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THE ROLE OF REFINABLE MAPS-A SURVEY 

Hisao Kato and Akira Koyama 

In [15], Heath and Rogers defined a generalization of 

the notion of near-homeomorphisms c~ll~d refinable maps. 

Refinable maps are interesting and useful in continuum 

theory, dimension theory, shape theory and ANR theory, and 

many authors have investigated them. The Japanese School 

has made many contributions in the study of refinable maps. 

The presented paper is based on a discussion by the authors 

at the 6th Geometric Topology Summer Seminar (July 21-25, 

1985, Yamanaka-Lake). Most results presented here are 

published elsewhere or are forthcoming. A few observations 

seem to be new. Open problems from other sources are 

included. 

1. Refinable Maps and Other Classes of Maps 

Throughout this paper a map is a continuous function, 

and, unless there is some indication to the contrary, 

f: X ~ Y means that f maps X onto Y. Except in the last
 

section, all spaces considered are oompact metric spaces.
 

A continuum is a connected compact metric space. For
 

E > 0, a map f: X ~ Y is said to be an £-map if diam[f-l(y)]
 

< ( for each y t Y. A map r: X ~ Y is refinable if for 

each ( > 0, there is an £-map f: X + Y such that 

d(r,f) = sup{d(r(x) ,f(x)) Ix E X} < (. 

Such a map f is called an (-refinement of r. Equivalently, 

r is a uniform limit of (-maps for every ( > o. Refinable 
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maps clearly include near-homeomorphisms but, by easy 

examples, the notions are not equivalent even when both 

the range and domain are polyhedra. On the otherhand, under 

some conditions on the domains, refinable maps are near-

homeomorphisms. That is, 

1.1. Let r: X + Y be a refinable map. If anyone of 

the following conditions is satisfied J then r is a near­

homeomorphism. 

(i) X is a graph ([17]). 

(ii) X is a closed 2-manifold ([15] and [43]). 

(iii) X is a closed n-manifold~ n > 4J and Y is an ANR 

([13] and 1.6). 

(iv) Both X and Yare Q-manifolds ([10] and 1.6). 

(v) Either X or Y is the Cantor set ([26]). 

(vi) Either X or Y is the pseudo-arc ([26]). 

A map f: X + Y is weakly confluent provided that for 

each continuum KeY, there exists a component C of f-l(K) 

such that f(C) K. The following was obtained by Heath 

and Rogers [15]: 

1.2. Every refinable map is weakly confluent. 

Next, by adding some conditions on the range, we will 

consider interesting relationships between refinable maps 

and known kinds of maps in continuum theory and shape theory. 

A map f: X + Y is said to be confluent if for each 

continuum K c Y and each compone~nt C of f- l (K), we have 

f(C) =.lS ; and f is monotone if f-l(K) is connected for each 

connected subset KeY. A space X has property [k] provided 
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that, for each E > 0, ther exists 6 > a such that, if 

a,b E X, d(a,b) < 6, and A is a continuum in X with a E A, 

then there exists a continuum B in X such that b E Band 

dH(A,B) < E, where d is the Hausdorff metric induced by aH 

metric d on X. Property [k] was defined by Kelley [27] and 

he proved that if a continuum X has property [k], the 

hyperspace C(X) of sUbcontinua of X is contractible. Note 

that every locally connected continuum has property [k] 

but, by an easy example, the converse is not valid. 

1.3. Let r: X + Y be a refinable map. If Y has 

property [k] ~ then r is confluent [26] (see §6 for a 

genera lization). 

Note that 1.3 is an extension of [36] and that the 

condition "Y has property [k]" is essential (see also [26]). 

1.4. Let r: X + Y be a refinable map. If Y is 

locally connected~ then r is monotone ([15]). 

We will consider circumstances under which monotone 

maps are refinable maps. Let ~ be a collection of spaces. 

A space X is said to be P-Zike if for each E > 0, there 

are an element P of ~ and an £-map f: X + P. If ~ consists 

of a single element P, then we say X is P-like if it is 

~-like. 

1.5. Let f: X + Y be a monotone map. If anyone of 

the following conditions is satisfied~ then f is refinable. 

(i) X is a chainable continuum and Y is an arc ([15]). 



320 Kato and Koyama 

(ii) X is a 51 v··· v 5 -Zike continuum and y is n 

Sl v··· v Sn~ n ~ l~ where 51 v··· v 5n~ n > l~ denotes 

a one-point union of n circZes ([22]). 

By 1.5, we can see that hereditarily decomposable 

chainable continua and hereditarily decomposable circle-like 

continua admit refinable maps onto an arc and a circle, 

respectively ([15] and [22]). 

