2,
2temin{x(v),y(v)}

MEAN

It

A(x,y,t) (V) (1-2t)x(v) +

(1-2t) emin{x(v) ,y(v)}

{v

+

2temin{x{(v),y(v)}

min{x(v),y(v)} > a(v).
If t > 1/2, similarly x(x,y,t) (v) > a(v). Then x(x,y,t) € W.

Therefore W is )-convex. The result follows from Lemma 1.2.

To prove the second half of Theorem 0.1, we use a
SAP-family introduced in [Sal]. Let 7 be a family of closed
sets in a space X. We call 7 a SAP-family for X if 7 is
directed, that is, for each Fl,F2 € 7 there is an F € ¥
with F,NF, eF, and J has the simplex absorption property,
that is, for each map f: |An| - X of any n-simplex such that
f(a]An|) < F for some F € F and for each open cover (/ of X
there exists a map g: [An] + X such that g(lAnI) < F for
some F € 7, g]]An] = f[a[An[ and g is (/~near to f. Let L
be a subcomplex of a simplicial complex K. We say that L
is full inm K if any simplex of K with vertices of L belongs
to L. For a subcomplex L of K, we always consider |L| c |K|,
that is, x € |L| is a function x: vy > I but is considered
a function x: Vg > 1 with x(VK\VL) = 0.
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1.4. Lemma (cf. [Sal, Lemma 3]). Let K be a simplicial
complex. Then the family
F(K) = {|L| |L is a finite subcomplex of K which

is full in K}
jLl
ts a SAP-family for |K .

Proof. It is clear that #(K) is a direct family of

%
closed (compact) set in |K l. Let ]L| € F(K) and define a

2
map ¢L: KT L - I by

oL (x) = zvEV x(v).

L
-1 s _ _
Then ¢, (1) = |L|. 1In fact, if x € |L| then ¢ (x) = Ixl, =
Conversely if ¢L(x) = 1 then C, eV, and Cx € K by Lemma 1.1.
Since L is full in K, CX € L, which implies x € |L|. Let

2
(|L|,2) be the 2-neighborhood of |L| in TXT l, that is,

2
(JL|,2) = (x € TR[ * | d(x,|L)) < 2}.

Then ¢L(x) # 0 for all x € N(|L|,2) because if ¢L(x) =0
then x(v) = 0 for all v € VL’ hence for any y € |L]|,
Ix -yl = ZVeVle(v) - y(v)|
= Z x(v) + Z y(v) = 2.
VEVK VEVK
We define a retraction rp: N(C|L;,2) - |L| (= |K]|) by
x(v) .
r x)(v) =
0 otherwise.

Then for each x € N(|L}|,2},

% (v}

Lvev oGy — x 1 + 1

HrL(x) - le = X (v)

VEVK\VL

1
(7= = 1) 7 x(v) + 1 - ¢_(x)
¢L(x) vEVL L
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_ 1
= ($£T§T - l)¢L(X) + 1 - ¢L(X)

It

2 - 2¢L(x).
On the other hand 1 - ¢L(x) < dl(x,]L[) since for any
y € |L|,

Ix = yl; = zvev [x(v) = y(v)]
K

= zvevK\va(V) * zvevLIX(V) -y
> 1 - zveva(v)
=1 - ¢L(x).

Therefore we have
dy(r;(x),x) < 24, (x,|L]|) for each x € N(|L[,2).

2

. . . . 1

By Lemma 2 in [Sal], F(K) is a SAP-family in [K .
Now we prove the second half of Theorem 0.1.

1.5. Theorem. For a simplicial complex K, the inclu-
*1
ston 1i: |K]m c [K 18 a fine homotopy equivalence.
Proof. By |K|,, we denote the space |K| with the weak
(or Whitehead) topology. Then the identity of |K| induces

a fine homotopy equivalence j: |[K|_ - |K|rn [Sa Theorem 1].

ll
By the same arguments in the proof of [Sal, Theorem 1] using
2
1

w

the above lemma instead of [Sa,, Lemma 3], ij: |K|w + [K

l’
is also a fine homotopy equivalence. Then the result follows

from the following lemma.

