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CHAIN CONDITIONS IN PARA-LINDELOF 

AND RELATED SPACES 

Robert L. Blair 

Dedicated to the Memory of Eric K. van Douwen 

1.	 Introduction 

A space X is papa-LindeZof (resp. a-papa-LindeZBf> if 

every open cover of X has a locally countable (resp. 

a-locally countable) open refinement, and X has the 

discpete countabZe chain condition (dccc) if every discrete 

family of open subsets of X is countable. Discpete finite 

chain condition (dfcc) is defined analogously. 

The following result of Burke and Davis is proved in 

[Bu, 9.7]. 

1.1. Theopem (Burkeand Davis). Evepy Tychonoff 

pseudocompact papa-Lindelof 8pace i8 Lindelof. 

Burke and Davis in fact conclude that the space is 

compact, but our ostensibly weaker form of their theorem 

is more suggestive of the generalizations con~idered here. 

In 1.1, the hypothesis "pseudocompact" (= dfcc in 

Tychonoff spaces) can be replaced by "dccc." This follows 

readily from known results for T3 spaces (as detailed in 

3.4(b) below and also in [Wa, Note 2]). One of our main 

results is that "Tychonoff pseudocompact" can be replaced 

in toto by "decc" (no separation required). Thus we have: 

Every para-Lindelof dccc space is Lindelof (see 3.3). More 
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generally, we extend 1.1 to higher cardinality by way of 

the following equality among cardinal functions: L(X) = 

pL(X)·dc(X), where L(X), pL(X), and dc(X) are the Lindelof 

number, the para-Lindelof number, and the discrete cellu­

larity of X, respectively (see 3.2). (For definitions of 

these, and other, cardinal functions, see §2.) 

Analogously, we show also that every o-para-Lindelof 

ccc space is Lindelof (4.3) and that, more generally, 

L(X) ~ opL(X) -c(X), where opL(X) and c(X) are the o-para­

Lindelof number and the cellularity of X, respectively 

(4.2). Furthermore, L(X)-til(X) = opL(X)-c(X), where 

til (X) is the tiling nWllber of X (4.6). 

The following generalization of 1.1 is announced in 

[Bu, p. 416] and proved in [BD]: 

1_ 2. :l'heorem (Burke and Davis). Every Tychono!! pseudo­

compact o-para-LindeZo! space is compact. 

While 1.1 and 1.2 are, at least superficially, very 

similar, the generalizations to higher cardinality that we 

obtain for them here are not. In contrast to the generali­

zations of 1.1 cited above, we show that 1.2 (for T3 

spaces) can be cardinally generalized simply by adding a 

suitable cardinal parameter to each of the concepts appear­

ing in its statement. We show, in fact, that if K is a 

regular cardinal, and if X is a T pseudo-K-compact o-para­3 

K-Lindelof PK-space, then X is [K,OO)-compact (5.5). 

The following notation and terminology will be used 

throughout: 
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The letter K will always denote a cardinal. 

For a subset A of a space X and a collection 5 of 

subsets of X, we set S(A) = {S E 5: S n A ~ ~}, st(A,S) 

US(A), and ord(A,S) = IS(A) I. We say that S is ~oca~~y <K 

(resp. ~oca~~y <K) in X if there is an open cover U of X 

such that ord(U,S) < K (resp. ord(U,S) < K) for every U E U. 

If A is another collection of subsets of X, then 

clearly S(U~ = U{S(A): A E A}. 

Unless specifically mentioned to the contrary, no 

separation properties will be assumed. 

I wish to thank G. M. Reed for a number of very useful 

conversations on the subject of this paper, and for calling 

my attention to the relevance of [ReI]' [Re 2 ], and [Re 3 ]. 

I would also like to express my appreciation for the 

generosity with which Eric van Douwen discussed this paper 

with me on numerous occasions, and for his substantive 

contributions recorded in 2.4(b) and 4.7. 

2.	 Some Cardinal Functions 

In this section we describe the main cardinal functions 

of the present paper and record some relationships among 

them. 