A space X is ZocaZZy n-connected, X E LCn , if for 

each point x E X and each neighborhood U of x in X, there 

is a neighborhood V of x such that V c U and every map 

h: Sk ~ V, k < n, is null-homotopic in U; and X is ZocaZZy 

contractibZe, X E LC, if for each point x E X and each 

neighborhood U of x in X, there is a neighborhood V of x 

such that V c U and V is contractible in U. Clearly LCD is 

equivalent to being locally connected and every locally 

contractible continuum is locally n-connected for every 

n > 0. A space X in the Hilbert cube Q is approximateZy 

n-connected if for each neighborhood U of X in Q, there is 

a neighborhood V of X such that V c U and every map 

h: Sk ~ V, k ~ n, is null-homptopic in Ui and X has triviaZ 

shape (or the shape of a point) if for every neighborhood 

U of X in Q, there is a neighborhood V of X such that V c U 

and V is contractible in U. Note that the properties of 

being approximatively n-connected and of having trivial 

shape are not dependent on the embedding of X in Q, and 

therefore we denote those by X E ACn and sh(X) 0, 

respectively. Our notations and terminologies in shape 

theory are due to 135]. We refer readers to see [35] for 

shape theory. 
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A map f: X -+- Y is UVn-map if f-l(y) E ACn for each 

y E Y; and f is a CE-map (ce l Z- like) if sh (f- l (y)) = 0 

for each y E Y. uvn-maps and CE-maps are interesting and 

useful concepts in ANR theory, shape theory, and dimension 

theory, and have been investigated by many authors. The 

following fact suggests that refinable maps may be useful 

in those theories. 

1.6. Let r: X ~ Y be a refinable map. If Y E LCn 

and	 n > O~ then r is a uVn-map. 

Moreover~ if Y E LC~ then r is aCE-map ([21]). 

Finally, we show some of the relationships among the 

above types of spaces and maps. The converses of the 

implications are false. 

ANR ~ LC ~ LCn 
~ locally connected ~ property [k] 

CE ~ UVn 
~ monotone ~ confluent 

~ weakly confluent 

2. Refinable Maps in Continuum Theory 

In this section we will consider a fixed but arbitrary 

refinable map r: X ~ Y between continua. Since X is Y-like 

and, by 1.2, r is weakly confluent, some properties in 

continuum theory can be considered. In this section we 

summarize interesting properties and make a table, which 

may clarify the role of refinable maps in continuum theory. 

The image (domain) column answers the question, does the 

image set (domain) of a refinable map have the indicated 

property, whenever the domain (image set, respectively) 

has that property? 



322 Kato	 and Koyama 

Property Image Domain Reference 

decomposable Yes Yes [15] 

hereditarily decomposable Yes No [26] 

hereditarily indecomposable Yes Yes [26] 

irreducible Yes Yes [26] 

atriodic Yes Yes [26] 

property [k] Yes No [26] 

span of zero Yes Yes [31] 

aposyndetic Yes No [20] 

strongly aposyndetic Yes No [45 ] 

7'-like (not specified) Yes No 

7'-like (7' consists of ANR's) Yes Yes [15] 

the pseudo-arc Yes Yes [26] 

Table 

In [46] Wardle proved that confluent maps preserve 

property [k], and in [37], Question (16.38), Nadler asked: 

What kinds of maps preserve property [k]? Refinable maps 

give a partial answer to his question [26]. On the other 

hand, refinable preimages of continua having property [k] 

need not have property [k]. 

2.1.	 Exampte ([26]). In the plane R2 
, put 

X = {(x,sin !) ° < x < l} U { (0 ,y) I -1 .s. y .s. 2}x 
1u {(x'2 + sin !.) I -1 < x < o} ,x 

Y = {(x,D) I -1 < x < I}. 

Define a map r: X ~ Y by r(x,y) = (x,O) for (x,y) E X. 

Then r is refinable and Y has property [k], but X does not 

have property [k]. 

3 
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Refinable maps preserve the contractibility of C(X) 

for continua X that have property [k], since they preserve 

property [k] [26] and property [k] implies contractibility 

of the hyperspace [27]. It is not known whether contracti­

bility of the hyperspace is preserved in the absence of 

property (k], so we have the following question. Note 

that in Example 2.1, C(Y) is contractible but C(X) is not 

contractible. 

Question 1 ([26]). Let r: X + Y be a refinable map 

between continua. If C(X) is contractible, then is C(Y) 

contractible? 

Other questions are listed as follows: 

Question 2 ([26]). Let r: X + Y be a refinable map 

between continua. If X is irreducible between a and b, 

then is Y irreducible between r(a) and r(b)? 

A partial answer of Question 2 has appeared in [20]. 

Question 3 ([15]). Do refinable maps preserve the 

property of being rational? 

3. Refinable Maps in Dimension Theory 

A space X is weakly infinite-dimensional if for any 

countable family {(Ai,B ) Ii = 1,2,3,···} of pairs ofi 

disjoint closed subsets of X, there are separators 5 i 

between Ai and B in X (i = 1,2,3,···,) such thati 

ni>lsi =~. A space is strongly infinite-dimensional if 

it is not weakly infinite-dimensional. A space X is 
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countable-dimensional if X 

each i > 1. 

3.1. (1) Let r: X -+ Y be a refinable map. Then 

(i) dim X dim Y ([22] and [39], c.f. 6.7)~ and 

(ii) if X is weakly infinite-dimensional~ then Y is 

also weakly infinite-dimensional ([24]). 

