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HAUSDORFF DIMENSI01--l 

J ames Keesling 

Introduction 

The theory of Hausdorff dimension has corne to play an 

important role in many different areas of mathematics and 

science. Physicists and biologists among others are using 

the concept. Mandelbrot ([15] and [16]) lists many diverse 

areas of application including music, the study of coast­

lines and landforms, fluid dynam~cs and turbulence, distribu­

tion of stellar matter, Brownian motion, the geometry of 

soap bubbles and liquid crystals, polymer geometry in 

chemistry, and the study of word frequencies in language. 

Not all applications are mathematically rigorous, but some 

are in classical areas of pure mathematics. One encounters 

Hausdorff dimension in geometry ([ 5), [26), [31], and [32]), 

geometric measure theory ([6] and [7]), calculus of varia­

tions ([6] and [7]), ergodic theory ([2] and [35]), 

stochastic processes ([20] and [29]), partial differential 

equations ([24] and [30]), dynamical systems theory ([2], 

[13], and [35]), complex function theory ([2]), dimension 

theory ([10), and geometric topology ([33]). 

Theorem 7.5 and Note 7.6 are new and answer a question 

posed by Kaplan and Yorke in [13]. Some other results may 

be new, but the purpose of the paper is to' introduce Hausdorff 

dimension to topologists, not to present advances in the 

field. Proofs are included where they are helpful or 

difficult to locate in the literature. 
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In the first section of the paper we give the definitions 

of Hausdorff measure and dimension. In the second section 

we state elementary properties. In the third section we 

discuss self-similarity. In the fourth section Hausdorff 

dimension in Brownian motion is presented. In sections five 

and six we give some theorems in Hausdorff dimension from a 

topologist's viewpoint. Applications of these theorems are 

given in the areas of point set and geometric topology. In 

section seven mappings and Hausdorff dimension are studied. 

The mappings of interest in Hausdorff dimension theory are 

those of Lipschitz class 6. With these mappings one can 

establish a relationship between the Hausdorff dimension of 

the domain and range. For maps that are only continuous 

this is not possible. In section eight we discuss the 

question whether a compact metric space of infinite Hausdorff 

dimension has closed subsets of every finite dimension. This 

problem is related to the topological dimension theory of 

infinite dimensional spaces. Quite different techniques 

will be required in solving the problem in Hausdorff dimen­

sion theory as is shown by theorems and examples presented 

in this paper. 

The bibliography included here is brief. However, 

there are extensive bibliographies in the works of Falconer 

([5]), Mandelbrot ([15] and [16]), and Rogers ([21]). 

Hausdorff measure and Hausdorff dimension are only 

defined for metric spaces which are separable. All spaces 

that we consider are separable metric spaces with a 

specified metric. 
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1. Basic Definitions 

In this section of the paper we give the definition of 

Hausdorff dimension. We first define Hausdorff measure. 

1.1 Definition. Let X be a separable metric space 

and let p be a real number 0 < p < Let E > O. We let00. 

A (X) inf L (diam(U.))p 
p,E meshU<E U.EU 1. 

1. 

We then let 

A (X) sup A (X)
P E>O p,E 

A 
p 

(X) is the p-measure of X. It is not a topological 

invariant of a separable metric space since it depends on 

the specific metric used. The following property holds 

for A (X) • If q > p and A (X) is finite, then A (X) = O. 
p P q 

We give a quick proof of this fact. 

1.2 Theorem. Suppose that q > p and that /\ (X) is 
p 

finite J then /\ (X) o. 
q 

Proof· Suppose that q > p and that /\ (X) < Then00. 
p
 

there exists an M > 0 such that for all E > 0 there is a
 

covering U of X of mesh less than E such that 
E 

Lu.EU (diam(Ui»p < M. But this implies that for this same 
1. E
 

E I . (diam(Ui)q = I U (diam(U.»p x (diam(U.»q-p <
u EU	 u
1.	 E i E E 1. 1.
 

Eq P Eq P
LV U (diam(u.))p x - < M x - . But this implies
i E E: 1. 

that as E ~O, Iu U (diam(U.»q~· 0 as well. Thus 
i E E 1. 

/I. (X) = O. q 

Now we are prepared to give the definition of Hausdorff 

dimension. 
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1.3 Definition. Let p* = inf{p > OIA (X) = OJ. Then 
p 

A(X) = p* is	 the Hausdorff dimension of X. Theorem 1.2 

shows that the p-measure of X can be finite for at most 

one value of	 p, namely for p = A(X). For all other values 

A (X) is either zero of infinity. It may happen that p 

Ap*(X) may also be zero or infinity. Note also that 

Ap*(X) has not been defined if p* = 00. 

---:;-----1 
I o < A (X) < 00 

P 
A (X) = 00 lrJ

P	 I
 
I
 

~ 
I 
I 
I 

I 
I A (X) =0
I P 
I 
I 
I 

p*	 p-axi s 

Graph of Hausdorff p-Measure 

There are other concepts related to Hausdorff dimen­

sian which are sometimes assumed to be equivalent. Several 

of these are not equivalent to Hausdorff dimension and one 

needs to note the precise definition used by a particular 

author. We use the above definition throughout. 

2. Elementary Properties 

In this section we state some elementary properties of 

Hausdorff dimension. They are part of the lore that helps 
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to justify the definition and motivate further research. 

The first property is trivial. 