A space X is K-Linde~of if every open cover of X has 

a subcover of cardinality 2K, and a ce~~u~ar fami~y in X 

is a pairwise disjoint family of nonempty open subsets of 

X. The Linde~of number L(X), the ce~~u~arity c(X), and 

the discrete ce~~u~arity dc(X) of X are defined as follows: 
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L(X) min{K: X is K-Linde16f} + w, 

c(X) sup{ICI: C is a cellular family in X} + w, 

dc(X) = sup{IDI: D is a discrete cellular family 

in X} + w. 

Of these three cardinal functions, Land c are, of course, 

standard (see e.g. [En, p. 248 and 1.7.12] or [Ju, p. 6]), 

and de is essentially so. (For a regular space X, 

dc(X) = sup{lul: U is 'a locally finite family of open sub­

sets of X} + w (the "pseudocornpactness number" of X 

[CH, 1.1]; see 5.1 below). 

We shall call a space X para-K-Lindelof if every open 

cover of X has a locally ~K open refinement, and a-para­

K-Lindelof if every open cover of X has an open refinement 

that is the union of ~K families, each of which is locally 

<K. We define the para-Lindelof number pL(X) and the 

a-para-Lindelof number apL(X) of X as follows: 

pL(X) = min{K: X is para-K-Linde16f} + w, 

apL(X) = min{K: X is o-para-K-Lindelof} + w. 

Next let U c X. By a K-titing of U in X we mean a 

family J of regularly closed subsets of X such that 

IJI ~ K and uJ cUe cl uJ. (A subset F of X is regutarly 

closed in X if F cl int F (equivalently: F = cl G for 

some open subset G of X).) We say that U is K-tilable in 

X if U has a K-tiling in X. 

If U is an open subset of a regular space X, then 

clearly U is IU\-tilable in X, and we define til(U,X) as 

follows: 

til(U,X) rnin{K: U is K-tilable in X}. 
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The tiling number til (X) of a regular space X is then 

defined in the following way: 

til (X) = sup{til(U,X): U is an open subset of 

X} + w. 

Then, as is easily seen, X is perfectly wd-normal in the 

sense of Reed [Re p. 174] (or, in Reed's earlier termi­3 , 

nology, "has property J" [Re 1.7]) if and only if2 , 

til (X) w. (We shall here call X aountably tilable if 

til (X) w.) 

Obviously every perfectly normal T space is countablyl 

tilable. 

A space X is strongly collectionwise Hausdorff (scwH) 

if every discrete collection of singletons in X can be 

separated by a discrete cellular family in X (see [FR, 

1.1 (d)]) . 

We note the following inequalities involving the 

cardinal functions introduced above: 

2.1. Proposition. 

(1) opL(X) 2. pL(X) < L(X). 

(2) dc(X) < min{L(X),c(X)}. 

(3) If X is reguZar~ then til(X) < c(X). 

(4) If a T space X is scwH and perfect~ thenl 

c(X) = dc(X). 

Proof. (1) and (2) are clear. 

To verify (3), consider any open subset U of X. By 

Zorn's lemma, there exists a maximal pairwise disjoint 

family J of nonempty regularly closed subsets of X such 

that uJ c U. Then, by maximality, U c cl uJ, and since 
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IJI ~ c(X), we conclude that U is c(X)-tilable. Thus 

til(U,X) ~ c(X), and hence til (X) ~ c(X). 

For (4), let § be a cellular family in X, pick 

x E G for each G E §, and let 0 = {xG: G E §}. Since X
G 

is perfect, there exists a countable collection J of 

closed subsets of X such that u§ = uJ. Now for each F E J, 

D n F is discrete and closed in X (since X in T ), andl 

since X is scwH we then have ID n FI ~ dc(X). Then 

I§I = 101 lu{o n F: FE J}I ~ dc(X), and we conclude 

that c(X) < dc(X). 

2.2. Remarks. (a) The first inequality of 2.1(1) 

can be strict (because there exist o-para-Lindelof spaces 

that are not para-Lindelof; see e.g. [FR, 2.5 or 2.6]), and 

the second can also be strict (consider any nonseparable 

metrizable space). 