(2) There exists a refinable map from a strongly 

infinite-dimensional AR onto a countable-dimensional AR 

([24]) • 

(3) There exists a refinable map from a weakly infinite­

dimensional~ not countable-dimensional AR onto a countable-

dimensional AR ([24]). 

It is well-known that if spaces X and Yare quasi­

homeomorphic, i.e., X is Y-like and Y is X-like, then 

dim X = dim Y. In the constructions of 3.1 (2) and (3), 

the spaces are quasi-homeomorphic (c.f. 5.1 and 5.2 below). 

Hence some notions of infinite-dimensional spaces are not 

invariant under quasi-homeomorphisms. 

We know that between countable-dimensionality and weak 

infinite-dimensionality there is another notion called 

property C. A space X has property C if for each sequence 

{Ui I i ~ l} of open covers of X, there is an open cover 

V = u{Vi Ii> I} of X such that for each i > 1, Vi is a 

pairwise disjoint collection which refines Ui. Property 

C is investigated in ANR theory and shape theory and has 

proved to be useful and interesting in these theories. 

Ancel [1] found a kind of map which preserves property 

C. A map f: X -+ Y is approximatively invertible [2] if 
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some embedding i: X ~ Z has the following property: For 

every collection Wof open subsets of Z which is refined 

by the family {i(f-l(y)) y E Y}, there is a map g: Y ~ Z 

(not necessarily surjective) such that {{gf(x) ,i(x)} 

x E X} refines W. 

3.2. Approximatively invertible maps preserve 

property C [2]. 

We can easily see that every refinable map is 

approximatively invertible. So we have 

3.3. Refinable maps preserve property C. 

Concerning these notions we know the following 

implications. 

finite-dimension ~ countable-dimension ~ property C 

~ weak infinite-dimension 

So, related to our results, the next problem is interesting. 

Question 4 ([24]). Do refinable maps preserve 

countable-dimension? 

We note that example 3.1 (3) is based on R. Pol's 

example [41], which, in fact, has property C but is not 

countable-dimensional. It is still unknown whether there 

exists a weakly infinite-dimensional space which does not 

have property C. This is a big and important problem in 

dimension theory. 

Next, we discuss an extension property which was 

motivated by dimension theory and was introduced in [30]. 
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A space X is said to be extendable with respect to a class 

K of ANR's [30] if for any closed subset A of X, any 

element K of K, and any map f: A ~ K, there is a continuous 

extension of f over X. For example, for a normal space X, 

dim X < n if and only if X is extendable with respect to 

{Sn} • 

A space X has small aohomologiaal dimension < n with 

respect to an abelian group G, written d(X:G) < n, provided 

that each map f: A ~ K(G:n), from a closed subset A of X 

into an Eilenberg-MacLane complex K(G:n), extends to a map 

f: X ~ K(G:n). That is, d(X:G) < n if and only if X is 

extendable with respect to {K(G:n)}. Concerning extenda­

bility we have 

3.4. Let r: X ~ Y be a refinable map. If X is 

extendable with respect to a class K of ANR's, then so is 

Y ([30]). 

3.5. Let r: X ~ Y be a refinable map. Then 

d(X:G) > d(Y:G) for every abelian group c. 

Question 5 ([30]). Let r: X ~ Y be a refinable map 

and let K be a class of ANR's. If Y is extendable with 

respect to K, then is X also extendable with respect to K? 

Especially, does the inequality d(X:G) < d(Y:G) hold? 

4. Refinable Maps in ANR Theory 

In this section we will consider refinable maps 

defined on ANR's. The following lemma from [33] is a key 

tool for investigating such refinable maps. 
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4.1. Let f: X + P be a map fY'om a space X to an ANR P. 

Then for every E > O~ there is 0 > 0 such that if g: X + Y 

is a o-map~ there is a map h: Y + l? such that d(hg,f) < E. 

A space X is an apppoximative po lyhedron (AP) [34] if 

for every E > 0, there is a polyhedron P and there are maps 

f: X + P and g: P + X such that d(gf,lx) < E. Every ANR 

is clearly an AP. In [34], Marde~i6 showed that the notions 

of compact metric AP's, Borsuk's NE-sets [6] and Clapp's 

AANR's [11] are equivalent. Then by 4.1, we have interest­

ing properties of refinable maps defined on AP's and ANR's. 

4.2. If r: X + Y is a refinable map and X is an AP~ 

then for each E > O~ there is a map g: Y + X such that 

d(gr,lx) < E. 

In particular~ X and Yare quasi-homeomorphic ([15] 

and [40]). 

4.3. If r: X + Y is a refinable map and X is an ANR~ 

then X is homotopy dominated by Y. Moreover~ if Y is an 

ANR~ then r is a homotopy equivalence ([15]). 

Now we notice the known results concerning quasi-

homeomorphic ANR's. Eilenberg [12] showed that if X and Y 

are quasi-homeomorphic ANR's, then X homotopically dominates 

Y and Y homotopically dominates X. In particular, if X and 

Yare 2-dimensional planar ANR's, then X and Yare quasi­

homeomorphic if and only if they are homotopy equivalent; 

and if X is an n-dimensional ANR and X is M-like for some 

closed n-dimensional manifold M, then X is homotopy equiva­

lent to M ([16]). If the 2-dimensional ANR X is M-like for 
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some closed 2-dimensional manifold M, then X is homeomorphic 

to M (see [16) and see [38] for a generalization). However, 

we do not know whether every pair of quasi-homeomorphic 

ANR's are homotopy equivatent. 

