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THE MATHEMATICAL WORK OF R. H. BING 

Morton Brown 

The title of my talk "The Mathematical Work of 

R. H. Bing" requires some conunent. First of all, this 

unoriginal and somewhat desiccated title is misleading. 

Those of use who talked with Bing, wrote papers with him, 

or heard his lectures could immediately see that very 

little of this was work. Mathematics for R. H. Bing was 

always a very serious business. But it was fun, not work. 

Secondly, it would be simply Lmpossible, in the 

space of an hour, to discuss the "role and influence" of 

Bing's mathematics. That would entail a panoramic view 

of all of modern geometric topology, and continua theory. 

I would be obliged to hang out the names and great works 

of just about all the players in this grand endeavor. Let 

me simply say that is pervasive. Hardly any of us in 

this room has not had our work ,influenced by a paper of 

Bing's. 

Bing authored about 115 papers, books, and monographs. 

No fewer than twenty of his papers would have to be called 

major contributions. At least ten others are referred to 

as basic or seminal in their respective areas. I will 

discuss Bing's papers by groups, with an emphasis on my 

interpretation of his contemporary interests and the 

historical perspective of the time. Given the t~me limit 

of one hour I have tried to choose from among Bing's 

papers, those that were particularly important in his 
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career, or have been particularly influential. These are 

admittedly subjective choices, and several very nice papers 

will go unmentioned today. 

1.	 The Kline Sphere Characterization Problem 

A principal goal of topology has always been that of 

finding reasonable sets of axioms for topological charac­

terizations of standard topological spaces. Of course 

attention was first focused on the simpler spaces, the 

interval, the line, the circle. Once the basic notions 

of separation and compactness were worked out, these problems 

became quite tractable. The circle, for example could be 

characterized as a continuum (compact and connected metric 

space) which is non-degenerate, i.e., not a point, and is 

separated by each pair of points. Two dimensional spaces 

such as the two sphere presented a much more challenging 

set of problems. This was a principal focus of topology 

in the first third of this century. Indeed, R. L. Moore's 

book can be interpreted as a sweeping and historical defini­

tion of the plane, starting from first concepts. 

By the mid thirties, there were several satisfactory 

characterizations of the two sphere but the most elegant 

one, suggested by J. R. Kline, remained unsolved: Suppose 

that a nondegenerate Peano continuum X is separated by 

each topological l-s~here in X but is separated by no 

topological a-sphere. Is X a 2-sphere? It followed from 

work of Zippin, and van Kampen, (see [9]), that the answer 

is affirmative if no arc separates X. Many topologists 

attempted to remove this last condition. Bing succeeded. 



5 TOPOLOGY PROCEEDINGS Volume 12 1987 

This result,- obtained shortly after.his Ph.D., received 

much attention. Bing was marked as a young mathematician 

of great promise. That promise was well kept. 

2.	 Bing's Work on the Pseudoarc 

The postwar period in Poland (1920's) was one of 

fabulous development in topology. A principal interest 

was the study of plane continua, both "well behaved," i.e., 

locally connected, and pathological. Somewhat reflecting 

the audacity of the time, were the following two questions: 

(1) If a non-degenerate plane continuum is homeomorphic to 

each of its nondegenerate subcont:inua, is it necessarily 

an arc? (2) If a nondegenerate plane continuum is homo­

geneous, is it necessarily a simple closed curve? The 

first question was raised by Masurkiewicz in vol. 2 of 

Fundamenta, the other was raised by Knaster and Kuratowski 

in vol. 1. 

There can be little doubt that these questions were 

regarded as tough nuts, and that they were vigorously 

attacked. The 288 pages of vol. 2 of Fundamenta that 

separates these questions contains five papers by Kuratowski, 

Knaster, and Mazurkiewicz on related problems. Vol. 3 

includes a paper by Kuratowski on homogeneity. The same 

volume has, in successive papers by Knaster, two famous 

examples of exotic continua. 

These Knaster continua have historical importance. 

A continuum is called "decomposable" if it is the union 

of two proper subcontinua. On first thought it would be 

reasonable to assume that every continuum is decomposable, 
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but the existence of indecomposable continua was discovered 

by Brouwer in his disproof of the conjecture of Schonflies 

that the common boundary of two plane regions is decomposable. 