(b) The inequality of 2.1(2) can be strict (consider 

the space WI of countable ordinals) • 

(c) The inequality of 2.1(3) can be strict (again 

consider any nonseparable rnetrizable space). 

The next result shows that the tiling number is pre­

cisely what is needed for a factorization of cellularity. 

For .the case c(X) = w, this result is due to Reed (who 

notes it, without proof, in [ReI' 5.6]). 

2.3. Proposition. If X is regular~ then c(X) 

til (X) -de (X) . 

Proof. Let K = til (X) and A = dc(X), and let U be a 

cellular family in X. Since til(UU,X) ~ K, there exists 
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a K-tiling J of UU. For each F E J, let 

Up = {U E ti: U n int p ~ ~} 

and 

Vp = {U n int F: U E tip}. 

For each p E J, we have p c uJ c uU, and it follows easily 

that Vp is discrete in X. Since the mapping given by 

U ~ U n int p is a bijection from Up onto Vp ' we therefore 

have ItiFI = I Vpl < A. We also have uU c cl uJ, and from 

this it follows that ti = U{Up : P E J}. Then lUI < 

LpEJltipl ~ K·'\, and we conclude that c(X) < K·'\. The 

reverse inequality follows from 2.1. 

We conclude this section with some remarks which, 

although closely related to the foregoing, will not be 

needed in the sequel. 

2.4. Remarks. (a) A space X is K-paraoompact if 

every open cover of X of cardinality <K has a locally 

finite open refinement (see [Mor, p. 223]). We note the 

following sufficient condition for the equality apL(X) = 

pL(X): If X is apL(X)-paracompact, then aPL{X) = pl{X). 

(For the special case opL(X) = w, this is due to Tall 

[Ta 1.1.21]. The proof in [FR, 3.1f of this special2 , 

case generalizes immediately to yield the present result.) 

(b) Let us call a subset U of X disjointZy K-tiZabZe 

in X if U has a pairwise disjoint K-tiling in X. An open 

set U in a regular space X is disjointly c(X)-tilable in X 

(by the proof of 2.1(3)), and we set dtil(U,X) = min{K: 

U is disjointly K-tilable in X}. The disjoint tiZing 
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number dtil(X) of a regular space X is then defined as 

follows: 

dtil(X) sup{dtil(U,X): U is an open subset 

of X} + w_ 

(Among known cardinal functions, dtil is unusual in that it 

exists in ZFC, but (presumably) not in ZF.) Clearly 

til (X) ~ dtil(X), but we do not know whether this inequality 

can be strict. Van Douwen has noted (personal communication) 

that dtil(X) = w if X is metrizable, and that this is true, 

more generally, if X is regular and either (1) has a 

a-discrete n-base [Ju, 1.4] or (2) is scwH and has a dense 

a-closed-discrete subset. The argument is as follows: 

(1) and (2) each imply that there is a sequence {O : nEw}
n 

of subsets of X such that U 0 is dense in X and such
nEw n 

that, for each nEw, the points of On can be separated by 

some discrete cellular family in X. Let U be open in X. 

By a routine recursion, there exists a sequence {J : nEw}
n 

such that: 

(i) For each nEw, I is a discrete family of regularlyn 

closed subsets of X and U{D i n U: i ~ n} C U{U]i: i < n}. 

(ii) (U] : nEw) is a pairwise disjoint sequence of 
n 

subsets of U. 

Then it is easy to verify that {U]n: nEw} is an 

w-tiling of U. 

3. Para-Lindelof dccc Spaces are Lindelof 

We begin with a lemma that is an analogue of several 

known results (see e.g. [Mo, Chap. 1, Theorem 18] and [Bl, 

2 . 3 and.;4. 3] ) • 
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3.1. Lemma. Let K be a cardinal and let Wbe a 

locally <K open cover of X. Then there exists a discrete 

collection Y of open subsets of X such that: 

(1) For every G,G' E Y with G ~ G'~ G n st(G',W) g. 