On the other hand, Borsuk [3] constructed a 3-dimensional 

continuum which is quasi-homeomorphic to the 3-ball but is 

not an ANR. In fact, it is not locally l-connected and 

does not have the fixed point property. Hence, by the 

above discussion, the following problem seems to be the 

biggest one about refinable maps. 

Question 6 ([15]). If r: X ~ Y is a refinab1e map and 

X is an ANR, need Y also be an ANR? 

In particular, consider the case where X is the 

n-sphere or an n-manifold, n > 3. 

We have partial answers as follows: 

4.4. Let r: X ~ Y be a refinable map. Then 

(i) if X is a l-dimensional ANR~ then Y is atso a 

l-dimensional ANR ([22] and [39])~ and 

(ii) if X is an fu~R which is embedded in a 2-manifotd 

M~ then Y is an ANR which is atso embeddabte in M ([14] 

and [38]). 

Heath and Kozlowski [14) have some interesting results 

related to Question 6, namely: 

4.5. Let r: X ~ Y be a refinabte map defined on a 

finite-dimensionat ANR X. If anyone of the fottowing 

conditions is satisfied~ then Y is an ANR: 
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(1) -1 
r (Y) is ZocaZZy connected for each Y E y~ 

(2) 
-1 r (y) is nearZy I-movabZe for each Y E Y~ 

( 3) 
-1 r (y) E AC l for eaah y E Y~ 

(4 ) y E Lcl~ or 

(5) r has a monotone E-refinement for each E > o. 

ConverseZy~ if Y is an ANR~ then~ by 1.6~ aonditions 

(1)-(4) are satisfied. 

4.6. Let r: X ~ Y be a refinabZe map. Then if X is 
vk -1 v_l an ANR~ H (r (y)) = 0 Hk(r (y)) for aZZ k > o. 

If it is possible to construct a refinable map on a 

finite-dimensional ANR whose image is not an ANR, each 

fiber must be acyclic and not nearly I-movable. Continua 

having such properties are rare; the Case-Chamberlin curve 

is a typical one. So the example will be very complicated 

if it exists. 

The following strong result and problem are also in 

[14] • 

4.7. Let X be a aompaatum in 53. Then the projeation 

p: S3 ~ S3/X is refinable if and only if X is aellular~ 

if and only if r is a near-homeomorphism. 

nQuestion 7. Let X be a compactum in S , n ~ 4. If 

the projection p: Sn ~ Sn/X is refinable, then must X be 

cellular? 

Concerning generalized ANR's, we have the following. 
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4.8. If r: X ~ Y is a refinable map and X is an AP, 

then Y is also an AP. 

See [7] and [40] for other results concerning 

generalized ANR's and refinable maps. 

5. Refinable Maps in Shape Theory 

Related to 4.2, Heath and Rogers [15] posed the natural 

question: Do refinable maps preserve shape? First, 

Watanabe pointed out the negative answer using Borsuk's 

example [5]. In Borsuk's construction, decomposing spaces 

into their components played an important role. Hence 

his compacta are, unfortunately, not connected. Here we 

3will construct locally connected continua X and Y in R , 

and a refinable map r: X ~ Y such that sh(X) I sh(Y), and 

X and Yare quasi-homeomorphic. 

From [24], we obtain a-method of constructing refinable 

maps. 

5.1. For an arbitrary space Z, there exist compacta 

X, Y, and a refinable map r: X ~ Y such that 

(1) Z is a retract of X, 

(2) Y is countable-dimensional, movable and locally 

connected, and 

(3) if z is a locally connected continuum J X and Y 

are quasi-homeomorphic. 

Moreover, if dim Z < n J we can construct X and Y so 

that dim X < n and dim Y < n. 
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5.2. ExampZe ([23]). Let Z be the non-movable 

2-dimensional locally connected continuum in R3 defined 

by Borsuk [4]. Then there is an inverse sequence «Zn,zn),f )n 

of closed surfaces Zn of genus n and surjective bonding maps 

f such that Ilm (Zn,f ) = Z. By the construction in 5.1,n n 

we obtain locally connected continua X and Y, and a refinable 

map r: X -+ Y such that X and Yare embeddable in R3• Then, by 

5.1, (1) and (2), X is non-movable but Y is movable. Hence 

sh(X) I sh(Y). 

nConcerning compacta in R , we have the following ([23] 

and [42]). 

n5.3.	 If X and Yare oompaota in R and there is a 

n nrefinabZe map from X onto Y~ then R - X and R - Y have 

the same number of oomponents. 
") 

Therefore if X and Y are in R'~ then sh(X) sh(Y) • 

In spite of the example, refinable maps play an 

interesting part in shape theory, and under some conditions 

the question of shape preservation has an affirmative 

answer. For this purpose we introduce some notions in 

shape theory. 