1.6. Lemma. Let f: X » Y and g: Y ~ Z be maps. If

f and gf are fine homotopy equivalences then so 1s g.
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Proof. Let { be an open cover of 2. Then gf has a

(-inverse h: Z + X. Let V be an open cover of Y which

1

refines both g-l(U) and g—lh_ f_lg_l(U). Then f has a

V-inverse k: Y » X. Since hgf is f_lg_l(U)—homotopic to
fhgfk is g~l(U)—homotopic to fk which is g-l(U)—homo—

lh_lf_lg-l(U)—homotopic to

idX'
topic to id,. Since fk is g
id,, fhgfk is g1 (U) -homotopic to fhg. Hence fhg is

st g_l(U)—homotopic to idy. Recall gfn is (~homotopic to idz.

Therefore g is a fine homotopy equivalence.

2. The cy-Completion of a Metric Complex

As seen in Introduction, for any p > 1, the Qp-comple-
tion of a metric simplicial complex is the same as the
co—completion. In this section, we clarify the difference

between the Ql—completion and the c,-completion. The

0
"only if" part of Proposition 0.3 is contained in the

following

2.1. Proposition., Let K be a simplicial complex.
€o
Then K is infinite-dimensional if and only if 0 € [K[] .
Proof. To see the "if" part, let n € N. From

c
0 € TRT 9, we have x € |K| with lIxl_ < n 1. Then C, €K

and dim Cx > n because

_ . -1, ..
1= zvecxx(v) < Ixl_(dim c, + 1) < n ~(dim C, + 1).

Therefore K is infinite-dimensional.
To see the "only if" part, let € > 0 and choose n € |
so that (n+l)_l < €, Since K is infinite-~dimensional, we

have A € K with dim A = n. Let A be the barycenter of |a|,

that 1is,
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R m+1) "t if v € a,
A(v) =
0 otherwise.
A -1 o
Then lal_ = (n+1) < g. Hence 0 € [K .
2.2. Lemma. Let K be a simplicial complex and
€0
X € |K . Then x(v) > 0 for all v € VK’ "le =
Zvecxx(v) < 1 and F(CX) c K.

Proof. The first and the last conditions can be seen
similarly as the "only if" part of Lemma 1.1. To see the

second condition, assume 1 < Zv x(v) < ., Then there are

€C, i
n . 0
VstttV € CX such that Zi=lx(vi) > 1., Since x € [K ,
we have y € |K| with
-1, ¢n
Ix =yl <n (§i=lx(vi) - 1.
Then it follows that

Z?zly(vi) Z?=lx(vi) - Z?zllx(vi) - y(vi)l

v

> Z?zlx(vi) - nelx - yl_ > 1.

This is contrary to y € |K|. Therefore Zve x(v) < 1.

CX

Now we prove the "if" part of Proposition 0.3, that is,

2.3. Proposition. Let K be a finite-dimensional

c
simplicial complex., Then [K 0 - |K|, that is, (|K|,d)

is complete.

Proof. Let dim K = n and x € TKTCO. By Proposition
2.1, x # 0, that is, CX # ¢. And CX is finite, otherwise K
contains an (n+l)-simplex by Lemma 2.2. Therefore CX € K
by Lemma 2.2. For any € > 0, we have y € [K| with

Ix -yl < 2_l(n+l)_le. Note CX U Cy contains at most
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2(n+l) vertices. Then it follows that

|ZVECXX(V) -1l = IZVEVKX(V) - ZVEVKY(V)|

A

ZVEVK|X(V) - y(v)|

= x(v) - y(v)
zVECXUCY| I

| A

2(n+l)elix -yl < €.

Therefore Hx”l = ZVEC x(v) = 1. By Lemma 2.2, x(v) > 0

X

for all v € Vg Hence x € |K

Thus Proposition 0.3 is obtained. As a corollary, we

have the following

2.4. Corollary. Let L be a finite-dimensional sub-

complex of a simplicial complex K. Then |L| is closed in
K 0.

Before proving Theorems 0.4 and 0.5, we decide the
difference between the Zl—completion and the co—completion
as sets. Let K be a simplicial complex and let A € K. The
star St(A) of A is the subcomplex defined by

St(a) = {B € K|A,B « C for some C € K}.
We say that A is principal if A ¢ B for any B € K~{A}, that
is, A is maximal With respect to =. By Max{(K), we denote
all of principal simplexes of K. We define the subcom-

plexes ID(K) and P(K) of K as follows:

ID(K) = {A € K|dim St(a) = =},
P(K) = {A € K|A < B for some B € Max(K)}.
Then clearly K = P(K) U ID(K). Observe ID(K) = K if and

only if P(K) = @, however P(K) = K does not imply ID(K) = ¢
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(the converse implication obviously holds). For example,

let
Kl = F({0,1}), K2 = F({0,2,3}),
K3 = F({OI41516})I"'
and let K = UnENKn' Then P(K) = K but dim St({0}) = o,

In general, for any A,B ¢ K, St(A) < St(B) if and only if
B ¢ A. Then ID(K) = @ if and only if dim St({v}) < «

for each v € v that is, K is locally finite-dimensional.