2.1 Proposition. If X is a separabZe metric space and 

A c X~ then A(A} < A(X}. 

The next property is not so obvious, but is extremely 

useful. It allows us to make use of measure theory in 

studying Hausdorff dimension. 

2.2 Theorem. Let X be a separabZe metric space and 

o < p < Then A (A) is a countabZy-additive measure on00. 
p 

the BoreZ subsets A of x. If A c X is any subset~ then 

there is a Go-set G ~ A in X such that A (G) = A (A).p p 

The next result shows that A(P} is the appropriate 

number for polygons with linear metrics. 

Rn 

the usuaZ EucZidean metric. Then A(I n } = n. 

The following result shows that contrary to naive 

expectation we do not have A (In) = 1. Thus Hausdorff 

2.3 Theorem. Let In be the unit n-cube in with 

n 

Rn 

by a constant factor. 

n-dimensional measure and Lebesgue measure differ in 

Rn 

and Zet A eRn. Let ~* denote Lebesgue outer measure on 

n 

2.4 Theorem. Let have the usuaZ EucZidean metric 

the subsets of R . Then An(A) = an x ~*(A). 

The factor an = l/V where 'V is the n-dimensional n n 

volume of the ball of diameter one. If we let r denote 
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the gamma function, then V is given by the followingn 

formula. 

f(1/2)n x (1/2)n
V 

n r (n/2 + 1) 

Note that as n ~ 00, v ~ o. 
n 

2.5	 Corollary. Let A denote Lebesgue n-dimensional 

Rn measure on and let CeRn a Cantor set with A(C) > o. 

Then A(C) = n. 

Cantor sets have topological dimension zero. Since 

there are Cantor sets in Rn with positive n-dimensional 

Lebesgue measure, these Cantor sets are examples of 

separable metric spaces whose Hausdorff dimension is n 

and whose topological dimension is zero. By Theorem 2.6 

below, the Hausdorff dimension is always greater than or 

equal to the topological dimension. 

2.6 Theorem. Let X be a separable metric space. Then 

dim X < A(X). 

2.7 Theorem. Let C be the Cantor middle-third set. 

Then A(C) = In(2)
In (3) 

This result was first discovered by Hausdorff and 

together with the next example shows that Hausdorff dimen­

sian need not be an integer. 

2.8	 Theorem. Let K be the Koch Curve. Then 

In (4)
A(K) In (3) 
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The Koch Curve will be described in the next section 

as well as a method for computing the Hausdorff dimension 

of it and the Cantor set. 

3. Self-Similarity 

There is a difficulty in determining the Hausdorff 

dimension of a space. The topological dimension of the 

space is a lower bound by Theorem 2.6. Suppose that p > 0 

is a fixed number. Suppose that there is a sequence of 

covers of the space {(Ji1i=1,2, ••• } such that the mesh of 

the covers goes to zero and ~im IU.E(J. (diam(u.))p ~ o. 
1~OO J 1 J 

Then from the definition of Hausdorff dimension one must 

have A(X) < p. The difficulty is that given A(X) ~ p, 

how	 can one determine when A(X) ~ p? If it happens that 

Rn p = dim X, then A(X) = P is clear. Also, if X c and X 

has positive n-dimensional Lebesgue outer measure, then 

A(X) = n. Apart from these two cases the most useful and 

easily applied tool for determining the precise Hausdorff 

dimension of spaces is self-similarity. We give a brief 

description of the concept here. For details consult the 

paper of Hutchinson ([11]). See also the paper by Moran 

([ 18)) • 

Assume that X is a complete separable metric space. 

A contraction mapping of X to itself is a map S: X ~ X 

such that there exists a K < 1 such that for all x and y 

in X, deSex) ,S{y)) < K x d(x,y). A similitude of X to 

itself is a map S: X ~ X such that there is a number 

o < t < 1 with d( S(x), S(y)) = t Xd(x,y) for all x ands s 

y in X. Let {Si1i=1,2, ••• ,n} be a collection of contraction 
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mappings of X to itself. Let S be a function defined by 

S(A) = U{S. (A) I i=I,2,···,n}. Let [(X) denote the space of 
~ 

all compact subsets of X with the Hausdorff metric. Then 

S: [(X) ~ [(X) is a contraction mapping with [(X) a complete 

metric space. Thus S has a unique fixed point. That is, 

there is a unique compact set K c X such that K = U{Si (K) I 

i=l,2,··· ,n}. The set K is the invariant set of Sand K 

is said to be self-similar. 

x x
 
Suppose that the contraction mappings are actually 

simulitudes with a < t < 1 the number associated with thei 

similitude Si. Then the following formula determins the 

similarity dimen~ion D of K. 

n
I t.D = 1 

i=l 1 
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When certain conditions are met the Hausdorff dimen­

sion of this compact invariant set K is given by A(K) = D. 

The conditions are not difficult, but we do not go into 

detail. The basic idea is that the Hausdorff D-measure of 

K should be the sum of the Hausdorff D-measures of the sub­

sets Si(K) and that this number should be finite and non­

zero. Clearly, the Cantor middle-third set is self-

similar. There are two similitudes on the real line 

{5 ,5 } that define the Cantor set C such that C = 51 (C) Ul 2

S2(C). The Si's are such that t = 1/3 for i = 1 and 2.
i 

The required conditions are met so that the Hausdorff 

dimension of C is given by D where 

(1/3)D + (1/3)D = 1. 

