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CHAIN CONDITIONS IN PARA-LINDELOF
AND RELATED SPACES

Robert L. Blair

Dedicated to the Memory of Eric K. van Douwen

1. Introduction

A space X is para-Lindelof (resp. O-para-Lindeldf) if
every open cover of X has a locally countable (resp.
0-locally countable) open refinement, and X has the
discrete countable chain condition (dccc) if every discrete
family of open subsets of X is countable. Discrete finite
chatn condition (dfcc) is defined analogously.

The following result of Burke and Davis is proved in

[Bu, 9.7].

1.1. Theorem (Burke and Davis). Every Tychonoff

pseudocompact para-Lindeldf space is Lindelof.

Burke and Davis in fact conclude that the space is
compact, but our ostensibly weaker form of their theorem
is more suggestive of the generalizations considered here.

In 1.1, the hypothesis "pseudocompact" (= dfcc in
Tychonoff spaces) can be replaced by "dccc." This follows

readily from known results for T, spaces (as detailed in

3
3.4(b) below and also in [Wa, Note 2]). One of our main

results is that "Tychonoff pseudocompact" can be replaced
in toto by "dccc" (no separation required). Thus we have:

Every para-Lindeldf dccc space is Lindelof (see 3.3). More
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generally, we extend 1.1 to higher cardinality by way of
the following equality among cardinal functions: L(X) =
pL(X)+dc(X), where L(X), pL(X), and dc(X) are the Lindeldf
number, the para-Lindeldf number, and the discrete cellu-
larity of X, respectively (see 3.2). (For definitions of
these, and other, cardinal functions, see §2.)

Analogously, we show also that every g-para~Lindeldf
ccc space is Lindeldf (4.3) and that, more generally,
L(X) < opL(X)-c(X), where opL(X) and c¢(X) are the g-para-
Lindelof number and the cellularity of X, respectively
(4.2). Furthermore, L(X)*til(X) = opL(X)-*c(X), where
til(X) is the tiling number of X (4.6).

The following generalization of 1.1 is announced in

[Bu, p. 416] and proved in [BD]:

1.2, Theorem (Burkeand Davis). Every Tychonoff pseudo-

compact o-para-Lindelof space is compact.

While 1.1 and 1.2 are, at least superficially, very
similar, the generalizations to higher cardinality that we
obtain for them here are not. In contrast to the generali-
zations of 1.1 cited above, we show that 1.2 (for T,
spaces) can be cardinally generalized simply by adding a
suitable cardinal parameter to each of the concepts appear-
ing in its statement. We show, in fact, that if x is a
regular cardinal, and if X is a T3 pseudo-K~compact o-para-
K-Lindelof P _-space, then X is [k,®)-compact (5.5).

The following notation and terminology will be used

throughout:
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The letter k will always denote a cardinal.

For a subset A of a space X and a collection S of
subsets of X, we set S(A) = {s € 5: s nA# g}, st(a,S) =
US(a), and ord(a,S) = |[5(A)|. We say that S is locally <x
(resp. locally <k) in X if there is an open cover (/ of X
such that ord(u,JS) < Kk (resp. ord(U,S) < ) for every U € (.

If A is another collection of subsets of X, then
clearly S(uA) = u{S(a): a € A}.

Unless specifically mentioned to the contrary, no

separation properties will be assumed.

I wish to thank G. M. Reed for a number of very useful
conversations on the subject of this paper, and for calling
my attention to the relevance of [Rel], [Re2], and [Re3].

I would also like to express my appreciation for the
generosity with which Eric van Douwen discussed this paper
with me on numerous occasions, and for his substantive

contributions recorded in 2.4({(b}) and 4.7.

2. Some Cardinal Functions

In this section we describe the main cardinal functions
of the present paper and record some relationships among
them.

A space X is k-Lindeldf if every open cover of X has
a subcover of cardinality <k, and a cellular family in X
is a pairwise disjoint family of nonempty open subsets of
X. The Lindelof number L(X), the cellularity c(X), and

the discrete cellularity dc(X) of X are defined as follows:
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L(X) min{k: X is k-Lindeldf} + ,

c(X)

sup{|(|: ( is a cellular family in X} + w,

de(X) = sup(|7d]|: J is a discrete cellular family
in X} + w.

Of these three cardinal functions, L and ¢ are, of course,

standard (see e.g. [En, p. 248 and 1.7.12] or [Ju, p. 6]),

and dc is essentially so. (For a regular space X,

de(X) = sup{|¢|: ¢ is 'a locally finite family of open sub-

sets of X} + w (the "pseudocompactness number" of X

[CH, 1.1]; see 5.1 below).