Kl
2.5. Theorem. Let K be an infinite-dimensional and

locally finite-dimensional simplicial complex, namely

[o]
ID(K) = @, then JRT © = |K| u {0}.
Cc

Proof. By Proposition 2.1, |K| v {0} c [K 0. Let

c
x € [K 0\|K|. Assume X # 0, that is, Cx # @g. From
IC(K) = @, K has no infinite full simplicial complex. Then

C, is finite because F(Cx) < K by Lemma 2.2. This implies

Cx € K. Put dim st(Cx) = n. From x £ |K|, it follows
Zvecxx(v) < 1. Let
s = min{(n+1) "L = [ o x(M), min x(»)} > o.
X

vec
X
1f Ix - yl_ < & then y(v) > 0 for all v € C,, that is,
C_ < C . From dim St(C_ ) = n, we have dim C_ < n. Hence
X Y X y —
zv€C y(v) §-2V€C x(v) + zv€C |x(v) - y(v)|
Y Y Y

| A

zvecxx(v) + (dim Cy + 1) elx -yl

A

szC x(v) + (n + 1)6
X

A

Yyec X(V) + (1 -} o x(v)) = 1.
X X
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This is contrary to y € |K|. Therefore x = 0.

2.6. Lemma. Let K be a simplicial complex with no

principal simplex, namely ID(K) = K. Then
—0 4 b1
K| = I.|K = {tx|x € [K , t € I}.
c

Proof. Let x € [K| O, 1f x = 0 then clearly

2 _ 2
x ¢ I-TR] *. If x # 0 then Hlelx € [K 1 by Lemmas 2.2

and 1.1. Since “x"l < 1 by Lemma 2.2, x = Hx“l(ﬂxﬂzlx) €

L L
I.K l. Conversely let x € [K l,and t € I. For any

e > 0, we have y € |K| with Ix - yIIl < ¢, hence lIx - vl < e.

Choose n € N so that (r1+l)—l < ¢. Since Cy € K = ID(K)

we have A € K such that Cy c A and dim A > n. Let

2=ty + (1-t)a € [Aa] = |k]|,

-1

where A is the barycenter of |A|. Since IIAIIoo < (n+1) < €

(see the proof of Proposition 2.1),
ltx - z||oo = ltx - ty - (l—t)AHw
< telx =yl + (1-t) -WAb_

< te + (1-t)e = g.

c
Therefore tx € [K 0.

c 3
In Lemma 2.6, we should remark that |K 0 # Ie|K 1
as spaces. In fact, for each n € [§, let An € K with

~ R
. _ L . 1
dim A = n. Then the set {An|n € N} is discrete in [K[

c
but has the cluster point 0 in [K 0.

As general case, we have the following

2.7. Theorem. Let K be a simplicial complex with

o 1
ID(K) = g. Then JK[] ° = |P(K)| U I-TID(K) .
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21 h <
= |[ID{(K)] ~ < |K by Lemma

£ C o]
2.5, we have |P(K)| y I.TID(K)] 1 c [K 0. Let x € [K O\IK].

2
If x = 0 then clearly x € I. ID(K)[ l. In case x # 0, if

Proof. Since I.|ID(K) |

CX is finite and CX £ ID(K), CX € K~NID(K) by Lemma 2.2,
hence dim St(CX) < «, The arguments in the proof of
Theorem 2.5 lead a contradiction. Thus CX is infinite or

CX € ID(K). 1In both cases, clearly F(CX) < ID(K). Then

using Lemmas 1.1 and 2.2 as in the proof of Lemma 2.6, we can see
2l
x € I+-]ID(K) . Since |K| = |[P(K)| U [ID(K)|, we have

C

2
TRT % < [p(x)| v I-TIDGRIT .

Next we show that Theorem 0.1 does not hold for the

co—completion.