(2) For every G E y~ ord(G,W) < K. 

(3) X = cl st (U,Y, W) • 

Proof. By Zorn's lemma, there is a collection y of 

open subsets of X that is maximal with respect to (1) and 

(2). Clearly y is a discrete collection that satisfies (3). 

The main result of this section is now as follows: 

3.2. Theorem. If X is any space~ then L(X) 

pl (X) -dc (X). 

Proof. Let K = pL(X) and A = dc(X), and let U be an 

open cover of X. Then U has a locally <K open refinement 

V, there is an open cover W, of X such that ord(W,V) < K 

for every W E WI, and W, has a locally <K open refinement W 

(and, of course, ord(W,V) ~ K for every W E W). By 3.1, 

there is a discrete cellular family y in X such that 

ord(G,W) < K for every G E Y and such that X = cl st(UY,W). 

Since V covers X, this last equality implies that 

x = UV(UW(Uy)). But IW(Uy)1 IU{W(G): G E y}1 < K-A, and 

hence IV(UW(Uy))! = IU{V(W): WE W(Uy)}1 ~ K-A. Since V 

refines U, it is clear now that U has a subcover of 

cardinality ~ K·A, and thus L(X) < K·A. The reverse 

inequality follows from 2.1. 

3.3. Corollary. Every para-Lindelof dccc space is 

Linde lof. 
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3.4. Remarks. (a) Wiscamb noted 3.3 with "para-

Lindelof" replaced by "paracompact" [Wi, 2.3], and Juhdsz 

obtained 3.3 with "dccc" replaced by "ccc." (Juhasz's 

result appears in [Tal' 6.1] and [Ta 1.3.13]; cf. [Tal'2 , 

3.4].) We extend Juhasz's result in a different way in 

4.3 below. 

(b) Actually, for T spaces, 3.3 is already a conse­3 

quence of known results. To see this, note that if X is a 

T para-Lindelof space, then X is scwH [FR, 1.7]. Hence,
3 

if X is also dccc, then X is wI-compact. But a T para­l 

Lindelof (in fact, meta-Lindelof) wI-compact space is known 

to be Lindelof. (This last fact is implicit in Aquaro 

[Aq], and is recorded explicitly by Aull in [Au, Corollary 

l(c)].) See Watson [Wa, Note 2] for a similar explanation. 

Watson is assuming X is Tychonoff and also uses [FR, 1.7], 

for which regularity is necessary. 

4.	 0 ·Para-Lindelof ccc Spaces are Lindelof 

We begin with a lemma similar to 3.1. 

4.1. Lemma. If K and-~ are cardinals~ and if 

/)/ = UnEK/)/n is an open cover of X such that each /)/n is 

locally <~ in X~ then there exists a fami ly (§n: n E K > 

such that: 

(1) For each n E K~ §n is a cellular family in X such 

that	 U§n C U/)/n. 

(2) For every n E K and every G E ~ ~ ord(G,/)/ ) < ~.:tn n 

(3) X	 = cl U E st(U§ ,/)/ ).n K n n 
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Proof· Let <P be the set of all families (y : 11 E K )
11 

that satisfy (1) and (2) , and partially order <P as follows: 

(y : 11 E K ) < (H : 11 E K ) if Y c H for every 11 E K. By
11 11 11 11 

Zorn's lemma, <P has a maximal member (y : 11 E K ). Now if 
11 

V X - cl U E st(Uy ,W ) ~ ~, then obviously there exist
11 K 11 11 

Y E K and W E W such that V n W ~ ~, and hence there is a 
y 

nonempty open set G* c V n W such that ord(G*,W ) < ~. 
Y 

But then (y*: 11 E K) E <P, where y* = y if 11 ~ Y and 
11 11 n 

y* = y U {G*}, which contradicts the maximality of 
y y 

(y : n E K). Thus the latter also satisfies (3).
n 

4.2. Theorem. If X is any space, then L(X) < 

apL(X) ·c(X). 