Knaster's first example, now called the bucket-handle or 

U-continuum is an elegant and probably the simplest example 

of a plane indecomposable continuum, that is, a continuum 

in the euclidean plane that is not the union of two proper 

subcontinua. The second example, constructed as the inter­

sec"tion of a decreasing sequence of bands each very crooked 

inside its predecessor has the further property that it 

is hereditarily indecomposable, i.e., each of its subcon­

tinua is indecomposable. It plays a special role in this 

talk, so I shall refer to it as the Knaster continuum. 

Vol. 3 of Fundamenta contains a long paper by Kuratowski 

on various properties associated with indecomposable con­

tinua. There is every reason to believe that Kuratowski, 

Knaster, Masurkiewic2 et ale had strong suspicions that if 

the questions (1) and/or (2) have negative answers then 

the counterexamples would be as exotic as Knaster's, but 

as we shall see, the truth is more astonishing than they 

could have suspected. 

Problem (1) proved to be quite intractible, and per­

haps, began to be perceived as unnatural in the sense that 

neither a positive nor negative answer seemed likely to 

influence future research. Some headway was made, notably 

by Whyburn, but despite an attempt by Wilder in 1937 to 

popularize the problem, it was to remain unsolved for 

another ten yed£s. 
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Problem (2) attracted more attention. The hypothesis 

of homogeneity seemed to offer more to work with, and the 

fact that the problem could be recast in terms of a group 

action (the transitivity of the homeomorphism group) made 

the problem seem natural (in the sense that a positive or 

negative answer might direct future research). Although 

Mazurkiewicz proved in 1924 that the answer is affirmative 

if the continuum is locally connected, there was little 

further progress. In fact the situation was obscured by 

an unfortunate succession of papers containing false results 

involving several authors. 

In 1947, Moise, in his Ph.D. dissertation (Trans. 

A.M.S., vol. 63 (1948), 581-594), described a general con­

struction which produced a famil~ of topologically equiva­

lent plane continua having the property that they were 

hereditarily indecomposable and homeomorphic to each of 

their nondegenerate subcontinua, thus, negatively settling 

Problem (l). He noted that the Knaster continuum (which 

by the way had been in Knaster's Dissertation) was very 

similar if not, in fact topologically equivalent to Moise's 

continuum. 

Moise's methods were of course more powerful than 

Knaster's. Instead of Knaster's bands, Moise used a 

sequence of "chains" of open sets to define his "pseudo­

arcs." These chains 'were refined by chains whose patterns 

became successively more crooked with respect to the 

preceding chains. This guaranteed that the continuum would 

be hereditarily indecomposable. By a process of "consoli­

dation" (the principle being that a sufficiently crooked 



8 Brown 

chain could be consolidated into a chain of required 

pattern as needed), Moise showed that all continua con­

structed in this way, that is, all pseudo-arcs are homeo­

morphic. He then showed that each nondegenerate subcontinuum 

of a pseudoarc is a pseudo-arc and hence homeomorphic to it. 

I must confess at this point that my understanding of 

Moise's work is retrospective, and influenced by Bing's 

subsequent papers. The full import of Moise's construction 

was obscured by several factors. Moise's chains did not 

cover the continuum, their closures did, but the links were 

pairwise disjoint. This complicated the constructions, and 

made their symmetry less transparent. Furthermore, the 

exposition, while lacking no precision, was not a model of 

clarity. The hypothesis of Theorem Nine, for example, 

takes some 270 words. 

Bing must have coped with these difficulties as he 

tried to follow Moise's proof. My guess is that he tried 

to recast Moise's ideas into more comprehensible bits, 

and fit the ideas clearly into place. Bing [14] defined 

the pseudo-arc using chains of open covers and formalized 

the notion of pattern. By an intricate and subtle use 

of consolidations he succeeded in proving that the pseudo-arc 

is actually homogeneous! (It should be mentioned here, 

that having seen Bing's paper, Moise showed that homo­

geneity could also be deduced from his work.) 

In a later paper, Bing [22] put the final piece of 

the puzzle in place. He showed that the pseudo-arc is the 

. only hereditarily indecomposable chainable continuum. This 



9 TOPOLOGY PROCEEDINGS Volume 12 1987 

meant that Knaster's continuum is a pseudo-arc. In other 

words, Knaster's continuum is a counterexample to both 

problems (1) and (2). (It is an interesting coincidence 

that, as partial requirements for their Ph.D., both Knaster 

and Moise submitted the same example.) 