We shall call a space X para-k-Lindeldf if every open
cover of X has a locally <k open refinement, and O-para-
k-Lindeldf if every open cover of X has an open refinement
that is the union of <k families, each of which is locally
<K. We define the para-Lindelsof number pL(X) and the
g-para-Lindelof number opL(X) of X as follows:

pL(X) = min{k: X is para-x-Lindeldf} + w,
opL(X) = min{xk: X is o-para-x-Lindel8f} + w.

Next let U < X. By a x-titling of U in X we mean a
family J of regularly closed subsets of X such that
|7] < x and UF « U € cl UJ. (A subset F of X is regularly
elosed in X if F = ¢l int F (equivalently: F = cl G for
some open subset G of X).) We say that U is k-tilable in
X if U has a x-tiling in X.

If U is an open subset of a regular space X, then
clearly U is IUI—tilable in X, and we define til(U,X) as
follows:

til(U,X) = min{k: U is k-tilable in X}.
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The tiling number til(X) of a regular space X is then
defined in the following way:
til{X) = sup{til(U,X): U is an open subset of
X} + w.
Then, as is easily seen, X is perfectly wd-normal in the
sense of Reed [Re3, p. 174] (or, in Reed's earlier termi-
nology, "has property J" [Rez, 1.7}) if and only if

til(X) = w. (We shall here call X countably tilable if

til(X) w.)

Obviously every perfectly normal Tl space is countably
tilable.

A space X is strongly collectionwise Hausdorff (scwH)
if every discrete collection of singletons in X can be
separated by a discrete cellular family in X (see [FR,
1.1(a)]).

We note the following inequalities involving the

cardinal functions introduced above:

2.1. Proposition.

(1) opL(X) < pL(X) < L(X).

(2) dc(X) < min{L(X),c(X)}.

(3) If X is regular, then til(X) < c(X).

(4) If a T, space X is scwH and perfect, then
c(X) = dc(X).

Proof. (1) and (2) are clear.

To verify (3), consider any open subset U of X. By
Zorn's lemma, there exists a maximal pairwise disjoint
family 7 of nonempty regularly closed subsets of X such

that U < U. Then, by maximality, U < cl uF, and since
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| 7l < c(X), we conclude that U is c(X)-tilable. Thus
til(U,X) < c(X), and hence til(X) < c(X).

For (4), let G be a cellular family in X, pick
x, € G for each G € ¢, and let D = {xG: G € ¢}. Since X
is perfect, there exists a countable collection J of
closed subsets of X such that U§ = UJ. Now for each F € J,
D N F is discrete and closed in X (since X in Tl), and
since X is scwH we then have |D n F| < dc(X). Then

[¢] = Ip| = [ulbn F: F e F}H| < dec(X), and we conclude

that c(X) < dc(X).

2.2. Remarks. (a) The first inequality of 2.1(1)
can be strict (because there exist o-para-Lindeldf spaces
that are not para-Lindelof; see e.g. [FR, 2.5 or 2.6]), and
the second can also be strict (consider any nonseparable
metrizable space).

(b) The inequality of 2.1(2) can be strict (consider
the space wy of countable ordinals).

(¢c) The inequality of 2.1(3) can be strict (again

consider any nonseparable metrizable space).

The next result shows that the tiling number is pre-
cisely what is needed for a factorization of cellularity.
For the case c(X) = w, this result is due to Reed (who

notes it, without proof, in [Rel, 5.61).

2.3. Proposition. If X is regular, then c(X) =
til (X) *dc(X).
Proof. Let K = til(X) and A = dc(X), and let { be a

cellular family in X. Since til(U{/,X) < K, there exists



TOPOLOGY PROCEEDINGS Volume 11 1986 253

a k-tiling 7 of Ul{. For each F € F, let
([F={U€U:UnintF#Q}
and
VF={UnintF:U€UF}.
For each F € 7, we have F <« U7 < ul/, and it follows easily
that VF is discrete in X. Since the mapping given by
Uw» UN int F is a bijection from 0% onto VF’ we therefore
have |l ]| = |V] < A. We also have Ul < cl UF, and from
this it follows that { = U{UF: F € J}. Then |l <
ZF€}|UF| < kv, and ve conclude that c(X) < k+i. The

reverse inequality follows from 2.1.

We conclude this section with some remarks which,
although closely related to the foregoing, will not be

needed in the sequel.