Proof. Let K = apL(X) and A = c(X), and let lj be an 

open cover of X. Then U has an open refinement V = U~EKV~, 

where each V~ is locally <K in X, and for each ~ E K there 

is an open cover W~ of X such that ord(W,V~) < K for every 

W E W~. Then for each ~ E K, W~ has an open refinement 

W~ = UnEKW~11' where each W~11 is locally <K in X (and clearly 

ord(W,V~) ~ K for every W E W~). Moreover, for every ~ E K, 

there exists, by 4.1 (applIed to W~), a family (Y~11: n E K) 

of cellular families in X such that, for every n E K and 

every G E Y~n' Ord(G,W~11) < K, and such that 

X = cl U E st(U5e ,We). It follows that each nonempty 
n K '?n '?11 

member of V belongs to V (U E st(Uy ,W )) for some· y E K,
Y n K yn yn 

and hence that X = uV*, where 

V* = U~EKV~(U11EKst(uY~n,W~n)). 

Now for every ~,n E K, we have 
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Then I V~ (UnEKst (UY~n ,W~n)) I = I V~ (U nEK (UW~n (UY~n))) I 

I Vt.: (U (UnEKWt.:n (UYt.:n))) I 

IU{ V~ (W): W E UnEKWt.:n (UYt.:n)} I < K-A, 

and hence IV*I ~ K-A- Since V* refines U, it follows that 

U has a subcover of cardinality < K-A, and hence L(X) < K-A. 

As a special case of 4.2, we have: 

4.3. CoroZlary. Every o-para-Lindelo! ccc space is 

Linde lot. 

In a context which guarantees that c(X) = dc(X) (for 

example, if X is either (i) T scwH, and perfect (2.1(4»l , 

or (ii) regular and countably tilable (2.3»), then 4.2 

implies that L(X) = opL(X)-dc(X) _ In general, however, 

we do not know whether c(X) can be replaced by dc(X) in 

4.2. In particular, we leave open the following problem: 

4.4. Problem. Is every a-para-Lindelof dccc space 

Lindelof?l 

Recall that the spread s(X) of a space X is defined 

as follows: s(X) = sup{IDI: D is a discrete subspace of 

X} + w [Ju, 1.9]. For a cardinal function ~, we denote its 

hereditary version by h~ (i.e., h~(X) = sup{~(Y): Y ex}). 

lAdded in revision: In response to 4.4 (as circulated 
in an earlier version of this paper), R. W. Heath and G. M. 
Reed have independently constructed examples of T3 non­
Lindelof dccc spaces with a-locally countable bases, thus 
answering 4.4 in the negative. (Reed's example is actually 
a Moore space.) These examples were announced at the 
Spring Topology Conference held at the University of Ala­
bama at Birmingham, March 19-.21, 1987. 
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From 4.2 and the fact that hc(X) = s(X) < hL(X), we deduce 

the following hereditary version of 4.2: 

4.5. Corollary. If X is any space, then hL(X) 

hapL (X) • s (X) . 

The inequality of 4.2 can obviously be strict (for 

example, consider any compact space X with c(X) > w). 

In the following result we show that, for regular spaces, 

equality can be achieved by introducing the tiling number 

as well. (As an equality between two products of cardinal 

functions, this result is unusual.) 

4.6. Corollary. If X is regular, then L(X)·til(X) 

apL(X) ·c(X). 

Proof. This follows from 4.2, together with the 

inequalities til (X) ~ c(X), L(X) ~ opL(X) , and 

L(X)·til(X) > dc(X)·til(X) = c(X) (see 2.1 and 2.3). 

4.7. Remark. I am indebted to Eric van Douwen for 

the following observations: 

In view of 4.6, for regular spaces X there are exactly 

six possible sets of inequalities among the four cardinal 

functions L, til, apL, and c. These are: 

(1) til(X) c(X) > L(X) > apL(X). 

(2) til(X) < c(X) < L(X) opL(X). 

(3) til(X) c(X) L(X) opL(X). 

(4) til(X) < c(X) L(X) opL(X). 

(5) til (X) c (X) L (X) > apL (X) . 