The pseudo-arc is one of the most fantastic and unique 

constructions in topology. Like the Cantor set, the pseudo­

arc has a simple descrip~ion, a fractal construction, is 

homogeneous, and is ubiquitous. Like an arc, it doesn't 

separate the plane, is homeomorphic to each of its proper 

subcontinua, and has the fixed point property. Like a 

simple closed curve it is homogeneous and has arbitrarily 

small open covers of circular chains. It is ubiquitous. 

(Bing showed [22] that in the category sense almost all 

continua are pseudo-arcs. Wayne Lewis recently proved that 

in the category sense, almost every map between continua 

is an embedding of one pseudo-arc into another.) A princi­

pal theme of this conference is the interaction of con­

tinua theory and dynamical systems. The discrete dynamics 

of the pseudo-arc is likely to produce some remarkable 

phenomena. 

3. Bing's Work on Homogeneity 

The exciting developments concerning the pseudo-arc 

naturally fueled the search for other homogeneous plane 

continua. Were they now all known: the circle and the 

pseudoarc? Bing [22] suggested a circular version of the 

pseudo-arc called the pseudo-circle as a possible example. 

At firsh blush this continuum would appear more likely a 
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candidate than the pseudo-arc itself, but Fearnley (Bull. 

A.M.S., 75 (1969), 554-558) and Rogers (Trans. A.M.S., 148 

(1970), 417-428) independently proved that it was not 

homogeneous. However, in 1954, Bing and Jones independently 

constructed another homogeneous continuum, the "circle of 

pseudo.-arcs" [47]. In the 33 years succeeding the Bing-

Jones example, much progress has been made in the search 

for homogeneous plane continua, notably by Jones and his 

school. Bing [53] returned to this problem in 1960 and 

proved that the circle is the only homogeneous plane con­

tinuum that contains an arc. The list of known examples 

still stands at three and the list of possible types of 

examples has been shortened, but the problem remains 

unsolved. 

4. Bing's Work on Metrization 

R. L. Moore's students were introduced to topology via 

"Moore spaces" rather than Hausdorff spaces. In modern 

terminology, a Moore space is a regular Hausdorff space 

with a sequence GI ,G2 ,··· of open covers such that for 

each point x and neighborhood N(x) there is an n such 

that every element of G that contains x lies in N(x). It n 

was a question of long standing whether a normal Moore 

space is metrizable. Many of Moore's sutdents and grand-

students (and Moore ~imself) worked on this problem. 

Bing, of course, also worked on this problem, but/did not 

solve it. This is forgivable (as it is indeed for all of 

those who attempted it), as the problem turned out to be 

undecidable. However in working on it Bing [20] developed 
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a very interesting property which he called "collectionwise 

normal. II A Hausdorff space is collectionwise normal if 

each discrete collection of pairwise disjoint closed sets 

can be covered by pairwise disjoint open sets. He then 

proved that a collectionwise normal Moore space is metriza­

ble. He then gave a beautiful exaJmple of a normal Hausdorff 

space that is not collectionwise normal. 

In the same paper (and in the same spirit) was the 

following theorem, now known as the Bing Metrization Theorem: 

A necessary and sufficient condition that a regular Hausdorff 

space be metrizable is that it have a sigma-discrete basis, 

that is, a basis G = UG such that each G is discrete. n n 

Independently, Nagata and Smirnov derived similar results 

with "locally finite" replacing "discrete." 

5.	 Bing's Work on Convex Metrics 

A convex metric space is a metric space in which for 

each two points a and b there is a third point c such 

that d(a,b) = d(a,c) + d(c,b). In 1928 Menger had proved 

that a compact convex metric space is a Peano continuum, 

and asked whether the converse were true: Does each Peano 

continuum have a convex metric? This problem received much 

attention. There was a discussion of it in Blumenthal's 

book "Distance Geometries," 1938, and partial results were 

established by Kurat9wski, Whyburn, and Harrold. In 1938 

Beer published an affirmative solution for the one dimen­

sional case. 

In 1948, Bing was at Madison, and Moise at Ann Arbor. 

Both were working on the Menger problem. Bing published 
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an affirmative solution in 1949 for the finite dimensional 

case. Shortly afterward, Moise announced a proof for the 

general case, and a few weeks later, Bing announced his 

proof. Their papers appeared back to back in the A.M.S. 

Bulletin. Unfortunately, Moise's paper had a serious 

error. Interestingly, both papers employed the notion of 

what Bing called "partitioning." This notion of pairwise 

disjoint open sets whose closures cover the space is 

reminiscent of Moise's approach to the pseudo-arc. 