2.4, Remarks. (a) A space X is k-paracompact if
every open cover of X of cardinality <k has a locally
finite open refinement (see [Mor, p. 223]). We note the
following sufficient condition for the equality opL(X) =
pL(X): If X is gpL(X)-paracompact, then gPL(X) = pl(X).
(For the special case opL(X) = w, this is due to Tall
[Taz, I.1.21]. The proof in [FR, 3.1] of this special
case generalizes immediately to yield the present result.)

(b) Let us call a subset U of X disjointly k-tilable
in X if U has a pairwise disjoint k-tiling in X. An open
set U in a regular space X is disjointly c(X)-tilable in X
(by the proof of 2.1(3)), and we set dtil(U,X) = min{«x:

U is disjointly k-tilable in X}. The disjoint tiling



254 Blair

number dtil(X) of a regular space X is then defined as
follows:
dtil(X) = sup{dtil(U,X): U is an open subset
of X} + w.
(Among known cardinal functions, dtil is unusual in that it
exists in 2ZFC, but (presumably) not in 2ZF.) Clearly
til(X) < d4til(X), but we do not know whether this inequality
can be strict. Van Douwen has noted (personal communication)
that dtil(X) = w if X is metrizable, and that this is true,
more generally, if X is regular and either (1) has a
og-discrete n-base [Ju, 1.4] or (2) is scwH and has a dense
oc-closed-discrete subset. The argument is as follows:
(1) and (2) each imply that there is a sequence (Dn: ne€ g’
of subsets of X such that UnEmDn is dense in X and such
that, for each n € w, the points of Dn can be separated by
some discrete cellular family in X. Let U be open in X.
By a routine recursion, there exists a sequence (]n: ne€ y?
such that:
(i) For each n € w, 3n is a discrete family of regularly

closed subsets of X and U(Di n u: i < n} < U{U]i: i < n},

(ii) (U]n: n € w! is a pairwise disjoint sequence of
subsets of U.

Then it is easy to verify that {U]n: n € w} is an

w-tiling of U.

3. Para-Lindelof dece Spaces are Lindel6f
We begin with a lemma that is an analogue of several
known results (see e.g. [Mo, Chap. 1, Theorem 18] and [Bl,

2.3 and 4.3]).
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3.1. Lemma. Let xk be a cardinal and let W be a
locally <k open cover of X. Then there exists a discrete
collection § of open subsets of X such that:

(1) For every G,G' € G with G # G', G n st{(G', W) = 4.

(2) For every G € G, ord(G,W) < «.

(3) X = cl st{ug, .

Proof. By Zorn's lemma, there is a collection § of
open subsets of X that is maximal with respect to (1) and

(2). Clearly § is a discrete collection that satisfies (3).
The main result of this section is now as follows:

3.2. Theorem. If X is any space, then L(X) =
pl(X)-dc(X).

Proof. Let k = pL(X) and A = dc(X), and let {/ be an
open cover of X. Then { has a locally <k open refinement
V, there is an open cover W' of X such that ord(W,/) <K
for every W € W', and #/' has a locally <k open refinement w
(and, of course, ord(w,V) <K for every W € /). By 3.1,
there is a discrete cellular family § in X such that
ord (G,W) < x for every G € § and such that X = cl st(Ug,¥).
Since V covers X, this last equality implies that
X = UVl (ug)). But [W(ug)| = |UW(G): G e §}| < x+A, and
hence [V (UW(ug))| = JulV(W): W e W(ug)}| < k+A. Since V
refines {/, it is clear now that { has a subcover of
cardinality < x+A, and thus L(X) < «x+X. The reverse

inequality follows from 2.1.

3.3. Corollary. Every para-Lindeldf dccc space is

Lindeldf.
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3.4. BRemarks. (a) Wiscamb noted 3.3 with "para-
Lindeldf" replaced by "paracompact" [Wi, 2.3], and Juhdsz
obtained 3.3 with "dccc" replaced by "ccc." (Juhdsz's

result appears in [Ta 6.1] and [Ta2, I.3.13]; cf. [Ta

ll

3.4].) We extend Juhdsz's result in a different way in

ll

4.3 below.

(b) Actually, for T3 spaces, 3.3 is already a conse-
quence of known results. To see this, note that if X is a
T, para~Lindeldf space, then X is scwH [FR, 1.7]. Hence,
if X is also dccc, then X is wl—compact. But a Tl para-
Lindelof (in fact, meta-Lindeldf) wl—compact space is known
to be Lindeldf. (This last fact is implicit in Aquaro
[Ag], and is recorded explicitly by Aull in [Au, Corollary
l1(c)].) See Watson [Wa, Note 2] for a similar explanation.