2.8. Lemma. Let X be a dense subspace of a Hausdorff

space X. Then any locally compact open subset of X is open

in X. Hence for a locally compact set A c X, intiA = intxA.
Proof. Let Y be a locally compact open subset of X
and y € Y. We have an open set U in X such that y ¢ U c Y

and ciyU is compact. Let U be an open set in X with
U=Un X. Since CQYU is closed in X, U\CQYU is open in X.
Observe that

(U\CJLYU) nx = U\C,Q,YU =g.

Then chlYU = @ because X is dense in X. Hence U~X = §,

that is, U = U, Therefore Y is open in X.

Let K be a simplicial complex. Then for each A € K,

int  _ [A] = inthl

=T ©

Al = [a] u {|B] | B € K,B & A}
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Thereby abbreviating subscripts, we write int|A| and also
bd|A| = |A|~int|A|. Notice that int|A| # ¢ if and only if
A is principal. We define the subcomplex BP(K) of P(K) as
follows:
BP(K) = {A € P(K) | |A| < bd|B| for some
B € Max(X)}.
By the following proposition, we can see that Theorem 0.1

does not hold for the co—completion.

2.8. Proposition. Let K be a simplicial complex., If

dim P(K) = o agnd dim BP(K) < « then T?TPO ig not loecally
connected at 0.

Proof. By Corollary 2.4, |BP(K)| is closed in T?Tpo.
Put

6§ =d_(0,|BP(K)[) > 0.

and let U be a neighborhood of 0 in T?Tpo with daim U > §.
Similarly as the proof of Proposition 2.1, we have a princi-
pal simplex A € K with A€ U. Since bd|A| = |[BP(X)]|,
U N bd|A| = ¢, hence U N |A| is open and closed in U. And

~
g #UnN |A] ? U because A € U N |A| and 0 € U 0 |A|. There-

fore U is disconnected.
Now we prove the first statement of Theorem 0.4.

2.9. Theorem. Let K be a simplictial complex with no

c
prineipal simplex. Then the co—completion KT 0 45 an AR.
Proof. (Cf. the proof of Theorem 1.3). Define

e co(VK)2 + cO(VK) exactly as Theorem 1.3, that is, as

follows:
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p(x,y) (v) = min{|x(v)|,]y(v)|}.
Then for each (x,y),(x',y') € cO(VK)z,

lu(x,y) - w(x',y") I < max{lx - ',y - y'Hm},
hence py is continuous. Here we define an equi-connecting
map A: cO(VK)2 x I -+ co(VK) as follows:

(1-2t)x + 2tp(x,y) if

A
o+
| A

A (Xert) =

S ]
s

f

M-
N ©

(2t-1)y + (2-2t)u(x,y)
Using Lemmas 1.1 and 2.6, it is easy to see that

€0, 2 S0 S0
AUTRT D% x 1) «c TRT Y. Let z € TX and ¢ > 0. Then

c
the g-neighborhood of z is A-convex., In fact, let x,y € |K 0

such that lIx - zll_,ly - zl _ < ¢. Observe

lu(x,y) - zllco = fu(x,y) - u(z,z)ll°°

A

max{lix - zl_,ly - zl_} < e.

For 0 <t < 1/2,

Ix(x,y,t) - zl (1 - 2t)x + 2tu(x,y) - zl

iIn

(1 - 2t)lx -zl + 2thp(x,y)
-zl < e.

o«

For 1/2 < t < 1, similarly lx(x,y,t) - zl_ < e. By Lemma

c
1.2, (K 0 is an AR,

As corollaries, we have the second statement of Theorem

0.4 and the first half of Theorem 0.5.

2.10. Corollary. Let K be a simplicial complex with

o
dim P(K) < «», Then the c,-completion |K 0 is an ANR.

0

c
Proof. By Corollary 2.4, |P(K)| is closed in K 0,

o o o o
Then [K[ ° = JB(K)] © u JID(K) = |P(K)| u TID(KY] .
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c
By Theorem 2.9, |ID(K)| 0 is an AR. Since |P(K)| and

[of C
|P(K)| n TIDGKIT © = |P(K) n ID(K)| are ANR's, so is TK[ °

(cf., [Hul]).