We now get to the area that was to dominate Bing's 

interest for the rest of his career. 

6. Bing's Papers on 3-Manifolds (Triangulation and Taming) 

In a talk he gave in 1955, Bing expressed his views 

on the direction he felt that geometric topology should 

take. "There has been much study devoted to the plane and 

simple problems that have not already been attacked are 

3difficult to find in this area .•.. On the other hand, E is 

essentially a virgin forest. For many years the problems 

were so forbidding that few attacks were successful. Now 

mathematicians are beginning to venture into the woods." 

In 1949 Bing had visited the University of Virginia, and 

according to Bing, he became interested in three space 

after conversations with Ed Floyd. In the meantime Moise 

had turned his interest to E3 and had broken hard ground 

with his monumental series of papers: "Affine structures 

on 3-manifolds" (Annals of Math. 1951-1954). Moise had 

triangulated three-manifolds (without boundary) and proved 

the Hauptvermutung for three manifolds. Bing had published 
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his paper on the sum of two horned spheres in 1952 (I will 

return to this paper in a later section) and in 1954 Bing 

had published his first major paper on triangulation, 

"Locally tame sets are tame" [32]. This paper appeared 

back to back in the Annals of Math. with Moise's "Affine 

structures •..• " The content of both these papers is 

similar, and both papers leaned heavily on Moise's earlier 

work. For simplicity of exposition I shall describe the 

results in E3 although the proofs work in an arbitrary 

3triangulated manifold. A subset K of E is called tame if 

3there is a homeomorphism of E carrying K onto a polyhedron. 

It is called locally tame if for each point p of K there 

is a neighborhood N (p) and a homeolnorphism of the closure 

3of N into E that carries both the closure of N and its 

intersection with K onto polyhedra. The main theorem is 

the title of Bing's paper. Another important result in 

their papers is that each three manifold with boundary can 

be triangulated, extending Moise's work to manifolds with 

boundary. (This result is needed, for example, to prove 

the annulus theorem in three dimensions, although the 

problem was not explicitly formulated at the time.) 

In 1955, at the time of the quotation at the beginning 

of this section, Bing [43] had just proved his Approximation 

Theorem for Surfaces: If M is a 2-manifold with boundary 

in a triangulated three manifold S" and f is a non-negative 

continuous function defined on M, then there is a manifold 

M' and a homeomorphism h of M onto M' such that M' is 

locally polyhedral at h(x} if f(x) > 0, and d(x,h(x»~ f(x). 
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This theorem will playa fundamental role in Bing's work. 

At a crucial place it uses Moore's plane decomposition 

theorem. 

In 1959 Bing published his "Alternative proof that 

three manifolds can be triangulated" [46]. A key ingredient 

of this paper is a strengthening of the approximation 

theorem for manifolds to an approximation theorem for 

2-complexes, i.e., the manifold of the previous result is 

replaced by an arbitrary topologically imbedded two complex. 

The paper is a completely self-contained proof of both the 

triangulation theorem and Hauptvermutung for three mani­

folds with or without boundary. It also establishes that 

each homeomorphism of a three manifold can be approximated 

by piecewise linear ones (Moise had done this in the 

unbounded case) • 

Roughly speaking, Bing's early papers in this area 

rely on Moise's main results: "Affine structures 1-5." 

By 1954 they are working independently and getting similar 

results. After Bing's "Alternate proof that three mani­

folds can be triangulated" their work takes different 

directions. 

In 1958, Bing [45] published his "Necessary and suf­

ficient conditions that a 3-manifold be 53 ... In order to 

put this paper into perspective it will be necessary and, 

I hope, sufficient to· recall The Fox-Artin arc (Annals of 

Math. 1948, 979-990) which has a simply connected comple­

3ment in 53 even though its complement is not E . (See 

Fig. 1.) 
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Figure 1 

Fox-Artin show that a the simple closed curve W in the com­

plement of the arc is null homotopic but there is no homeo·· 

morphism of the complement of the arc that transforms W 

into the interior of a ball. "It seems to us that the 

existence or non-existence of a closed simply connected 

three dimensional manifold with this property would be a 

decisive point in solving the Poincare Conjecture." Bing's 

theorem is that a closed 3-manifold is s3 if each simple 

closed curve lies in a topological 3-ball. It is a sharp 

theorem of the form: (Ul(M) = 0) + c implies M = 53, 

Bing suggested, and McMillan later proved that even sharper 

hypothesis suffices: every simple closed curve is null 

homotopic within some solid torus. 