The solution for D is clearly D = i~~;l 

The Koch Curve, K, is determined by four similitudes 

2
in R • For each of them t = 1/3. The conditions are met

i 

so that its similarity dimension is equal to its Hausdorff 

dimension which is thus given by A(K) i~~jl An approxi­

mation of this curve is given below. 

The polygonal line helps to visualize the relationships 

between the four similitudes that define the Koch Curve. 

The Koch Curve, A(K) 1.2619 
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Self-Similar Set K in R2 Determined by
 

Five Similitudes, A(K) .. 1.4650
 

Self-Similar Set In R2 Determined by
 

Eight Similitudes, J\(K) = 1.5000
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The Sierpinski Plane Curve Is Determined by
 

Eight Similitudes, A(K) = 1.8928
 
Computer graphics programs have been written which 

will generate similar examples of plane sets generated 

by such similitudes. Such programs can be made interactive 

so that the first polygonal approximation of the set can be 

drawn and the computer generates several iterations of the 

function S to further approximate the self-similar set. 

The first three examples above were produced in this fashion. 

A similar program produced the familiar Sierpinski Curve. 

The books by Mandelbrot [15] and [16] and the book by 

Peitgen and Richter [19] have beautiful graphics illustrating 

what intricate geometric patterns can be generated in 

fractal theory using very simple algorithms. 

4. Brownian Motion 

The mathematical theory of Brownian motion has played 

an important role in motivating the use of Hausdorff 
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dimension in studying stochastic phenomena. We illustrate 

this theory in this section of the paper. The following 

graphs were produced by simulating a one-dimensional 

Brownian path using the principles of Brownian motion. 

A program producing random numbers from a normal distribu­

tion was used to produce a sample path. The first illustra­

tion is the graph so produced. 

H-BHis 

Graph of a Sample Path of One-Dimensional
 

Brownian Motion
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First Part or the Preceding Graph
 

Magnified Four Times
 

t-aHis 

First Part of the Preceding Graph
 

Magnified Four Times
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As can be readily seen from the successive magnifica­

tions of the graph, the appearance is becoming more jagged. 

Just how jagged things are becoming is brought out by the 

following computation. Let t > 0 be a time chosen at 

random and let M+ and M- be computed as follows. 

x (t+~t) - x (t)M+ lim sup 
~t

6t~0 

x (t+6t) - x(t)
M lim inf 

~t
6t~ 

Then with probability one M+ +00 and M- = -00. It is 

also true that with probability one the graph is continuous 

and nowhere differentiable. See the paper by Dvoretski, 

Erdos, and Kakutani ([4]) for elegant proofs of these 

facts and other unexpected properties of Brownian paths. 

What is interesting from the standpoint of Hausdorff 

dimension is that if P is the graph of a one-dimensional 

Brownian path, then A(P) = 1.5 with probability one. Let 

X be given. Let P = {tlx(t) = x O}. Then A(P ) = .5o Xo Xo 
with probability one. In any fixed interval of time 

[t l ,t2 ], P n [t l ,t2 ] is either empty or a Cantor set with 
xo 

probability one. See Taylor ([27]) and Orey ([20]). These 

results motivated researchers to look into other stochastic 

processes that produced sets with nonintegral Hausdorff 

dimension. 

5. Sum Theorenls 

The theorems in this section are a direct result of 

the countable additivity of Hausdorff measure on its 

measurable sets. The results are straightforward from a 

measure-theoretic standpoint. However, they invite 
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comparison with the Decomposition Theorem and Sum Theorem 

in topological dimension theory. They also lead to some 

interesting applications. 

5.1 Theorem. Let X be a separable metric space with 

X U{Aili=1,2, ••• }" Then I\(X) = sup{1\(A ) li=1,2, ••• }.i 

5 . 2 '1' he 0 rem. Sup po set It a t 1\ (X) = P < wit h 1\ (X ) > 0 . 00 p 

Suppose that X = U{Aili=1,2, ••• }. Then there is an i ouch
O 

that 1\(A. ) = p.
1 0 

5.3 Theorem (Decomposition Theorem for Topological 

Dimension). Suppose that X is a separable metric space 

with dim X < n < 00. 'l'hen X = U{Aili=O,l, ••• ,n} with 

dim Ai ~ 0 for each i. 

5.4 Theorem (Sum Theorem for Topological Dimension). 

Suppose that X is a separable metric: space and that 

X = U{Aiii=1 , 2 , • • .} lJ i the a c h Ai c los edin X. '1' hen 

dim X = sup{dim Aili=1,2, ••• }. 

A comparison of Theorems 5.1 and 5.2 with Theorems 

5.3 and 5.4 shows that there is no possibility for topologi­

cal dimension and Hausdorff dimension to coincide on all 

spaces. Note also that the sum theorem for Hausdorff 

dimension (Theorem 5.1) does not require that the subsets 

Ai of X be closed in X as they are in the Sum Theorem for 

topological dimension (Theorem 5.4). They can be any 

arbitrary sUbsets. 
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6. The Boundary Theorem 

In topological dimension for separable metric spaces, 

dimension can be defined inductively. The empty set has 

dimension minus one and a space X has dim X < n if and 

only if for every point x E X and every open U c X con­

taining x, there is an open set V c U containing x such 

that the boundary of V has dim(Bdy(V)) < n-l. This defini­

tion of dimension was important in the development of the 

theory for separable metrizable spaces. See Hurewicz and 

Wallman ([10]) for details concerning this definition and 

its equivalence with other definitions of topological 

dimension for separable metric spaces. From this definition 

it is straightforward to show that if X is a separable 

metric space with dim X = n < 00, then for any 0 < m < n 

there is a closed subset K c X with dim K = m. The next 

theorem is due to Marczewski (alias Szpilrajn) and relates 

the Hausdorff dimension of the space X with the boundaries 

of E-neighborhoods of the points of X. For a simple proof 

of Theorem 6.1 see Hurewicz and Wallman ([10], p. 104). 

