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SURJECTIVE ISOMETRIES 

Carlos R. Borges 

The known proof that an isometry f: X + X on a com

pact metric space (X,d) is onto depends on the sequential 

2compactness of X and the pequence {y,f(y),f (y) , ••• } of 

iterates of any point y/~ X. Our proof shows the exact 

role that the total boundedness and completeness of X play 

in the result mentioned above. Our techniques can easily 

be generalized to uniform spaces, with interesting con

sequences. 

This work is compl~mentary to [1]; throughout, we use 

the terminology of [1] and [4]. 

For the sake of convenience, let us define an ~-net 

(~ > 0) for a pseudometric space (X,d) as a finite cover 

J {Vl,···,v.} of X such that diam U. < ~, forc~ J 1. 

i = 1,2, ••• ,j. 

The following lemma is obviolls but crucial to the work 

that follows. 

Lemma 1. If the pseudometric space (X,d) has an 

~-net J~ then it has a minimum ~-net Ji (in the sense that 

every ~-net for X will have at least as many elements as 

Definition 2. Let (X,d) be a pseudometric space, 

f: X + X a function and Q > O. The map f is said to be 

a-expansive if d(f(x), f(y) > d(x,y) whenever d(f(x), 

f(y))~ Q. The map f is said to be expansive if it is 

a-expansive, for all a > o. 
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Note that isometries are expansive maps but it is 

possible that a c-isornetry (see Definition 4.4 of [1]) is 

not C-expansive. 

A weaker version of the following result is known (see 

Lemma 3.2 of [3]). Our method of proof plays a role in the 

work that follows. 

Lemma 3. Let (X,d) be a totally bounded pseudometric 

space and f: X ~ X a ~o-expansive map~ for some ~o > o. 

Then f(X) is dense in X. 

Proof. Suppose f(X) is not dense in X. Pick y E X 

f(X) such that 0 < 2~ 2 d(y,f(X)). Without loss of gen

erality, let us assume that ~ 2 ~o. Let J~ = {Ul,···,U j } 

be a minimum ~-net for X. Then y E some Ui' which implies 

that U n f(X) =~. Then Ji = {f-I(Uk)lk ~ i} is also ai 

~-net for X, because f(X) c Uk~iUk which implies that 

-1 -1
X c Uk~if (Uk) with each diam f (Uk) ~~. This contra

dicts the minimality of J~. Therefore, f(X) is dense in 

X. 

Lemma 4. Let (X,d) be a complete metric space and 

f: X ~ X a continuous ~o-expansive map~ for some ~o > o~ 

such that f{X) is dense in X. Then f{X) = X. 

Proof. It is easily seen that f{X) is a complete 

subspace of X, which implies that f{X) is a closed sub

space of X; therefore-, f (X) = X. 

Corollary 5 (Banach-Ulam generalized). Let (X,d) be 

a compact metric space and f: X ~ X an isometry or a con

tinuous ~o-expansive map~ for some ~o > O. Then f is onto. 
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Proof. Immediate from Lemmas 3 and 4. 

Lemma 3 may lead one to believe that Corollary 5 is 

valid for a class of totally bounded metric spaces which is 

significantly larger than the class of compact metric spaces. 

However, the following result leaves little hope for any 

major improvement of Corollary 5. Nonetheless, significant 

improvements are possible. (See Proposition 16 and subse

quent questions.) 

Proposition ·6. There exis·ts a totally bounded, topo

logically complete, pathwise connected and locally pathwise 

connected subspace X of the eucZidean plane and an isometry 

f: X + X which is not onto. 

Proof. Let Y be the closed unit ball in the euclidean 

plane centered at the origin (i.e .. the closed 2-euclidean 

Let g: Y + Y be the rotation isometry defined by 

i (e+/2rr)= ae • Then, letting a (1,0), let 

i2nnx = Y - {g(a) ,g2(a) , ••• }. Note that a E X, since a e 

and gk(a) = ei/!rrk, n, k = 1,2, •• 0. (Consequently, 

k -1 a ~ 9 (a), for k = 1,2, •••• ) Next note that 9 : X ~ X 

(if g-l(x) = gk(a), then x = gg-l(x) = gk+l(a); therefore, 

if x E X we get that g-l(x) E X). Furthermore, g-l is not 

-1 -1
onto since a g 9 (x) (say a = 9 (x) i then x 9 (a) g X). 