2.11. Corollary. For any simplicial complex K,

c
K 0\{0} 18 an ANR.

c
Proof. By Theorems 2.5 and 2.7, K] °~{(0} = [P(K)| u

c
(TID(K) 0\{0}). Then similarly as the above corollary,

we have the result.
The following is the second half of Theorem 0.5.

2.12. Theorem. For any simplicial complex K, the

c
inclusion 1i: |K|m < TRT {0} s a homotopy equivalence.

Proof. Since both spaces are ANR's, by the Whitehead

c
Theorem [Wh], it is sufficient to see that i: lK]m < TRT O<{o}
is a weak homotopy equivalence, that is, i induces iso-
morphisms
c
. 0
i, ﬂn(lKIm) > m (IK ~{0}), n € N.

Let F(K) be the family of Lemma 1.4. And for each

c
|L] € #(K), let o0 [K 0, I be the map defined as Lemma

1.4. (Since V. is finite, the continuity of ¢L is clear.)

L
Then ¢J1(1) = L. Let

C
v = {x e TRT | ¢, n v, # 9.

C
Then U(L) is an open neighborhood of |L| in |K 0. In fact,

for each x € U(L), choose v € C_ n Vv . If Ix - yl_ < x(v)

then v € Cy n vy because y(v) > 0, hence y € U(L). Since

¢L(x) # 0 for each x € U(L), we can define a retraction
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rps U(L) ~» |L| similarly as Lemma l1l.4. Observe for each
X € U(L) and t ¢ I,

< C_.

C(l-t)x + trL(x) X

Then using Lemma 1.1 and Theorem 2.7, it is easily seen

c
that (l-t)x + trL(x) € |K O\{O}. Since

C(l—t)x + trL(S) n vy a

it follows that (l-t)x + trL(x) € U(L). Thus we have a

deformation h, s U(L) x I » U(L) defined by

hL(x,t) = (l-t)x + trL(x).
c
It is easy to see that TRT'O\{O} = y{u(@) | |L] € F(K)}.
c
Now we show that i,: m (|K|) » nn(TRT'O {0}) is an

+ .
n l, we denote the unit n-sphere

> ||, and g: B™L

isomorphism. By s™ and B

and the unit (n+l)-ball. Let g: S"

c
K O\{0} be maps such that B[Sn = ga. Note ¢ is homotopic
to a map a': S" - IK[m such that o' (s") < |L*] for some

|L'| € F(K). By the Homotopy Extension Theorem, o' extends

n+l),

) < U(L).

c
to a map B': Bn+l -+ |[K O\{O}. From compactness of g'(B

we have an |L| € F(X) such that |L'| < |L| and B‘(Bn+l

n+

Then o' extends to r;8': B L, |IL| « |K|,. Therefore i, is

c
a monomorphism, Next let a: s » TK O\{O} be a map. From
compactness of «(s™), we have an |L| € F(K) such that
«(s™) < U(L). Then rpas st - L] < ]K[m is homotopic to «

in U(L). This implies that i, is an epimorphism.

3. Completions of the Barycentric Subdivisions

By Sd K, we denote the barycentric subdivision of a

simplicial complex K, that is, Sd K is the collection of
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non-empty finite sets {Ao,---,An} c K = VSd K such that
Ao ; e ; An. We have the natural homeomorphism
6: |S8d K]m > ]K[m defined by
= £(A)

0(e) (V) = Jienex qIm a7+ T -
The inverse e_l: |K|m + |sd K|m of g is given by

e—l(x)(A) = (dim A + 1)emax{min x(v) - max x(v),0}.

VEA vgA

In fact, let x € |K| and write CX = {vo,---,vn} so

that x(vo) > e > x(vn). For each v € VK’
-1
60 ~(x)(v) =7 max{min x(u) - max x(u),0}.
VEAEK uea uga
Ifv g CX then min x(u) = 0 for v € A € K, hence ee—l(x)(v)
u€a

= 0, For A € K, if A # {VO,---,vj} for any j = 0,++«.,n then

min X(u) - max X(u) = 0. Hence
u€A uga
0071 (x) (v,) = T0TT(x(vy) - x(vi, ) + x(v) = x(v,)
i j=1i j i+l n ile
Therefore ee_l(x) = X.
Conversely let ¢ € [Sd K| and write Cg = {Ao,---,An}
so that AO % oo ; An. For each A € K,
67le(£) (A) = (Aim A + 1).max{min ¢ (£) (v)
VEA
- max g(g)(v),0}.
vgA
If A ¢Z CE then A ¢ An or Ai—l # A ; Ai for some i = 0,««.,n,
where A—l = @g. In case A & An’ we have vy € A\An. If
Vo € B € K then g(B) = 0 because B # Ai for any i = 0,+«.,n.
Therefore
= B -
8 () (vy) = ] =8 -,