Watson is assuming X is Tychonoff and also uses [FR, 1.7},

for which regularity is necessary.

4. o-Para-Lindelof cce Spaces are Lindelof

We begin with a lemma similar to 3.1.

4.1. Lemma. If K and-H are cardinals, and if
- . X ,

w UnﬁKWn is an open cover of X such that each Wn is
locally <u in X, then there exists a family (§n: neEk?
such that:

(1) For each n € k, §n i a cellular family in X such
that Ugn c UWn.

(2) Por every n € x and every G € [ ord(G,Wn) <,

(3) X =cl unﬁKst(ugn,Wn).
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Proof. Let ¢ be the set of all families (§n: neE k)
that satisfy (1) and (2), and partially order ¢ as follows:
(§n: neE«x)< (ﬁn: ne€ k)if §n c ﬁn for every n € . By
Zorn's lemma, ¢ has a maximal member (§n: n € «). Now if
V=X-ocl UnEKst(Ugn,Wn) # @, then obviously there exist
Yy € «x and W € WY such that VN W # £, and hence there is a
nonempty open set G* €« V N W such that ord(G*,My) < pe
But then (g;: n € «)€ ¢, where g; = gﬂ if n # v and
§¢ = §Y U {G*}, which contradicts the maximality of

<§n: n € k). Thus the latter also satisfies (3).

4.2. Theorem. If X ts any space, then L(X)

| A

opL({X)+-c(X).
Proof. Let k = gpL(X) and x = c(X), and let {/ be an

open cover of X. Then { has an open refinement | = UEEKVE'

where each V_ is locally <k in X, and for each g € k there

€

is an open cover Wé of X such that ord(W,VE) < k for every
W E W&. Then for each ¢ € «, Wé has an open refinement
W =u w where each /. is locally <x in X (and clearl
g nex gn’ gn y ( 7
ord(w,VE) < x for every W € WE)' Moreover, for every § € «,
there exists, by 4.1 (applied to WE)' a family <g€ﬂ: n € k)
of cellular families in X such that, for every n € x and
every G € §£n, ord(G,WEn) < k, and such that
X =clu st (U W . It follows that each nonempt

ek ( §€n, En) W pty

f V bel t U t(u for some y €
member o elongs to Vy( nEKS ( gYn'WYn)) or some y K,

and hence that X = UV*, where

Y* = V_(u

Veek'g nEKSt(Ugén’wén))'

Now for every ¢,n € k, we have

lwin(ugin)l = |U{Wgn(c)‘ G €~§£n}[ < KA.
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Then IVE(UnEKSt(Ugén’Wén))I = |V€(UHEK(UM%H(U§€H)))|

U u
[Vé( { nEKwén( §€n)))|
IU{Vg(W)‘ WeE v

nexlen W9 1 < ke h

and hence |V*| < k*A. Since V* refines U, it follows that

l/ has a subcover of cardinality < k-), and hence L(X) < ks).
As a special case of 4.2, we have:

4.3. Corollary. Every o-para-Lindeldf ccc space is

Lindelof.

In a context which guarantees that c(X) = dc(X) (for
example, if X is either (i) Tl, scwH, and perfect (2.1(4))
or (ii) regular and countably tilable (2.3)), then 4.2
implies that L(X) = oOpL(X)+dc(X). In general, however,
we do not know whether c(X) can be replaced by dc(X) in

4.2. In particular, we leave open the following problem:

4.4. Problem. Is every O-para-Lindelof dccc space

Lindelaf?l

Recall that the spread s(X) of a space X is defined
as follows: s(X) = sup{|D|: D is a discrete subspace of
X} + w [Ju, 1.9}. For a cardinal function ¢, we denote its

hereditary version by h¢ (i.e., h¢(X) = sup{¢(¥): Y € X}).

lAdded in revision: In response to 4.4 (as circulated
in an earlier version of this paper), R. W. Heath and G. M.
Reed have independently constructed examples of T3 non-
Lindelof dccc spaces with 0-locally countable bases, thus
answering 4.4 in the negative. (Reed's example is actually
a Moore space.) These examples were announced at the
Spring Topology Conference held at the University of Ala-
bama at Birmingham, March 19-~.21, 1987.
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From 4.2 and the fact that hc(X) = s(X) < hL(X), we deduce

the following hereditary version of 4.2:

4.5, Corollary. If X is any space, then hL{(X) =

hopL(X)+s(X).