Let K be an arbitrary category. A system map 

F = {f,fb,B}: X= {Xa,Paa"A} -+ Y= {Yb,qbb"B} is a 

pseudo-isomorphism [22] if for each b E B and each 

a > f(b), there exist g(a,b) > b and a morphism g(a,b): 

Yg(a,b) -+ Xa such that 
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for every b' ~ g(a,b), there exist h(b') > a and a 

morphism hb ,: Xh(b') ~ Yb , such that 

fbPf(b)ag(a,b) = qbg(a,b)' and 

g(a,b)qg(a,b)b,hb , = Pah(b')· 

A morphism f: X~ Yin pro-K is called a pseudo-isomorphism 

if it has a pseudo-isomorphism F: X ~ Y as its representation. 

An inverse system X= {Xa,Paa"A} in pro-K is oalm [8] 

if there exists a O E A such that 

for any a ~ aO' there is an a* > a such that if 

morphisms f,g: Y ~ X * in K satisfy the condition a
 

Pa a*f = Pa a*9, then Paa*f = Paa*g·
o 0 

5.4.' Let f: X ~ Y be a pseudo-isomorphism in pro-K. 

Then 

(1) if X is movable~ then Y is movable~ 

(2) X; * in pro-K if and only if Y~ *~ where * is 

the trivial system in pro-K~ 

(3) if Yis oalm~ then f is an isomorphism ([22) and 

[25]) • 

5.5. An inverse system Xin pro-K is strongly movable 

if and only if it is movable and oalm. Therefore~ if Xis 

a tower~ X is stable in pro-K if and only if it is movable 

and oalm ([9]). 

Let HeW be the category of spaces having the homotopy 

type of CW-complexes and homotopy classes of maps (not 

necessarily surjective). A map f: X ~ Y is a pseudo-

isomorphism if there is a pseudo-isomorphism f: X~ y 

in pro-HeW which is associated with the map f. 
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A space X is oalm if there exists a calm inverse 

system X in pro-HeW associated with X. Hence a space X is 

an FANR if and only if it is movable and calm. 

5.6 ([22]). If r: X + Y is a refinable map~ then 

the shape morphism S(r) induced by r is a pseudo-isomorphism. 

Therefore we have 

(1) if X is movable~ then Y is movable~ 

(2) X E ACn if and only if Y E ACn~ 

(3) ddim X = ddim Y~ and 

(4) X is an FAR if and only if Y is an FAR. 

5.7 ([25]). If r: X + Y is a refinable map and Y is 

calm~ then r is a shape equivalence. 

5.8 ([25]). If r: X + Y is a refinable map~ and if 

X or Y is Sn-like~ n > l~ then r is a shape equivalence. 

Related to the above results the following questions 

remain open. 

Question 8 ([22]). If r: X + Y is a refinable map 

and X is an FANR, then need Y also be an FANR? 

Question 9 ([25]). Do refinable maps preserve 

calmness? 

An affirmative answer of Question 9 implies an 

affirmative answer of Question 8. Moreover, the next 

pro-group-theoretic problem may imply the answer to 

Question 8. 
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Question 10. Let f: G ~ H = (H ,h ) be a morphism of n n 

pro-groups. If all groups are countable and f is a 

pseudo-isomorphism, then is the limit group lim H countable? 
of-

Some partial answers to Question 8 have been obtained 

by Kato [22] as follows: 

5.9. Let r: X ~ Y be a refinabte map defined on an 

FANR X. If ddim X ~ 1 or X E ACl~ then r is a shape equiva­

etnoe. Therefore Y is an FANR. 

5.10. If r: X ~ Y is a refinabte map defined on a 

movabte oontinuum X and ddim X < l~ then sh(X) = sh(Y). 

6. Generalizations (I) 

In recent papers, [18] and [19], Grace introduced two 

generalizations of the notion of a refinable map called 

proximately refinable map and weakly refinable map. A 

function f: X ~ Y is E-oontinuous, E > 0, if for each 

x E X, there is a neighborhood U of x in X such that 

f(U) c B(f(x);~), where B(y;~) is the open ~-ball around y. 

A surjective function f: X ~ Y is an E-funotion, £ > 0, if 

diam[f-l(y)] < £ for each y E Y; and f is a strong E-funotion 

if for each y E Y, there is a neighborhood V of y in Y 

-1such that diam[f (V)] < E. 

Let f: X ~ Y be a surjective function. Then a surjec­

tive function g: X ~ Y is a proximate E-refinement of f 

provided that g is E-continuous, 9 is a strong E-function, 

and d(f,g) < E. A function g: ¥ ~ X is an inverse 

E-refinement of f, if f is continuous, 9 is £-continuous, 

and d(l;,fg) < E. 
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A surjective function f: X ~ Y is proximately refinable 

if for each E > 0, there is a proximate E-refinement of f; 

and f is weakly refinabZe if f is continuous and for each 

( > 0, there is an inverse (-refinement of f. We can 

easily see that proximately refinable maps are continuous. 

Moreover, refinable maps are proximately refinable, and 

they in turn are weakly refinable. In [18] Grace extended 

the results in §l as follows: 

6.1. Every proximately refinable map is weakly con­

fluent. 