In 1958 [66] Bing proved the powerful Side approxima­

tion theorem: If a 2-sphere is in E3 and ( > 0 then there 

is an (-homeomorphism of the sphere into a polyhedral one 

which is strictly on ~ given side of the sphere except 

possibly for a finite number of s-'disks. 

Bing used this result to prove: 

1. Each disk in E3 contains a tame arc [64]. 

2. Each disk in a E3 is pierced by a tame arc [65]. 
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3. A surface (or a Cantor set) is tame if its comple­

ment	 is l-ulc [57,58]. 

The l-ulc paper [57] can be called the real beginning of 

taming theory. It is at the root of much of the development 

of higher dimensional topology. 

Another fundamental result of Bing's	 in taming 

3theory is the theorem that a 2-sphere in E is tame if it 

can be approximated by spheres (not necessarily tame) from 

either side. Let me leave this subject by observing that 

Bing and his students found a number of remarkable applica­

tions of these ideas. 

7.	 Bing's Work on Decomposition Spaces 

In the 1920's R. L. Moore proved the following: If G 

is an upper semicontinuous decomposition of the plane into 

2continua no one of which separates E then the decomposition 

space is E2 . (A partition of a space into continua is 

upper semicontinuous if each continuum in the collection 

is "at least as large" as nearby continua, i.e., if N(C) 

is a neighborhood of a continuum in the partition then 

there is a smaller neighborhood V(C) such that each con­

tinuum in the partition intersecting V(C) lies in N(C). 

The decomposition space is the quotient space obtained by 

identifying each of the continua to a point.) The proof 

was as follows : Usin~g a topological characterization of 

the plane, Moore proved that the decomposition space satis­

fies the same axioms. This of course is an oversimplifica­

tion: The proof has been described as a tour de force of 

two-dimensional topology. 



TOPOLOGY PROCEEDINGS Volwne 12 1987	 17 

3The corresponding problems for E were at the heart 

of Bing's mathematical interest throughout his career: 

3What is a simple useful topological characterization of E , 

and which monotone decompositions (i.e. compact connected 

3decomposition elements) o~ E produce a decomposition space 

homeomorphic to E3 ? 

Whyburn had observed that even with only one non-

degenerate decomposition element, a simple arc, the decom­

position space might not be E3 • (For example, if a is 

the Fox-Artin arc previously mentioned, then E3/a is not 

3 3E as E - a is not simply connected.) Whyburn suggested 

that, perhaps, one should therefore study "pointlike" 

3decompositions of E , i.e., those in which the complement 

of each element is homeomorphic to the complement of a 
\ 

point. In fact, ;using this terminology, ,Moore's. theorem 

becomes: each pointlike (upper semicontinuous) decomposi­

· f E2 h 2 . d ., . ft lon 0 as E as ltS ecompos2tl0n space. As or 

topological characterizations of E~ Wilder had postulated 

that the space should have the local homology groups of 

three space, i.e., a generalized manifold, but no-one 

seemed to have even a good suggestion for a simple set of 

axioms (nor is there one at this time:). 

Figures 2 and 3 illustrate two subtle aspects of 

decomposition theory. 

Figure 2 illustrates a striking example (due to Bing) 

3[36]	 of a monotone decomposition of E into points, circles, 

3and figure eights. The decomposition space is E even 

though the two circles link. Bing and Moise gave entirely 
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Figure 2 

f(J) 

an 
f 

Figure 3 
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different proofs of this (Institute in Set Theoretic 

Topology, 1955) and each proof is a lesson in the subtlety 

of decomposition theory. In the second example, due to the 

author there is only one decomposition element, and it is 

pointlike, so the decomposition space is E3 . But the 

quotient map carries the knotted arc J homeomorphically onto 

an unknotted arc. Bing was to discover an even more subtle 

fact: it is possible to "link" bunches of arcs together 

even though each pair in the bunch are polyhedral. But I 

am getting ahead of the narrative. 