6.1 Theorem. Let 0 < P < and suppose that00 

1\ P +1 (X) = o. Le t x EX. '1' lz en f 0 l J a Zm0 s t a ZZ E > 0 

I\p(Sc(x)) = O. 

One can modify the proof of Theorem 6.1 in Hurewicz 

and Wallman to obtain the following useful version of the 

theorem. 
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6.2	 Theorem. Let p ~ 0 and ( > 0 be real numbers and 

Rnk a positive integer. Suppose that A c is any subset 

with I\p+k (A) = O. Then there is a col lection of hyper­

planes #(n,p,k,() = {H .. li=1,2, ••• ,n; j=O,±1,±2, ••• } 
~,J 

such that (1) H. . is perpendicu laY' to the x; -axis for 
~, J ""­

each j; (2) for all j H.. and H.. 1 are distance at most 
~,J ~,]I+ 

( apart; and (3) for any 1 < m ~ k and any m distinct num­

be r s {i1 ' • • • , i } c: {I,···, n} f 1\ k (H . . n· •• n m	 p+ ·-m ~l' J 1 

H.	 . n A) < O. 
~m' Jm 

If 1\ (X) = p > 0 and q ~ p - 1, then one would like to 

assert that there is a point x E X and an E > 0 such that 

for almost all 8 < ( the 8-sphere centered at x, S8(x), 

has I\(S8(x» ~ q. However, this fails to hold. Let p > o. 

In this section we shall give an example of a space X such 
p 

that 1\ (X ) = p, but for any subset A c X such that 1\ (A) < p,
p 

1\ (A) = O. We assuwe the Continuum Hypothesis for this 

construction. In the examples it follows that almost all 

(-spheres have I\(SE(X» = O. 

The next result shows that inside every compact space 

of Hausdorff dimension r, one can find a Cantor set of 

Hausdorff dimension r. In particular, there is a Cantor 

set L in the Koch curve such that L has the same Hausdorff 

dimension as the Koch curve. Thus the geometry of the Koch 

curve is not an obligate property of its Hausdorff dimension, 

since the Cantor set L has the same dimension and shares 

very little of the geometry. The rule of thumb is that if 

a counterexample exists for a conjecture in the theory of 
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Hausdorff dimension, then one can be found which is a 

Cantor set. One may as well begin by looking at Cantor 

sets. 

6.3 Theorem. Let X be a compact metric space with 

A(X) r > O. Then there exists a Cantor set C c X with 

A (C) r. 

Proof. Let X be a compact metric space satisfying 

the hypotheses of Theorem 6.2. For simplicity assume that 

r < and that Ar(X) > O. By Theorem 6.1 there is00 a 

countable basis of [-balls for the topology of X such that 

the corresponding [-spheres, {Si1i=1,2, ••• }, containing the 

boundaries of these [-balls each have Ar(Si) = O. Now let 

B = U{Si1i=1,2, ••• }. Now A is a countably additive r 

measure on the Borel subsets of X by Theorem 2.2. Since 

each Si is contained in the completion of this measure, 

Ar(B) = O. Again by Theorem 2.2 let G ~ B be a Go-set 

such that Ar(G) = o. Now let X,G = U{Fili=1,2, ••• } with 

each F. closed in x. By Theorem 5.2 there must be an
1 

i O such that A(F. ) = r. However, F. has the property that 
1 0 1 0 

F. c X,U{S.li=1,2,···}. ThusF. is a compact zero­
11 0 1 0 

dimensional set. It may not be a Cantor set since there 

may be isolated points in F. However, by removing a 
1 0 

countable set of points from F. we can get a Cantor set 
1 0 

having the same Hausdorff dimension. 

Handling the cases r and Ar(X) o is not diffi­

cult using the same ideas. 

00 
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6.4 Theorem. Assume the Cont1.:nuum Hypothesis. Le t 

1\ (X) = r and suppose tha t 1\r (X) > o. Then there is a 

B c X such that A (B) = r such that if A c B with A (A) < r", 

then A is countable. In particular", 1\ (A) < o. 

Proof. Let y = {Gala < c} be the Go-subsets of X 

which have Huasdorff r-measure zero. Since there are c of 

these, assume that they are indexed by the countable 

ordinals. Think of the initial ordinals as cardinals, so 

that {ala < c} denotes the countable ordinals. 

For each S < c, let X be chosen from x,u{Gala < S}.s 
Note that {ala < B} is countable. Thus U{G la < S} has 

a 

r-measure zero. Since 1\r(X) > 0, the choice of x~ is 

possible for each S < c. Let B = {xSIS < c}. 

Claim. A(B) = r. 

Proof of Claim. Suppose that A(B) < r. Then Ar(B) = O. 