6.2. If f: X ~ Y is a proximately refinable map and 

Y is ZocaZZy connected, then f is monotone. 

Next, we show the following (c.f., 1.3). 

6.3. If f: X ~ Y is a proximately refinable map and 

Y has property [k] ~ then f is confluent. 

Proof. Let K be a subcontinuwn of Y and let C be a 

component of f-l(K). We will show that fCC) = K. For 

i ~ 1, let f i be a proximate Iii-refinement of f. Let 

X E C. Then we haveo 
(1) Ij;m fi(x ) = f(x ) E K.O O

Since Y has property [k], (1) implies that there is a 

subsequence {in}n>l of {ili>l such that for each n > 1, we 

have a subcontinuum K. of Y satisfying the following condi­
l n 

tions 

(2) f (x ) E K ' andi O i n n 
1 

< ­n 
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xSince 2 is a compact metric space, we may assume that 

(4) lim f~l(~ = D E 2X• 
J. J.11 n n 

Note that X E D.o 
We will show that D is a subcontinuum of X. Suppose, 

on the contrary, that ° = 01 U D2 , where 01 and D2 are 

disjoint closed non-empty subsets of o. Choose 6 > 0 such 

that 0 < 36 < d(D ,D ). By (4), there is a sufficiently
1 2

~arge number n such that 

(5) f is a strong e-function, and
i n
 

-1
 
(6) dB (f i (K ), D) < 6.i n n 

Set Di {x E f 
-1 

(K )ld(x,D1 ) < e}, andi i n n 

-1
D' = {x E f. (K. ) Id(x,D ) < 6} •2 J. J. 2

n n 

Note ,that 0' n D' ~. Set, also,
1 2
 

-1

K' {y E K. I f i (y) c Di}, and

1 J. n n 

-1K' = {y E K. I f i (y) c Oil.2 J. n n 

By (5) , K' and K' are non-empty open subsets of K. Clearly,
1 2 ~n 

K' U K' = K. and K' n K' = $J. This is a contradiction.
1 2 J. 1 2 

n 

Hence D is connected. 

On the other hand, since f. is a proximate 1 -refine-
J. inn 

ment of f, we have 

-1 -1
( 7) feD) f. (K. » lim f (f. (K. ) ) f(lim 

-+­ ~ 1.~n ~nn n n n 

c lim B(K. i~) K, and 
-+- 1. 1. n n n 
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-1
(8) f (0) Ijm f(f (K ))

i i n n n 

:::> lim K. K. 
-+ J. 
n n 

Hence f (0) K. Since C is a con~onent of f-l(K) and 

enD ~ ~, C :::> D. Therefore f(C) = K. This completes the 

proof. 

Klee [28] introduced a notion related to the fixed 

point property (f.p.p.). A metric space X has the proximate 

fixed point property (p.f.p.p.) if, for each £ > 0, there 

is a 6 > ° such that every 6-continuous function f: X -+ X 

has a point x such that d(x,f(x)) < £. It is easily seen 

that a compactum with the p.f.p.p~ has the f.p.p., and the 

converse is not valid. It is known that refinable maps do 

not preserve the f.p.p. On the other hand, Grace [19] showed 

the following: 

6.4. If f: X -+ Y is a weakly refinable map and X has 

the p.f.p.p., then Y has the p.f.p.p. 

Next, we examine the relationships of these generaliza­

tions of refinability to some of the properties of compacta 

that we have studied in previous sections. Grace [18] has 

proved the next fact. 

6.5. If f: X -+ Y is a weakly refinable map and X is 

a graph, then Y is a graph. 

In the same way as in [26], we can prove the following 

theorem. The details are left to the reader. 
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6.6. If f: X + Y is a proximately refinable map and 

X is irreducible~ then Y is irreducible. 

The following generalizes part of 3.1. 

6.7. If f: X + Y is a proximately refinable map~ then 

dim X > dim Y. 

Proof. It suffices to consider the case where dim X = 

k < Let V00. 

of	 Y, and let § = {G ,G ,···,G } be a finite open cover ofl 2 m

Y such that G. c V. for each j, 1 < j < m. Since dim X = k,
] ] ­

there exists a finite open cover U = {U ,u ,··.,U } and
l 2 n 

a finite closed cover H = {H ,H ,···,H } of X such that
1	 2 n 

-1 -1 -1
(1) Uisarefinementoff §={f (Gl),···,f (G )},m

(2) ord U < k+l, and 

(3) U ~ Hi for each i, 1 < i < n.i 

Choose 0 > 0 such that 

(4) V. :::> B(~;6) for j 1,2,· •• ,m, and 
] ] 

(5) U :::> B(H ;8) for i 1,2, ••• ,n.
i i 

Since f is proximately refinable, there is a proximate 

8-refinement 9 of f. Then 9 satisfies the following condi­

tions. 

(6) d(f,g) < 0, 

(7) g is a-continuous, and 

(8) for each y E Y, there exists an open neighborhood 

\v(y) of y in Y such that diam[g-l(w(y))] < o. 