3Bing's very first paper on E (195l) was an attempt 

to provide at least some set of axioms. Unfortunately, the 

axioms were not particularly useful or illuminating. His 

second paper, however, was a blockbuster. Bing showed 

that s3 is the union of two solid horned spheres sewn 

together along their boundary. First of all the construc­

tion provides an involution of S3 whose fixed point set 

is a horned sphere, i.e., an involution that could not be 

congugate to a linear involution. An important consequence 

of this construction was that the theory of transformation 

groups moved in the direction of differential topology in 

order to avoid pathology. 

But it was Bing's method of proof that was both 

startling and seminal. He used "decomposition theory." 

Bing constructed a c~rtain pointlike decomposition of E
3 

and showed that (1) the decomposition space could be viewed 

as the union of two horned spheres and (2) the decomposi­

3tion space is homeomorphic to E . The method that Bing 
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used to prove (2) involved a procedure whereby the decompo­

sition elements were gradually "shrunk" to smaller sets 

without allowing the other decomposition elements to grow 

too· large.	 This technique grew into what McAuley later 

named "Bing's shrinking criterion." 

Let's stop for a moment and see what the situation would 

have been if the decomposition space were not E3 . In 

3that case Bing would have constructed a decomposition of E

into points and tame arcs whose decomposition space is not 

3E , showing	 that Whyburn's suggested version for a Moore 

3Theorem in E would not work. Thus Bing had a major 

result which ever way it came out. 

3When it turned out that the decomposition space was E , 

Bing immediately started trying to frustrate this outcome, 

that is he tried to frustrate the shrinking trick. The 

result of his efforts was perhaps Bing's greatest construc­

tion, the Dogbone Space [42]. The decomposition elements 

are still points and tame arcs but they cannot be shrunk 

uniformly small. Bing showed that if the decomposition 

3space'were E then it would be possible to shrink the 

elements. (This was a negative application of the shrinking 

criterion.) In his argument Bing used a delicate property 

3of E ; a certain pair of intersecting disks could be 

"adjusted" so that they became disjoint. This would be 

possible if the decomposition space were E
3 • But Bing 

showed that that would lead to a contradiction, so that 

the decomposition space does not satisfy a "disjoint disc" 

property, and hence, is not E3 . The decomposition space is, 
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in fact, not a manifold at any of the nondegenerate 

"points." 

But Bing's interest in the Dogbone Space did not end 

with this achievement. He was determined to understand 

the extent to which the decomposition elements were linked, 

and what delicate properties of three space were involved. 

What he proved (in a paper [50] that is most difficult to 

read, even though it is excellently written) was that the 

cartesian product of the Dogbone Space and a line is E4 . 

Whitehead had constructed a famous example of a contractible 

3 3 open subset of E which is not homeomorphic to E , and 

Arnold Shapiro had recently shown that the product of this 

4 4 space with a line is E • This was startling: E had 

2factorings other than El XE 3 and E2XE • What Bing showed 

4 was that the Dogbone Space was a factor of E. In other 

4wrods E has non-manifold factors. The proof involved a 

very elaborate application of the shrinking criterion. 

These three papers were of fundamental importance in 

the development of three dimensional topology, but they 

also contained some of the seminal ideas that were at the 

heart of the great accomplishments of higher dimensional 

geometric topology of the late ]970's: decomposition 

spaces, shrinking criteria, stabilization of decomposition 

spaces (i.e., non-manifold decomposition spaces whose product 

with En were euclidean), and the disjoint disk property. 

In Michael Freedman's Veblen Prize speech he pays tribute 

to the critical role'that Bing's decomposition theory 

played in Freedman's solution of the four dimensional 
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Poincare Conjecture. "Bing shrinking" played a key role 

in Torunczyk's work in Q-manifolds. Interestingly, one of 

his theorems: An ANR in Hilbert space manifold iff it has 

the "discrete cells property" not only uses Bing shrinking 

but is reminiscent of Bing's "collectionwise normal" condi­

tion. Cannon and Edwards have given us a marvelous view 

of higher dime~sional manifolds. As they have acknowledged, 

they too were standing on Bing's shoulders. 

8. Other Papers 

Although	 Bing's primary concern was to remain with the 

3topology of E , he kept a lively interest in all areas of 

geometric topology and continua theory. 

One of the results of the renaissance of infinite 

dimensional topology in the 1960's was the solution of a 

problem that went back at least 40 years: Is real Hilbert 

space homeomorphic to the countable infinite product of 

real lines? The problem was explicitly raised by both 

Frechet and Banach in their famous books. Although the 

question must have arisen countlessly in classrooms, there 

seems to have been little progress toward its solution 

before 1960. Finally, in 1966, R. D. Anderson gave an 

affirmative solution. It was a culmination of the work of 

several authors, notably Anderson, Bessaga, Kadec, and 

Pelcynsky. 