The inequality of 4.2 can obviously be strict (for
example, consider any compact space X with ¢ (X) > w).
In the following result we show that, for regular spaces,
equality can be achieved by introducing the tiling number
as well. (As an eqguality between two products of cardinal

functions, this result is unusual.)

4.6. Corollary. If X is regular, then L(X)-til(X) =
opL(X) «c(X) .

Proof. This follows from 4.2, together with the
inequalities til(X) < c(X), L(X) > opL(X), and

L{X)+til(X) > dc{X)+til(X) = c(X) (see 2.1 and 2.3).

4.7, Remark., I am indebted to Eric van Douwen for
the following observations:

In view 0f 4.6, for regular spaces X there are exactly
six possible sets of inequalities among the four cardinal

functions L, til, opL, and c. These are:

(1) til(X) = c(X) > L(X) > opL(X).
(2) til(X) < c(X) < L(X) = opL(X).
(3) til(X) = c(X) = L(X) = opL(X).
(4) til(X) < c(X) = L(X) = opL(X).
(5) til(X) = c(X) = L(X) > opL(X).

(6) til(X) < c(X) = L(X) > opL(X).
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Moreover, each of these six possibilities can actually occur.
(For (1), take X compact with c(X) > y; for (2), take X
separable but not Lindeldf; for (3), takeX = g; for (4),

take X = X; + X, with X, separable but not Lindeldf and

with X2 discrete and |X2| = L(Xl); for (5), take X = Xl + x2
with X, compact and c(xl) > w and with X, discrete and
lx2| = c(X;); and for (6), take X nonseparable metric.)

5. A Cardinal Generalization of 1.2

Let k¥ and A be infinite cardinals. As usual, a space
X is fK,A]-compact if every open cover of X of cardinality
< Ahas a subcover of cardinality <k, X is [x,®)-compact if
X is [k,u]-compact for every infinite cardinal u, X is
pseudo-k-compact if every locally finite family of open
subsets of X has cardinality <k, X is a P _-space if the

intersection of <K open subsets of X is always open in X,

and X is a P-space if X is a P, —space.
1

It is known that a Tychonoff space is pseudo-w-compact
if and only if it is pseudocompact (see [En, 3.10.22]).
Moreover, for regular spaces, the following alternative
formulation of pseudo-K-compactness is known (see e.g.

[Fr, 2.5.3] or [Wi, 2.6] (the latter for Kk = wl)):

5.1. Proposition. A regular space X is pseudo-
Kx-compact if and only if every discrete cellular family in

X has cardinality <kK.

5.2. Proposition, I1f K is a regular cardinal and
if X is a regular P _-space, then the following are equiva-

lent:



TOPOLOGY PROCEEDINGS Volume 11 1986 261

(1) X is pseudo-k-compact.

(2) If (U,: £ € k) is a decreasing family of nonempty

g
open subsets of X, then ngEKCl Ug # g.
Proof. (1) » (2). Assume there exists a decreasing

family (Ug: £ € k) of nonempty open subsets of X such that

ﬂgeKcl Ug = g. By recursion, there is a family
(GE: g € x ) such that:
(a) For each ¢ € «, GE is a nonempty open subset of
X with ¢l G, € U, - cl U for some > £.
£S5 T Y% o8
(b) For every &£,n € k with ¢ # n, cl Gg n cl Gn = g.

(The recursion is as follows: Let £ € k and assume
that (Gn: n < ¢) is already defined subject to (a) and
(b). Then for each n < ¢, cl Gn c X -cl Uo(n) for some
o{n) > n. Let o = sup{o{n): n < £}. Since k is regular,
o < k (and clearly ¢ < g). Pick any x € Uo' Then x ¢ cl UY

for some y € k, and necessarily y > §. By regularity of X,

we then have cl G, < UO - cl UY c UE - cl UY for some non-

3
empty open subset Gg of X.)
Now let x € X and note that x ¢ cl Ug for some § € «x.
Let A = {n € g: x g cl Gn} and let H = X - (cl UE U

u cl G ). Then, in view of the fact that X is a
n€a n

PK—space, H is a neighborhood of x that meets GY for at
most one y € x. Thus (GE: £ € k) is discrete in X, and

hence X is not pseudo-k-compact.
(2) » (1). Assume (1) is false so that, by 5.1, there

exists a discrete cellular family (H € € ) in X. For

gt

every £ € k, let U_ = U Then, by (2), there exists

H .
3 n>gon
ﬂgeKcl UE' But then each neighborhood of x meets HO

and Hn for distinct ¢ and n, which is a contradiction.