Now we define open sets Wi' for i = 1,2,···,n, in Y as 

follows: 

U{W(y) Iy E g(H )}·i 
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Then by (6) and (8), 

(10) Hi c g-l(W ) c B(H ;6) c U for i = 1,2, ••• ,n.
i i i 

Hence we have an open cover W= {W ,W ,···,W } of Y with1 2 n

ord W < ord U < k+l. Therefore, it. suffices to show that 

Wrefines V. For each i = 1,2,···,n, by (1) and (10), 

-1 -1
there is a member G

j 
of § such that 9 (Wi) c f (G j ). Then 

by (4) and (6), 

-1
W. c g(f (G.)) c B(G.;6)

I 

c V .• 
~ J J J 

Hence Wis a refinement of V. This completes the proof. 

In the case of refinable maps the converse of 6.6 and 

6.7 with the inequality reversed are valid (see [26], [22] 

and [39]). However, we will construct a proximately 

refinable map in which they do not hold. 

1 • h ,. h 1 R26. 8 . Examp~e. F~rst c oose AR s ~n t e pane 

x = {(x,y) IEither a < x < 1 and a < y ~ 1 or 

1 < x < 2 and yO}, 

Y = {(x,y) 11 ~ x < 2 and y = a}, 

and define a map f: X ~ Y by 

__ {(1,0) if x < 1 
f(x,y) 

(x,D) if x > 1 .. 

Then f is proximately refinable. However, X is not irreduci­

ble, although Y is irreducible. Moreover, dim X = 2 > 

dim Y = 1. 

Next, we will consider some properties which are 

preserved by refinable maps but are not preserved by 

proximately refinable maps. First, we construct a proxi­

mately refinable map which does not preserve property [k]. 
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6.9. ExampZe. Let p be the pole (i.e., the origin) 

of the polar coordinate system in the plane R2 . Consider 

the following points, represented in polar coordinates. 

1 a = (2,0) , a n (2'-n) ,
 

1
b (1,1) , b (1,1+i1) ,n 
1 c = (1,0) , and c n (l'n) , n = 1,2,3, ••• , 

and let 

X pa U (U n >lpan) U pb U (U IPb), and
n> n - -

y pa U (Un>lpan ) U pc U (Un>lPc ) , n 

where xy stands for the straight line segment joining x and 

y. Now define a map f: X ~ Y by the formula; 

(r, U) if (r,O) E pa U (Un>lpa ) 
f (r, 8) 

n 
{ 

(r,O-I) if (r,e) E pb U (Un>lPb ).n

For each n ~ 1, we define a surjective function f : X ~ yn 

by the following: 

(r,O) if (r,O E pa U (U~=lpai)' 

(r'-n~i) if (r,e) E pa +(2i-l)' i > 1,n

( l);f ( 6) E ; > I dr'n+i ~ r, pa ~ ,ann +2i , 

r < 1,° < ­f (r, 0)n (r,O) if (r,6) E pa i > 1, and n+2i , 

1 < r < 2, 

(r,O-l) if (r, e) E 
n ­

Ui=lPbi , 
1 if (r, e) E U pb(r'i1) (Ui>n+lPbi) 

' 2 f'Then we can easily see that each f is a prox~mate --re ~ne-n n 

ment of f. Hence f is proximately refinable. Clearly, X 

has property [k] but Y does not have property [k]. There­

fore we have the desired proximately refinable map defined 

on the fan. 
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6.10. Remark. A map f: X ~ Y is approximately right 

invertible (ARI) if for each c > 0, there exists a map 

g: Y ~ X (not necessarily surjective) such that d(fg,ly) : £. 

Weak refinability generalizes ARI in the same way as proxi­

mate refinability generalizes refinability. In [32], Boxer 

posed problem 57: Do ARI-maps preserve property [k]? Here 

we show that Example 6.9 implies the negative answer. For 

each n > 1, define a map g : Y ~ X by 

if (r, e) E pa U (U· Ipa.),
~> ~rr,6J 

n 

gn(r,8) = (r,O) if (r,8) E Ui>n+lPci 

(r,8+1) if (r,8) E 
n 

Ui=lPc i · 

Then it is easily seen that for each c > 0, there exists 

a sufficiently large n > 1 such that d(f9n,ly) < £. Hence 

the map f is the ARI-map which does not preserve property 

[k] • 

Finally, we give a proximately refinable map from a 

I-dimensional ANR onto a I-dimensional AR which is neither 

1 a UV -map nor a pseudo-isomorphism. 

6.11. Example. We use the polar coordinate system in 

R2 
as in Example 6.9. Define 

X = {(r,O) IEither r = land 0 < G < 2u or 

1 < r < 2 and 0 OJ, 

y = {( r, e) 11 ~ r < 2 and e = O}, 

and let f: X ~ Y be a mpa defined by 

_ {(r, G) if (r, G;I E Y, _
f (r, e) 

(1,0) otherwise. 