VOEBEK dim B + 1

_ g(Aj)

hence 6 '6(¢) (A) = 0. Observe if v € A;~A, | then
=3 (B _yn 23T
veBek M B ¥ 1 Lj=i Tim Ay 7 1

6(g)(v)
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In case Ai-l 2 A ; Ai for some i = 0,+¢«+,n, we have

v

1 1 2

€ A\Ai_ and v, € Ai\A' Since
N £ay)

min 6 (£) (v) < o(g) (vy) = Zj=i T VI
]

VEA
= 8(5)(V2) < max 8(g) (v),

V€A
it follows e_le(g)(A) = 0. It is easy to see that
min 6(g) (v) = J5 By and
VEAi j=i dim Aj + 1
max 6(g) (v) = Ji_. e L
VﬂAi J=1i+1l dim Aj + 1 °
Thus we have
g£(A.)

-1 _ :
5] 9(5) (Al) = (dim A' + l)(ZJ =i dim A] + 1

A.
- z? ) _*Ei_ll___
j=1i+1l dim Aj + 1

£(A;)
= (dim A. + l) m= E(Al).

Therefore 8_16(5) = g,

3.1. Theorem. For a simplicial complex K, the natural
homeomorphism ©: |Sd Klm > |K|m induces a homeomorphism
- 3! %y
9 Sd K + |K .
Proof. For each g,n € |sd K|,
- = &)
lo(e) = oy = Jyev, llvenex am a 7 1

n(aA) |
ZVEAeK dlm A+ 1

g(A)—n(A)
Zv€VK Zv€A€K im A + 1

= ZAEKIE(A) - T](A)| = "é; - ﬂ"l-

Then § is uniformly continuous with respect to the metrics

| A

d; on | sa K|m and |K|m. Hence ¢ induces a map
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L L
9: Jsd K 1+ K 1. (However, we should remark that e-l

is not uniformly continuous in case dim X = «, In fact,
let A € K be an n-simplex and B « A an (n-l)~face. Then
for the barycenters g € [A| and g € [B|, we have Hg - g"l =
2/n but 1671(A) - e™L(B)I, = Ia - BI, = 2.) Since ¢ is

injective, so is §. 1In order to show that 6 is surjective,

3 3 [}
it suffices to see |K 1\|K] c 5(Tsd¥ l). Let x ¢ K l\IK

Then CX is infinite. Otherwise CX € |K| by Lemma 2.2, so

X € [K| because x(v) > 0 for all v ¢ V, and Hxﬂl = 1.

K
Recall CX is countable. Then write CX = {Vn|n € N} so that
X(Vl) > x(v,) > +++ > 0. Observe

nex(Vyg) F Lioner® (Vi) < Dy x(vy) = L

Moreover n-x(vn) converges to 0. If not, we have ¢ > 0 and

1< Ny < n, < e such that nix(vni) > ¢ for each i € N.
We may assume Zn>nlx(vn) < g/2. Since
(n, - n,) =& < (n, - n.)ex(v )
i+l i n;.q - i+l i nj
n.
i+l €
In=n +1%Va) < 3
i
2(ni+l - ni) <ngg hence n.g < 2ni. Observe
Xni+l—l £
n=nl 2n
1 1 1 1
= (5= + eoe + ——~——:~—)E + oo + (z=— + soe + ______:__)g
2nl 2(2n2 1) 2ni 2(ni+l 1)
n,-n n., ,-n.
2 71 i+l i
€ Zn; etttk
1 i
n,-n n.+l—n.
< i ) _iﬁ___i _—
2 i+l

A

(n,-n,) « x(v._ ) 4+ ees + (n., ,=-n.) + x(v )
2 71 n, i+l i niq
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<SRV 1) + eee + X(V_)) 4 eee + (x(V )
- nl.l n, ni+l
+ eee + x(V ))
iyl
n,
i+l €
zn=nl+lX(vn) <2

This contradicts to the fact Z:_n n—l is not convergent.
et

For each n € N, let A = {vl,---,vn}. Define £, € |sd K|,

nel and £ ¢ 21 (K) as follows:

1(x(vi) - x(vi+l)) if A = Ai, i
gn(A) = (n+l)x(vn+l) + zi=n+2x(vi) if A = An+l’
0 otherwise,
and
n(x(vn) - X(Vn+l)) if A = A, nE N,

g(a) =

otherwise.
Since n-x(vn) converges to 0, we have
leg, - &gl =2 zi=n+ZX(Vi)'

Then Hgn - gﬂl converges to 0, that is, g converges to &.