Bing, of course was very interested in understanding 

a proof of this theorem, and in 1968, Anderson and Bing 

published a self contained and completely elementary proof 

of this result. The paper appeared in its entirety in 
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the	 Bulletin of the A.M.S., upon'invitation of the editors 

[87]	 • 

The monotone mapping problem was another highly 

respected	 problem. In 1959 Whyburn had proved that if a 

2 map takes E2 to E and the inverse of each point is compact 

and connected, then the inverse of each compact set is 

necessarily compact. He asked whether the same result is 

true for En. In 1969, Glaser gave a negative answer for 

n > 3. Later in the s~ae year, Bing [93] gave a difficult 

and ingenious counterexample for the case n = 3. 

Of course, fixed point problems are never far from 

the heart of geometric topologists and Bing made a signifi ­

cant contribution in this area, without ever publishing 

a research paper to my knowledge. He did publish an 

expository paper in the American Math Monthly in 1969 

called liThe Elusive Fixed Point Property" [92]. Reviewing 

23 theorems and raising twelve questions, it is a model of 

exposition. Each of the questions subsequently has received 

attention in the literature, and one method casually 

employed by Bing, the "dog chases rabbit" technique, has 

been exploited frequently and fruitfully, by Hagopian, for 

example. 

Bing's expository style is an important part of his 

mathematical "work." It is always informal, while intensely 

rigorous. The proofs~ do not cover the tracks of discovery. 

Papers will often explain (with examples) why a certain 

alternative path would run into trouble. The title is often 

the main result. Bing's lecturing style, his expository 
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style, and his conversational style were disarmingly geared 

toward clarity of thought and simplification of exposition. 

His Colloquum book [113] reflects this quality. Reading 

it, one has the feeling of a conversation with the author. 

Bing's personna leaps out of the pages. 

In conclusion I would like to share with you some quo­

tations that I have gleaned in preparing this talk. 

1. (Bing, "The pseudo-arc," 1955): liThe set of all 

bounded continua (as arcs, discs, spheres points, etc.) that 

differ from the pseudo-arc is only of the first category. 

This being the case, if a person dealing with a continuum 

whose shape is unknown (as a physicist dealing wIth one of 

the obsolete treatments of the atom), it might be more 

reasonable to suspect it to be in the shape of a pseudo-arc 

than to suspect it to be spherical." 

32. (Bing, "Decompositions of E ," 1965): "I had hoped 

that others writing about the dogbone space would give a 

more elegant proof that it was topologically different 

from E3 . Several have not availed themselves of this 

opportunity." 

3. (Bing, "The Monotone Mapping Problem," 1965): 

3 . n n 3"Perhaps E sheds more 11.ght on Ethan E sheds on E ." 

4. (Michael Freedman, Veblen prize acceptance 

speech, 1986): "But lowe a special debt to Bob Edwards, 

who taught me the branch of geometry, "Bing topology," 

which ~lays a central role in the work which the A.M.S. 

has recognized with this reward." 
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5. (J. W. Cannon, I.C.M. Helsinki, 1978): "We 

explained our work to Bing. He was not excited. He found 

the proof obscure. In frustration we sought the simplest 

possible conceptual framework encompassing the mildly 

~ild l-ulc taming properties, and the disjoint disk decom­

position properties became clear in our minds and the 

characterization conjecture immediately took its present 

form. " 

6. (What topology is here to stay, 1955): liAs topology 

grows we should grow with it. We should continue to learn 

new methods of attack and new results. This does not mean 

that we should flip-flop from one field of mathematics 

to another, trying to find something easy to do. The 

river that cuts a deep furrow, that leaves a lasting 

impression, is one that follows a steady course and does not 

meander allover the map. 

Those of us who are to be successful in research must 

remain students. Our universities are turning out too high 

a percentage of "finished products" ••• people whose training 

is finished when they graduate ••. Perhaps it is more important 

to provide students with the ability and stimulus to be 

active researchers than that it give them a broad background." 

R. H. Bing's contribution to research was eminent, and 

inherent in that eminence is that teaching was never far from 

his mind, and he was a great teacher. Those of us who are 

his students, his colleagues, his mathematical friends, all 

share the benefits of that greatness. 
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