Thus there must be an a < c such that BeG by Theorem 2.2. 
a 

However, there must be a S with a < G < c. For this S, 

X E B by definition. However, X £ G , a contradiction of s s a 

the fact that BeG . This proves the Claim. 
a 

Returning to the proof of Theorem 6.4, we now wish to 

show that if A c B has the property that Ar(A) = 0, then A 

is countable. Suppose that Ar(A) o. Then there is a 

Now G n B :::> A. However, 
a 

X E G n B only if S < a. This implies that G n B is as a a 

countable set. Thus A is also countable. Thus also 

1\ (A) = o. 
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6.5 Note. The above proof is very similar to that 

used by Hurewicz ([9]) to construct the first known example 

of an infinite-dimensional space having no positive finite-

dimensional subsets. Using the Continuum Hypothesis the 

proof of Theorem 6.4 can be modified to give an example of 

a separable metric space X such that A(X ) = 00 such that 
oo oo 

if A c X
oo 

with A(A) < 00, then A is countable and hence 

A(A) O. One can replace the Continuum Hypothesis by 

Martin's Axiom in Theorem 6.4 using an adaptation of 

Theorem 3 and its proof in [25]. Thus Theorem 6.4 is 

consistent with the negation of the Continuum Hypothesis 

as well. 

n6.6 Theorem. Let A c R be any compact set and sup­

pose pk c Rn'A is a k-dimensional polyhedron which is not 

contractible to a point in Rn,A. Then An-k-I(A) > 0 and 

thus A(A) > n - k - 1. 

Proof. The proof is by contradiction. Suppose the 

theorem false. Then let A c be a compact set andRn 

pk c Rn'A be a k-dimensional polyhedron which cannot be 

contracted to a point in Rn'A. Let m = n - k - 1 and 

suppose that Am(A) = O. Let the distance between pk and 

A in Rn be less than (£n)1/2 > 0. Let H(n,O,m,£) be the 

collection of hyperplanes given by Theorem 6.2 for the 

kgiven parameters. Let C be any PL contraction of p to a 

Rnpoint in . Then C will have topological dimension < k + 1. 

We must have that C n A 'I ~. If m = 0, then Am(A) = 0 

pkimplies that A is empty. Thus C is a contraction of in 

Rn'A, a"..,:contradiction. Thus we must have that m > 1 and 
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thus that k + 1 < n. Thus C has no interior points in R
n . 

Let {B.lj=1,2,·.·,q} be a collection of rectangles in Rn 
J 

such that (1) for 1 < i < n, each B is bounded in thej 

i-direction by a pair of hyperplanes Hand H fromi,p i,p+l 

H(n,O,m,s); (2) B. n A ~ ~ for each j; and (3) the interior 
J 

of U{B. \j=1,2,··.,q} in R
n 

contains A. By the choice of s,
J
 

k
 we have that (U{B. \j=1,2, •.• ,q}) n p = ~ or the distance 
J 

between pk and A would be less than (£n)1/2. For each 

j E {1,2,···,q} let x ' be in the interior of B. with x. t C. 
J J J 

From these points we can project C n int{U{Bjlj=l, ••. ,q}) 

into the boundaries of the B. IS so that we obtain a 
J 

homotopy C' having the properties that (1) C' coincides with 

Con Rn,int{U{B.lj=l, ••. ,q}); (2) C I has topological dimen-
J 

s ionat mo s t k + 1 and (3 ) c' n in t { U{B . \ j =1 , • • • , q }) is 
J 

contained in the union of the hyperplanes which form the 

boundaries of the B. 's. The topological dimension of the 
J 

union of the hyperplanes is at most n - 1. If ill = 1, then 

!\O(A n H.. ) = ° for each H.. in lI(n,O,m,£) and thus1,J 1,J 

A n H.. = fJ for each H.. in lI(n,O,m,s). This implies
1,J 1,J 

that A n C' = fJ. Thus we have a homotopy in Rn'A which 

contracts pm to a point. Thus one must have that k > 2. 

Consider a hyperplane H. whose intersection with1,r 

the interior of U{B. \j=1,2, ••• ,q} is nonempty. Then for 
J 

each j E {l,···,q} there must be a point x. . in the1,r,J 

interior (relative to H. ) of (H. n B.)'C I whenever this1,r 1,r J 

interior is contained in the interior of U{B. \j=1,2, •• ·,q}
J 

in R
n . By projection from the points x. . we get a1,r,J 

homotopy CIt such that CIt n int(U{B.\j=1,2,··.,q}) c 
J 
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U{H .. n H IH .. and H distinct in /I(n,O,m,E)}. If 
~,J r,s ~,J r,s 

°m = 2, then AO(A n H. n H ) = for each pair of 
~,r r,s 

distinct H.. and H in !I(n,O,m,E) which implies that 
~,J r,s 

A n H. . n H ~ for each pair of distinct H. . and H 
~,J r,s ~,J r,s 

in /I (n , D, m, E). ThusA n e" = A n c" n in t ( U{Bj I j =1 , • • • , q } ) 

cAn (U{H .. n H IH .. and H distinct in /I(n,D,m,E)})
~,J r,s ~,J r,s 

~. Thus we have a homotopy e" contained in Rn'J\ in this 

case also. 