2
Hence § € |Sd K l. It is easy to see that

zw x{v.)
x(v,) + -n+2 1 ifv=wv,, i< n+l
_ i n+l i —
e(gn)(v) =
otherwise,
and
He(gn) - le = 2 zn+2x(vi).
Then 6(g ) converges to x. This implies B(g) = x.
. -1 4
Finally, we see the continuity of 8 ~. Let x € [K ,
-1 2q ,
£ =906 "(x) € [8d K and ¢ > 0. Write C = {v |i € N} so

that x(vy) > x(v,) > +++. Recall i-x(v;) converges to 0.

We can choose n € [ so that (n+l) "x(v ,;) < €/6,
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[+

Yiansp¥(Vy) < e/6 and x(v ) > x(v .,). Put
§ = min{x(vi) - X(Vi+l) | x(vi) > x (v, +l)
i = l,-.-'n} > 0.
4
Let y € [K with
i . .8 €
= yHl < mln{f, EHTHITT}

2
and n = § l(y) € [sd K l. Remark that for 1 < i < j < n+l,

x(v,) > x(vj) implies y(vi) > y(vj) because

N

y(v) - y(vl) > (x(v) -9 - (xvy) + 9

J J
(X(vi) - X(vj)) - & > 0.

Then, reordering v *c+,V, s We can assume that

ll

yvi) > y(vy) > eee > y(v)) > ylv ).

n+1l
For each i € J, let A, = {vl,---,vi}. Then C c {A [i € NI,

il

£(a;) })) for all i € N, and

i'(x(vi) - x(vi+l

T](Ai) = 1-(y(Vl) - y(vl+l)) for i = 1,*++,n.
Therefore

T lem) = n@p|

= fl l|1°(x(v ) o= ox(vi 1)) = ie(y(vy) -y

i+l i+l
< Z?:li. P -y [ i) - v |
< 2(2 dx -yl = nm+ 1)-lx -yl < % .

Since i°x(v.) converges to 0,

© e e
Zl ne15(ay) (n+lyx (v q) + [ X(V)< £+E=3

Then Z?zlé(Ai) = lgl lE;(Ai) > 1 - %, hence

17 Yient

n
Lima8y) =l

|
o~
5
|
-
>
|
=
>

Iiopnap

| v

> (1 - %) -

1 2
This implies I < %. Thus we have

. n (A
AEK\{Al, ,An}
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o R L N TR

e~}

n
< Jio1lEB) - @]+ Yin+1 18R] |

+
zAEK\{Al,---,An}|”(A)|
£ £ £ _

fet3 Ttz oe

The proof is completed.

Thus the ll—completion well behaves in the barycentric
subdivision of a metric simplicial complex. However the

cO—completion does not.

3.2. Proposition. Let K be an infintte-dimension

simplicial complex. Then there is no homeomorphism

c c
h: TSa&[ © » TKT ©° extending the natural homeomorphism
6: |sd K| =+ |K| .
m m c
Proof. Assume there is a homeomorphism h: |Sd K 0.
o

TKT © such that h||sd K| = 6. For each simplex A € K,
we define A* € |Sd K| by A*(A) = 1. Note h(A*) = 6(A*) is
the barycenter of A of |A|. For each n ¢ |, take an

n-simplex A € K. Then as seen in the proof of Proposition

*) = * — Ak =
2.1, h(An) An converges to 0. However HAn Amllcc 1 for

1

any n # m € N. This shows that h™" is not continuous at 0.

In the above, h_l is not continuous at x # 0 either.