X €
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For the special case of 5.2 for which ¢k = w and X is
Tychonoff, see for example [En, 3.10.23].

The next proposition generalizes the well-known fact
that a normal Tl space is pseudocompact if and only if it
is countably compact [En, 3.10.20 and 3.10.21].

5.3. Proposition. Let k be a regular cardinal. A
Tl normal PK—space X is pseudo-k-compact if and only if
it is [k,x]-compact.
Proof. 1If X is not [k,k]-compact, then (since « 1is
regular) there exists D ¢ X with |D| = « and such that D

has no complete accumulation point in X [AU, Chap. 1,

Theorem 3r

a b]’ i.e., each x € X has a neighborhood U in X
r

such that |[U n D| < |D|. Now since X is a P _-space, it
follows that D has no accumulation point in X, and thus D
is closed discrete. Moreover, since X is also normal, X

is k~-collectionwise normal (see [Ta I.2.12]), and thus

21
the points of D can be separated by a discrete cellular
family in X. Hence X is not pseudo-k-compact.

Conversely, if X is not pseudo-k-compact, then by 5.1
there is a discrete cellular family § in X with |§| = k.

If we pick x. € G for each G € §, then {xG: G € ¢} is

G
closed in X but not [k,k]-compact, and hence X is not

[k,k]-compact.

The proof that every regular Lindeldf space is normal
(see e.g. [En, 1.5.14]) generalizes immediately to yield

the following:
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5.4. Proposition. If X is a regular PK—space with

L(X) < k, then X is normal.

The main result of this section can now be formulated

as follows:

5.5. Theorem. Assume that k is a regular cardinal.
If X is a Ty pseudo-k-compact o-para-x-Lindeldf PK-space,
then X 18 [k,»)-compact.

Proof. By 5.4 and 5.3, it suffices to show that X is

k-Lindeldf. Let { be an open cover of X, and let U&eKVE

be an open refinement of { such that each Vg is locally
<k. Suppose that {/ has no subcover of cardinality <K.
Then clearly there exists py € k such that, whenever V' ¢ VU
with [V'| < k, we have yl/*' # UM

Now there exists an open cover {/* of X such that
ord(w,V ) <x for every W € [/*, and [/* has an open refine-

ment ¥ = U W' such that each W/! is locally <k (and
ek g £ -
clearly ord(W,VU) < k for every W € §). For each § € x,
let W_ =u_ _W!. since X is a P -space, it is easy to
£~ Tn<g'e 5P Y
verify that each Wg is locally <k in X.

We next claim that (by recursion) there exists a

family <G£: € € x? such that, for every ¢ € «, Gg is open

in X, ord(Gg,Wg) < k, and g # Gg c UI/u - cl st(Gn,Wn).

U
n<g
(The recursion is as follows: Let ¢ € g and assume that

(Gn: n € £ is already defined subject to the preceding

conditions, Let V' =V St(Gn'Wﬂ))' and note that

u(Un<£

AN l/u and that |V'| = ]Vu(uun<€wn(cn))| = ]U{V“(W):

WEU W (G )}| < . Hence there exists x € U)/ - ul',
n<g'n n - ¥
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so x € V for some V € VU - V'. Then Vv n ( st(Gn,Wn)) =g,

U
n<g
st(Gn,Wn). It follows that there exists

W

d th
an us x £ cl Un<€

an open set G, in X such that ord(G ) < x and x € G, <

12 12

st(Gn,Wn).)

£'7¢

Ul - cl u
W n<g
Now for ever € k, let U, = U G .
y & ! £ n>&on

and there exist o € «k and W € Wc such

By 5.2, there

exists x € ngEKCI Ug,

that x € W. Clearly W N Gn # 8 #W NG, for some n,f € «

€

with ¢ < n < £. Since W € Wc c Wn, we then have

W c st(Gn,Wn), and hence G, N St(Gﬂ'Wn) # #. This is a

£

contradiction, and we conclude that X is k-Lindelof.

For the special case k = w, the preceding theorem is
the Burke-Davis result 1.2 (and the preceding proof, in this
special case, reduces to that of [BD]).

For the case k = w, we also have the following corol-

lary:

5.6. Corollary. If X is a 'I'3 para-wl~LindeZBf P-space

with dccc, then X is Lindeldf.
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