Proceeding in	 this fashion we finally obtain a homotopy 

e(m) which is the same as e on Rn,int(U{B. !j=l, ••• ,q}) and 
J 

such that e(m) nAn int(U{B.lj=l, ••• ,q}) cAn (U{H. . 
J ~l,Jl 

n ••• n H. .	 IH. ., • • • , H. . are distinct hyperplunes
~m,Jm ~l,Jl ~m,Jm 

from /I(n,D,m,E)}). By the definition of /I(n,O,m,E) 

••. n H. . ~ for each m distinct H. . ,···,H. . from 
l m,J m ~l,Jl ~m,Jm 

/I (n, O,k, E). Thus e (m) nAn int (U {B . I j =1, • • · , q}) = ~. 
J 

This C(m) is a homotopy which has the property that C(m) c 

Rn~. This is a contradiction. To prevent this contradic­

tion we must have that An_k_l(A) > 0. This completes the 

proof of the theorem. 

36.7	 Definition. Let A c R be any Cantor set having 

3the property that R 'J\ is not simply connected. Then A is 

3 an ~ntoine's Necklace. Such Cantor sets in R are known to 

exist. 
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The following corollary shows that any construction 

of Antoine's Necklace in R3 must be an example of a Cantor 

set whose Hausdorff dimension is at least one. 

36.8 Corollary. Let A c R be any Antoine's necklace. 

Then Al(A) > o. Thus 1\ (A) > 1. 

As a matter of fact one can construct examples of 

Antoine's Necklaces with Al(A) < £ for any E > O. Instead 

of using linked tori as is usual, one can use linked eye­

bolts. The heads on the bolts are chosen to be very small 

relative to the length of the body of the eyebolt so that 

the sum of the lengths of the eyebolts is very nearly the 

sum of the lengths of the eyebolts less the heads. The fol­

lowing illustration shows how the construction proceeds, 

but the heads of the eyebolts are not drawn to scale to 

show the linking detail. We let U; {Po .\j=l,2,··.,n.} 
4 ~J ~ 

be the eyebolts at the ith stage of the construction. Let 

A. = U{P .. lj=1,2, ••• ,n.} and let Antoine's Necklace be 
~ ~J ~ 

A = n{Aili=1,2, ••• }. 

Let 0 < M < be given. Let. U. {P .. I j =1 , • • • , j .} be00 
~ ~J ~ 

the eyebolts in the ith stage of the construction described 

above, then one can choose the lengths of the eyebolts at 

each stage so that lim ~ diam(P .. ) = M with mesh(U ) ~Oii ~oo P. . EU. 1 J 
~J ~ 

also. This implies that Al(A) < M. Since Corollary 6.6 

implies that 1\1(A) > 0, we must have that I\(A) = 1. 

These results are related to the co~cept of demension 

due to Stanko. See Vaisala ([33]) for a precise statement 

of the relationship of demension and Hausdorff measure. 
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A Construction of 
Antoine·s Necklac'e 

7. Lipschitz Mappings 

The kinds of mappings that are important in the study 

of Hausdorff measure and Hausdorff dimension are Lipschitz 

mappings of class o. If f(X) = Y is such a map, then one 

can say something about the relationship between A(X) and 

A(Y). If f is simply continuous, there is no useful
 

relationship between A(X) and A(Y). There is no useful
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relationship between A(X) and A(Y) even when X and Yare 

related by a homeomorphism. 

7.1 Definition. Let 8 > O. Then f: X ~ Y is said to 

be of Lipschitz class 0, f E Lip(o), provided there exists 

6 a K > 0 such that for all x,y E X, d(f(x) ,f(y» < K x d(x,y) . 

If 0 = 1, then f is said to be a Lipilchitz map. 

The Theorem 7.2 and 7.3 are straightforward applica­

tions of the definition of Hausdorff dimension. 

7.2 Theorem. Suppose that f(X) Y is of Lipschitz 

class o. Then A(Y) < 1/0 x A(X). 

7.3 Theorem. Let 6 > O. Suppose that there exists 

an	 £ > 0 and K > 0 such that for all x and y in X with 

6d(x,y) < €, d(f(x),f(y) > K x d(x,y). Then A(Y) > 

1/8 x A (X) • 

7.4 Theorem. Let f(X) = Y be a Lipschitz map_ Then 

We now give several applications of these mapping 

theorems. The first answers a question posed by Kaplan 

and Yorke ([13]). They asked whether every space X with 

integral Hausdorff dimension n has the property that there 

is a Lipschitz mapping f(X) = rn. We show that for each 

n a space X exists such that A(X ) n with a < An(X ) < 
n	 n n 

such that there is no Lipschitz map of X onto the interval 
n 

[0,1]. In fact we show that there is no continuous map of 

X onto [0,1].n 

00 
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7.5 Theorem. !l3sume the Continuum Hypothesis. Ilet 

n be any positive integer. Then there exists a separable 

metric space X such that A(X ) = n with 0 < An(X ) < oo~ n n n 

but with the property that there is no continuous map 

f: X ~ [0,1] which is onto. n 

Proof. Let y = {G c InlG is a G8 in In with A{G} = o}. 

There are c such subsets of In and, assuming the Continuum 

Hypothesis, we can index y with the countable ordinals, 

{G la < c}. We now define X ern. Suppose that a n 

a < c and suppose X has been chosen for all S < u. Thes 
set {S < a} is countable and thus rn'U{GSls < a} f ~ since 

A{r n ) = 1 > O. Thus we can choose x E rn'U{GSls < a}.a 

Let X = {x la < c}. We first need to show that 0 < A (X )nan n 

< 00 

Claim 1. 0 < An(X ) < and thus An{X ) = n.00 n n 

Proof. Let ~* be Lebesgue n-dimensional outer measure. 