1
For each 0 < £ < 2' we define a surjective function g: X ~ Y 

by the formula: 
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(

(- 21r-( 0 + 1 + 2(,0) 

°if r = 1, < G < 2 on - (, 

g (r, 0) 

1+(
(£(-28 + 

i f r 

( 1 , °) if r 

4'fT - (),O) 

= 1, 2 'If - ( 

= 1, 2 1T - ~ 
2 

< 

< 
-

0 < 

G < 

2 'If -

2 'IT, 

~ ' 

((l-2c)r + 4(,0) if 0 = 0. 

Then g is a proximate 3(-refinement of f. Hence f is 

proximately refinable. Clearly, the map f satisfies the 

desired conditions. 

7. Generalizations (II) 

In this section all spaces are assumed only to be 

Hausdorff, and a map means a continuous function from a 

Hausdorff space onto another one. Here we will try to 

extend the results in previous sections. A map f: X ~ Y 

is said to be a V-map for an open cover V of X provided 

that, for every y E Y, there is a U E V such that f-l(y) c U. 

Two maps f,g: X ~ Yare said to be V-near for an open cover 

V of Y provided that for every x E X, there is V E V which 

contains both f(x) and g(x). Watanabe [47] defined refinable 

maps for arbitrary spaces: A map r: X ~ Y is refinable if 

for every normal open cover V of X and every normal open 

cover V of Y, there is a V-map f: X ~ Y such that rand f 

are V-near. We call such a map f a (V,V)-refinement of r. 

In the case that both X and Yare compact metric spaces, 

Watanabe's definition of refinable maps clearly coincides 

with that given by Heath and Rogers. 

A map f: X ~ Y is proper if for every compact subset 

C c Y, f-l(C) is compact; and f is perfect if it is closed 

and proper. Related to the results in §5 and §6, we have 
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7.1 ([29]). If r: X -+ Y is a I?lloper r1efinable lllap 

between locally compact paracompact spaces~ then r is a 

pseudo-isomorphism. 

Therefore~ if Y is calm~ then r is a shape equivalence. 

7 • 2 ([ 29 ] ) • I f r: X -)- Y i sapr1 0 fJerrc fin a b l e TIl a p 

between localllj cOTll[>act paracompact B[)aCeV and X is an l\P~ 

then Y is also an AP. 

Refinable maps play an interesting role in dimension 

theory for a large class of spaces which are neither compact 

nor metrizable. For instance, we have 

7.3 ([ 30]). Let r: X -)- Y be a refinable map between 

compact spaces and let K be a class of ANR's. Then if 

X is extendable with respect to K~ Y is extendable with 

respect to K. Therefore it follows that 

(1) dim X = dim Y~ and 

(2) d(X:G) > d(Y:G) for every abelian group G. 

7 • 4 ([ 30] ) • If r: X -+ Yis a re fin,ab le map be twee n 

compact spaces and X is weakly infinite-dimensional~ then 

Y is also weakly infinite-dimensional. 

In order to study non-compact spaces we introduce a 

special class of refinable maps. A map r: X -+ Y is said to 

be closed-refinable (abbreviated, c-refinable) if for every 

normal open cover U of X and every normal open cover V of Y, 

there is a (U,V)-refinement of r which is a closed map. 

We call such a map a c-(U,V)-refinement of r. 
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We note that a refinable map between locally compact para-

compact spaces is c-refinable if and only if it is proper. 

7.5 ([30]). If a map r: X ~ Y between normal spaces 

is c-refinable~ then the extension Sf: SX ~ SY is refinable~ 

where SZ is the Stone-Cech compactification of a completely 

re gu lar space z. 'l'he r~e fore ~ it fo llows tha t 

(1) dim X = dim Y~ and 

(2) dp(X:G) ~ dp(Y:G) for ~very abelian group G~ 

where dp(-:G) is the small cohomological dimension based on 

all finite open covers. 

A space X is S-weakly infinite-dimensional if for any 

countable family {(A.,B.)li = 1,2,3,---} of pairs of 
1 1 

disjoint closed subsets of X,. there are separators Si 

n
between Ai and Bi in X, i = 1,2,3,---, such that ni=lsi ¢ 

for some integer n > 1. 

7.6 ([30]). If a map r: X ~ Y between normal spaces 

is c-refinable and X is S-weakly infinite-dimensional~ 

then Y is S-weakly infinite-dimensional. 

In [30], the second author posed the problem: Is 

there a proper map that is refinable but not c-refinable 

for which the above results are not valid? Recently, 

E. van Douwen communicated that for each n = 1,2,---,00, 

there is a normal space X having the property that 
n 

dim X n and every compact subset of X is finite. n n 

Independently, Tamano [44] constructed a Lindelof non-zero­

dimensional space X having the property that every compact 
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subset of X is finite. Hence considering the identity maps 

IX :	 kX ~ X and Ix: kX ~ X, where kZ is the k-leader of n	 n n 

a space Z (see [44]), the problem has a negative answer. 

Note	 that van Douwen's examples are not Lindelof and 

ind X o for n > 1. 
n 

The	 following problems are open: 

Question 11. Can 7.5 and 7.6 be generalized to apply 

to any perfect, refinable map r? 

Question 12. Do c-refinable m3ps between normal 

spaces preserve property C? 

The authors wish to thank the referee for helpful 

comments and suggestions. 
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