(6) til (X) < c (X) L (X) > apL (X) • 
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Moreover, each of these six possibilities can actually occur. 

(For (1), take X compact with c(X) > Wi for (2), take X 

separable but not Lindelof; for (3), take X = ~; for (4), 

take X = Xl + X2 with Xl separable but not Lindelof and 

with X2 discrete and Ix21 L(X ) i for (5) , take X = Xl + X2l 

with Xl compact and c(X ) > wand with X discrete and
I 2 

Ix21 = c (Xl); and for (6) , take X nonseparable metric.) 

5. A Cardinal Generalization of 1.2 

Let K and A be infinite cardinals. As usual, a space 

X is [K,A]-compact if every open cover of X of cardinality 

2. Ahas a subcover of cardinality <K, X is [K ,(0) -compac t if 

X is [K,~]-compact for every infinite cardinal ~, X is 

pseudo-K-compact if every locally finite family of open 

subsets of X has cardinality <K, X is a PK-space if the 

intersection of <K open subsets of X is always open in X, 

and X is a P-space if X is a P -space.
wI 

It is known that a Tychonoff space is pseudo-w-compact 

if and only if it is pseudocompact (see [En, 3.10.22]). 

Moreover, for regular spaces, the following alternative 

formulation of pseudo-K-compactness is known (see e.g. 

[Fr, 2.5.3] or [Wi, 2.6] (the latter for K = wI)): 

5.1. Proposition. A regular space X is pseudo-

K-compact if and only if every discrete cellular family in 

X has cardinality <K. 

5.2. Proposition. If K is a regular cardinal and 

if X is a regular PK-space, then the following are equiva­

lent: 
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(1) X is pseudo-K-compact. 

(2) If (Us: s E K) is a decreasing family of nonempty 

open subsets of X, then n cl Us ~ ~.
sEK 

Proof· (1) ~ (2). Assume there exists a decreasing 

family (Us: s E K) of nonempty open subsets of X such that 

nsEKcl Us =~. By recursion, there is a family 

(G : s E K) such that: 
s 

(a) For each s E K, G~ is a nonempty open subset of 

X with cl G c Us - cl U
0

for some 0 > S • s 

(b) For every s,n E K with s t n, cl G n cl G = ~. 
s n 

(The recursion is as follows: Let s E K and assume 

that ( G : n < s ) is already defined subject to (a) and 
n 

(b) . Then for each < ~ , cl G c X - cl U for somen n o (n) 

n · n s} •o (n) > Let 0 = sup{o (n) : < Since K is regular, 

0 < K (and clearly s < 0) • Pick any x E U Then x fl cl U - 0 y 

for some y E K, and necessarily y > s· By regularity of X, 

we then have cl G C U - cl U c Us - cl U for some non­s a y y 

empty open subset G of X.) 
s 

Now let x E X and note that x ~ cl U~ for some s E K. 

Let A = {n E ~: x ¢ cl G } and let H X - (cl Us U 
n

UnEAcl G ). Then, in view of the fact that X is a 
n 

PK-space, H is a neighborhood of x that meets G for at 
y 

most one y E K. Thus (G : s E K) is discrete in X, and 
s 

hence X is not pseudo-K-compact. 

(2) ~ (1). Assume (1) is false so that, by 5.1, there 

exists a discrete cellular family (H~: ~ E K) in X. For 

every s E K, let Uc = U cH. Then, by (2), there exists 
~ 1l~~ n 

x E n~EKcl Us. But then each neighborhood of x meets He 

and H for distinct 0 and 11, which is a contradiction. 
n 
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For the special case of 5.2 for which K wand X is 

Tychonoff, see for example [En, 3.10.23]. 

The next proposition generalizes the well-known fact 

that a normal T space is pseudocompact if and only if itl 

is countably compact [En, 3.10.20 and 3.10.21]. 

5.3. Proposition. Let K be a regular cardinal. A 

T normal PK-space X is pseudo-K-compact if and only ifl 

it is [K,K]-compact. 