Then An(X ) = an x ~*(Xn) by Theorem 2.4. Thus we only need n 

to show that ~*(Xn) > O. Suppose not. Then ~*(Xn) 0 and 

there is a Go set G containing X such that A*{G} = 0 also. n 

However, this implies that G E Yand that G = G for some a 

a < c. But x ~ G and supposedly X C Ga. This contra­a a n 

diction proves Claim 1. 

We now proceed to show that if f: X ~ 1 is any con­n 

tinuous map, then f{X ) cannot be onto. This will completen 

the proof of the theorem. 
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Claim 2. Let f: X ~ I be any continuous map. Then n 

f cannot be onto. 

Proof. Suppose f: X ~ I is a continuous map. There n 

is a continuous extension g: G ~ I of f to a Go-set con­

taining X in In. There is a collection of c pairwise
n 

disjoint Cantor sets in I. This is because the Cantor set 

-1C is homeomorphic to C x C. Let D = g (C ) for each a. 
a a 

Each D is closed in G and thus each D is a G.t-set as well. 
a a u 

Thus each D is measurable and the collection {Dala < c}a 

is pairwise disjoint. Thus there must be an a with 

A(D ) = O. This D is a Go-set in In and thus is in y.
a a 

Let G = D for some S < c. Then x E G implies thatS a y S 
y < S. Since {y < S} is a countable set we have that 

X n G X n D is a countable set. Since f-l(C ) c n S n a a 

g-l(ca.) n X D n X , we must have that f-l(C ) is 
n a n a 

countable. This is a contradiction of the assumption that 

f is onto since C is uncountable and f cannot map a 
a 

countable set onto an uncountable one. Therefore no con­

tinuous function can be onto. This proves Claim 2 and the 

proof of the theorem is complete. 

7.6 Note. Theorem 7.5 is true assuming Martin's Axiom 

by Theorem 3 of [25]. Thus the theorem is consistent with 

the negation of the Continuum Hypothesis. The example in 

Theorem 7.5 would be more interesting if it were compact. 

Let n be a positive integer. Here we give an example of a 

compact space X such that A(X ) = n, but such that there n n 

is no Lipschitz map f: X ~ In which is onto. Let Z. be n l 

any compact space having A(Zi) = n - Iii. We can suppose 
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that the metric of Zi is bounded by £i with (i ~ O. Then
 

let X be the union of the zits together with a point z
 n
 

such that Zi ~ z in X . The resulting space can be
 
n 

metrized in such a fashion that for x and y in Zi' the 

distance between x and y in X is just the distance between n 

x and y in Zi. By 'fheorem 5.1 !\(X ) = sUP{/\(Zi) li=1,2,---}n 

n. However, if f: X ~ In is any Lipschitz map, then 
n 

A(f(Zi» < n because Lipschitz maps cannot raise Hausdorff 

dimension_ Thus the topological dimension of f(Zi) must be 

less than n also. Thus f(X ) = U{f(Zi) li=1,2,---} U f(z)n 

must have topological dimension less than n by Theorem 5.4. 

Thus f(X ) cannot be all of In. Note that althoughn 

o in this example. 

7.7 ExampZe. Let X be any metric space and let Xc be 

given the metric the function D(x,y) d(x,y)o for some 

fixed 0 < ° < 1. Then !\(X ) = 1/0 x /\(X)_o

7.8 ExampZe. Let X be any metric space with metric
 

bounded by e- 3/ 2 . Let X be given the metric O(x,y)

D
 

{In(d(x,y)-l) }-1/2. In this example, if LeX has
 

00.o < /\(L) < 00, then in X /\(L) Thus if L c X has o o
 

/\(L) < then LeX has /\(L) O.
00, 

8. A Problem 

This section deals with an open problem in the theory 

of Hausdorff dimension. The question is whether a compact 

space X can have /\(X) > 0 and not have any closed subsets 

A c X with 0 < /\(A) < /\(X). We shall not go into too much 

detail about this problem, but a counterexample must have 
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A(X) = 00 There are compact metric X in the topological 

theory of dimension with dim X = 00, such that if A C X, 

then dim A = 0 or 00. See Walsh ([34]) for the most general 

and readable example of this sort. Such a space as is 

described in [34] cannot be a counterexample to the above 

question as we shall show. Such a space must contain a 

nontrivial continuum. In every nontrivial continuwn, there 

are closed subsets of Hausdorff dimension one. We give a 

simple proof of this. For a more general result see 

Larman ([14]). Thus, any counterexample to the above 

question must have topological dimension zero. 

On the other hand, for finite-dimensional topological 

spaces, there are always subsets of every lesser topological 

dimension. This is not true for Hausdorff dimension, at 

least not for noncompact spaces. Let p > O. Then Theorem 

6.4 shows that there are examples X which have the pro­p 

perty that A(X ) = p such that if A c X ' then A(A) = p or O. p p 

The examples use the Continuum Hypothesis in their construc­

tion (actually Martin's Axiom is all that is required as 

pointed out in Note 6.5). They definitely are not compact. 

8.1 Theorem. Let X be a nontrivial metric eontinuum. 

Then there exists a Cantor set C c X with A(C) = 1. 