For example, let A0 € K with dim St(AO) = o and for each
. ; S

n € N take an n-simplex A € St(AO). We define ¢ = 3 Ap +
1,, , 17 17
5 AX € |sd K|, n € N. Then h(g)) = 5 A, + 3 A converges

17 1 e
to 5 Ay but Hgn - Emﬂw = 5 for any n # m € N. This implies
h~!l is not continuous at A

0"
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4. The 2;-Completion of a Metric Combinatorial «-Manifold

Let A" be the countable-infinite full simplicial
complex, that is, A" = F(N). For the Ql-completion and

the c,-completion of |Am| , we have

0 m
o0 21 o
4.1. Proposition. The pairs (A | ,|A ]m) and
© CO © f
(Ja] ,1]a [m) are homeomorphic to the pair (8,,15).
Using the result of [CDM], this follows from the
following

4.2. Lemma. Let K be a simplicial complex with no

L c
principal simplex. Then |K ! and TRT © are nowhere
locally compact.

Proof. Because of similarity, we show only the

2
Ql—case. Let x € |K 1 and £ > 0. It suffices to construct

£
X 1
a discrete sequence X, € X , n €N, so that x - x "l < £.

n
If CX is infinite, write Cx = {vn|n € N} so that x(vl) >
x(v2) > see, If CX is finite, choose a countable-infinite
subset V of VK such that Cx < V and F(V) < K and then
write V. = {v_[n € N} so that x(v;) > x(v,) > «--. (Such

a V exists because K has no principal simplex.) Note that

x(vy) > 0 and x(v ) < n! for each n € N. pPut

. 1
§ = mln{%,x(vl),f} > 0.

2
By Lemma 1.1, we can define xn € |K l, n ¢ N, as follows:

x(vl) -8 if v = vy
x (v) = Ax(v )+ 8 if v=v_ .,

x(v) otherwise.
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Then clearly lx - anl = 2§ < ¢ for each n ¢ N and

I|xrl - Xm"l = 2§ if n # m.

The second half of Conjecture 0.8 (i.e., Corollary
0.9) is a direct consequence of Theorem 1.5 and the

following

4.3. Proposition. Let M be an 2§

contained in a metrizable space M. If for each open cover

-manifold which is

U of M there is a map f: M > M which is U-near to id, then
M is an f-d cap set for g.

Proof. By [Sa3, Lemma 2], M has a strongly universal
tower {Xn}nEN for finite-dimensional compact such that

UHENXH and each Xn is a finite-dimensional compact
strong Z-set in M. From the condition, it is easy to see
that each X is a strong Z-set in ﬁ, Let {/ be an open
cover of g and Z a finite-~dimensional compact set in g.
Since M is an ANR, M has an open cover V such that any two
Y~near maps from an arbitrary space to M are (/~homotopic
[Hu, Ch. IV, Theorem 1.1]. For each V ¢ V/, choose an open
set 6 of g so that ; N M =V and define an open cover
D of ﬁ by

V= {\~/|V eV, vax #g}u {ﬁ\xn}.

Let # be an open cover of ﬁ which refines {/ and D. From the
condition, there is a map f: ﬁ + M which is #/-near to id.
Observe that f|z n Xn: Z N Xn + M and the inclusion
Z N Xrl e M are V-near, hencé {/-homotopic. By the Homotopy
Extension Theorem [Hu, Ch. IV, Theorem 2.2 and its proof],

we have a map g: %2 + M such that g|A n Xn = id and g 1is
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{~homotopic to f[Z. From the strong universality of the
tower {Xn}nEN’ we have an embedding h: Z - Xm of Z into
some X = such that hiz nx =gz n X = id and h is (-near

to g, hence st (-near to id.

4.4, PRemark. In connection with Conjecture 0.8 and

our results, one might conjecture more generally that a
completion M of an lg—manifold M is an iz-manifold if the
inclusion M « M is a fine homotopy equivalence. However

this conjecture is false. In fact, let M be a complete ANR

such that MNA is a lz-manifold for some Z-set A in M but M

is not an 22-manifold. Such an example is constructed in

[BBMW]. And let M be an f-d cap set for MNA. Then M is
also an f-d cap set for M by the same arguments in Proposi-

tion 4.4. Using [Sa3, Lemma 5], it is easily seen that the

~

inclusion M <« M is a fine homotopy equivalence. And M is

an g2f-manifold by [Ch,, Theorem 2.15].

2 2’

Addendum: Recently, Conjecture 0.8 has been proved in

2
[Sas]. In fact, it is proved that |K 1 18 an L.-manifold

2

i1f and only if K 18 a combinatorial o-manifold.
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