Proof. If X is not [K,K]-compact, then (since K is 

regular) there exists 0 C X with 101 = K and such that 0 
has no complete accumulation point in X [AU, Chap. 1, 

Theorem 3r b J , i.e., each x E X has a neighborhood U in X a, 

such that IU n 01 < 10 1. Now since X is a PK-space, it 

follows that 0 has no accumulation point in X, and thus 0 

is closed discrete. Moreover, since X is also normal, X 

is K-collectionwise normal (see [Ta 1.2.12]), and thus2 , 

the points of D can be separated by a discrete cellular 

family in X. Hence X is not pseudo-K-compact. 

Conversely, if X is not pseudo-K-compact, then by 5.1 

there is a discrete cellular family § in X with I§I K. 

If we pick xG E G for each G E §, then {x : G E §} is
G

closed in X but not [K,K]-compact, and hence X is not 

[K,K]-compact. 

The proof that every regular Lindelof space is normal 

(see e.g. [En, 1.5.14]) generalizes immediately to yield 

the following: 



TOPOLOGY PROCEEDINGS Volume 11 1986	 263 

5.4. Proposition. If X is a regular PK-space with 

L(X) < K, then X is normal. 

The main result of this section can now be formulated 

as follows: 

5.5. Theorem. Assume that K is a regular cardinal. 

If X is a T pseudo-K-compact o-para-K-Lindelof PK-space~3 

then	 X is [K,OO)-compact. 

Proof. By 5.4 and 5.3, it suffices to show that X is 

K-Lindelof. Let U be an open cover of X, and let U~EKV~ 

be an open refinement of U such that each V~ is locally 

<K.	 Suppose that U has no subcover of cardinality 2K. 

Then	 clearly there exists ~ E K such that, whenever VI c V 
l.l 

with I VI 12K, we have UVI ~ uV · 
l.l 

Now there exists an open cover W* of X such that 

ord(W,V ) < K for every W E W*, and W* has an open refine-
l.l ­

ment W= U~EKWk such that each Wi is locally <K (and 

clearly ord(W,V ) < K for every W E W). For each ~ E K, 
~ 

let W = Un~sWk. Since X is a PK-space, it is easy tos 
verify that each W~ is locally <K in X. 

We next claim that (by recursion) there exists a 

family (G : s E K) such that, for every s E K, G is opens	 s 
in X, ord(G~,W~) 2 K, and ~ ~ G~ c UVl.l - cl Un<~st(Gn,Wn). 

(The recursion is as follows: Let ~ E K and assume that 

(G :	 n E s) is already defined subject to the preceding
n 

conditions. Let VI = V (U. ~st(G,W», and note that 
~ n<'? n II 

VI C VlJ and that I VII = I Vl.l(UUn<~Wn(Gn» I IU{Vl.l(W): 

W E U ~W (G )}I < K. Hence there exists x E uV - UVI,n<'? n n	 lJ 
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so x E V for some V E V - VI. Then V n (u <~st{G ,W » = ~, 
~ n ~ n n 

and thus x ~ cl U <~st{G ,W ). It follows that there exists n '? n n
 
an open set G in X such that ord{Gs'W ) 2 K and x E G~ c
 

s s
 

uV - cl U <~st{G ,W ).)

lJ 11 '? n n 

Now for every ~ E K, let Us = Un~~Gn. By 5.2, there 

exists	 x E n~EKcl U~, and there exist a E K and W E W such o 

that x	 E W. Clearly W n G ~ ~ ~ W n G~ for some n,~ E Kn 
with a	 < n < s. Since W E W c W , we then have o n

W c st{G ,W ), and hence G~ n st{G ,W ) ~~. This is a
 

n n	 '? n n 
contradiction, and we conclude that X is K-Lindelof. 

For the special case K = w, the preceding theorem is 

the Burke-Davis result 1.2 (and the preceding proof, in this 

special case, reduces to that of [BD]). 

For the case K = wI we also have the following corol­

lary: 

5.6. Corollary. If X is a T para-wI-Lindelof P-spaae3 

with dccc~ then X is Lindelof. 
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