Proof. Let X be a nontrivial metric continuum. Let 

x and y be any two distinct points in X. Let d(x,y) = £ > o. 

We will now construct a Cantor set C c X having the follow­

ing properties: (1) C has a sequence of open covers 

{ (Ji Ii=l, 2, • • .} such tha t L diam (P .. ) < £ for every i 
P . . E(J. 1J 

J.J J. 
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and (2) there is a Lipschitz map f: C ~ [O,E] such that
 

f(C) has positive Lebesgue measure. Before we construct
 

C, we show that these properties imply that A(C) = 1. In
 

property (1) above, the given sequence of covers shows that
 

Al(C) ~ E. On the other hand, the Lipschitz map f: C ~ [O,E]
 

maps C onto a set of positive Lebesgue measure in the inter­

val. Thus the set f(C) must have A(f(C)) = 1. However, a
 

Lipschitz map cannot lower Hausdorff dimension. Thus,
 

A(C) > 1. Thus we have A(C) = 1.
 

We now proceed with the construction of C in X. First 

let {Mili=1,2, ••• } be a sequence of positive real numbers 

such that E > MI > M2 > > E/2. Then let {Eij lj=I,2, ••• 2i 
j 

be such that E: •. M1../2i so that L{( .. lj=1,2, ••• ,2 i } = M..
1.J 1.J 1. 

Let and B be the open (II-ball about x and the openB l 2 

(12-ball about y, respectively. Let Cll be the closure of 

the component of x in B and C be the closure of thel 12 

component of y in B2 . From a well-known theorem in general 

topology, Cll must meet the boundary of Bl and C must meet12 

the boundary of B2 . Let Dl = Cll U C12 and f l : Dl ~ [O,£J 

be defined by fl(z) = d(x,z) if z E Cll and f (z) = l 

£ - d(y,z) if z E C Clearly, f is Lipschitz from D12 .
l l 

to [O,E] with constant K = 1. Now the diameter of ell is 

at most 2 x £11 and the diameter of C12 is at most 2 x £12. 

Also, the diameter of fl(Cll ) = All is exactly £11 and the 

diameter of f l (C 12 ) is exactly £12.= A12 

Now let = x in Cl and be any point in Cll nx 21 x 22 

(Bdy(B )). Let x be y in C and x be any point inl 23 12 24 

n (Bdy(B 2»). Let C be the closure component of xC12 21 21 
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f 1(C 12) 

First Stage in the Construction 

in Cll n B and C be the closure of the component(x 21 ) 22E: 21 

of x in Cll n B (x ). Let C23 be the closure of the22 E 2222 

component of n BE: (x ) and let C24 be thex 23 in C12 23 23 

closure of the component of x in C n B (x ). Let
24 12 24E: 24 

O = C U C U C U C and let f 2 : O ~ [O,E] be2 21 22 23 24 2 

defined as follows. For z E define f (z) = d(x 21 ,z) ·C21 ' 2 

For define f (z) = - d(x ,z). For C letC22 ' 2 Ell 22 23 

f (z) = E: - + d(x ,z). Lastly, for C let f (z)
2 £:12 23 Z4 2 

£ - d(x ,z). Note that f is a Lipschitz map with24 2 

constant K = 1 and f (C ), then the diameter ofif A2j 2 2j
 

is at most 2 x and the diameter of A is
C2j E: 2j 2j E: 2j · 

Proceeding in this fashion we obtain collections of disjoint 

continua U. = {C .. lj=l,2, ••• ,2 i } in X such that the diameter 
1. l.J 

of C .. is at most 2 x E: .•• We define D. = uU .• For each
l.J l.J 1. 1 

i we also have a Lipschitz map f. : D. ~ [0, c] with K I 
1. 1 

such that if A.. = f.(C .. ), then A .. n A. = ~ for alll.J 1. lJ lJ 1m 



380	 Keesling 

j t	 m and the diameter of A.. is E... Also, f;(D;) ::> 
~J ~J ~ ~ 

f i+l (D i + l ) for all i. 

We define the Cantor set C to be the intersection of 

the sets {D·li=1,2,···} in the space X. One can verify 
~ 

that the sequence of mappings filc forms a Cauchy sequence 

in the supremum metric. Thus we· can define a map 

f: C ~ [O,E] to be the limit of the functions fi,lc. The 

map f: C ~ [O,E] will also be Lipschitz with constant 

K = 1. Now the set f(C) will be the intersection of the 

f(D	 ) and the Lebesgue measure of each ofi 

these sets is M by construction. This implies that the
i 

Lebesgue measure of f(C) is the limit of the Mi'S. Thus 

A(f(C)) ~ E/2 > O. This implies that A(f(C)) ~ 1. Thus 

A(C) ~ 1 since a Lipschitz map cannot raise dimension. 

Thus A(C) = 1 and this is the required Cantor set of 

Hausdorff dimension one that was to be constructed. 

8.2 Corollary. Let X be a metric continuum. ~Phen 

for every r E [O,l]~ there exists a Cantor set C c X with 

1\ (C) = r. 

Proof. This is a simple application of Theorem 8.2 

together with Example 7.6 from the previous section. 

8 • 3 Cor 0 ZZa r y . Let r E ( 0 , 1] • ']'hen the rei s a 

Cantor set C c [0,1] such that A(c) = r. 
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