-1Since it is clear that 9 is an isometry and X satisfies 

all requirements (note that X is topologically complete 

because it is a G -subspace of the euclidean plane), the
6

proof is complete. 
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We are now ready to extend a large number of results 

on a-non-expansive and a-expansive maps to uniform spaces_ 

We start by expanding Definition 4.4 of [I] • 

For reasons which will soon be clear, a family 

e = {PA}Ae:A of pseudometrics on a set X will be called a 

subgage for a uniformity U on X if {{ (x,y) e: X x Xl 

PA (x,y) < ~}I~·> 0 and A e: A} generates U (i.e. is a sub

base for U). e will be said to be separating if for x ~ y 

in X there exists PA € a such that PA(x,y) ~ O. We will 

also call e a fuZZ subgage if 0 is closed with respect to 

sups of finite sets of pseudometrics (i.e. if PI'---'P e: e n 

then sup{PI,---,P } E a)_ Clearly, every subgage e auton 

matically generates a full subgage e* = {sup{PI,---,Pn}1 

{Pl,---,P } c e, n = 1,2,---}.n 

Standing Assumption. Henceforth, all uniform spaces 

(X,U) will be assumed to be separated (if x ~ y in X then 

there exists U e: U such that (x,y) ~ U) and all subgages 

will be assumed to be separating. Uniform spaces will auto

matically carry the corresponding uniform topology. Topo

logical spaces will be assumed to be Hausdorff, unless 

they are generated by pseudometrics. 

The following restatement of Theorem 18 on p. 189 of 

[4] is more convenient for our work. 

Proposition 7. Let (X,U) be a uniform space and 0 a 

8ubgage for U. Then 

(a) The fuZZ subgage e* generates a base for U~ 
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(b) a** = {pip is a pseudometric for X and" for each 

.; > 0" there exists <5 > 0 and p' E a* ouch that p' (x,y) < <5 

impZies p (x,y) < ~} is the gage for V. 

Henceforth, we will use the notation a, a*, a** with 

the meaning established in Proposition 7. 

Definition 8. Let (X,V) be a uniform space and 

a = {P~}~EA be a subgage for ~ Given ~ > 0, a function 

f: X ~ X is said to be 

(a) ~-expansive with respect to e (or (e,~)-expansive) 

if P (f(x) ,f(y» ~ P (x,y), whenever P~ (x,y) < ~ and A E A,
A A

(b) expansive with respect to a (or a-expansive) if 

f is (a,~)-expansive, for all ~ > 0, 

(c) (e,~)-isometry if PA(f(x) ,f(y»)= PA(x,y), whenever 

P (x,y) < ~ and A E A,A

(d) a-isometry if f is a (e,~)-isometry, for all ~ > O. 

Definition 9. Let (X, V) be a uniform space and 

a {P }~EA be a subgage for V. X is said to beA

(a) a-totaZZy bounded if (X,P ) is a totally bounded
A

pseudometric space, for each ~ E A, 

(b) sub-totaZZy bounded (totally bounded) if there 

exists a subgage (gage) e for V such that X is o-totally 

bounded, 

(c) a-complete ~f each (X,P ) is a complete pseudo
A

metric space, 

(d) sub-compZete if there exists a subgage e for V such 

that X is a-complete. 
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Lemma 10. Let (X,U) be a uniform space~ 0 a subgage 

for U and f: X -+- X a function. 'l'he following are valid: 

(a) X is a-totally bounded iff X is e**-totalty bounded~ 

(b) f is (e ,~) -expansive iff f is (e* ,~) -expansive~ 

(c) f is a-expansive iff X is e*-expanvive. 

Proof. Let us first note that the "if" parts of
 

(a), (b) and (c) are trivial.
 

The "only if" part of (a). First, we show that X is 

e*-totally bounded: Let P1,P2 E e and let P = sUP{Pl'P2}. 

Let {x } be a sequence in X and {wk } be a PI-Cauchy subsen 

quence of {x }; then let {z . } be a P2-Cauchy subsequence of n J 

{wk } • It follows easily that {z.} is a p-Cauchy subsequence
J 

of {x }· This shows that p is a totally bounded pseudo-n 

metric for X. Since the preceding argument immediately 

generalizes to sUP{Pl'···'P }, for any finite {Pl,···P } C 0,n n 

we get that X is a*-totally bounded. It follows easily 

from Proposition 7(b) that X is e**-totally bounded (note 

that, in Proposition 7(b), a a-net for pi is an ~-net for 

p) • 

The "only if" part of (b) is routine and automatically 

implies the "only if" part of (c). 

Lemma 10 suggests the following questions: Let (X,U) 

be a uniform space and a a subgage for U. If X is O-complete 

is X e*-complete? If f: X ~ X is (e,~)-expansive, for some 

~ > 0, is f also (e**,~)-expansive? We still do not know 

the answer to the second question but the referee has kindly 

outlined a remarkably simple negative solution for the first 

question, which is reproduced in the following example. 
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1
E'xamp Ze 11. Let X = {± n1n = 1,2, ••. } with the uni

formity induced by the Euclidean metric on the real line 

1
E . Let 8 = {Pl,P2}' where 

{IX - yl if X > 0, Y > 0, 
Pl(x,y) 

max{x,y,O}, otherwise, 

IX - Yl if X < 0, Y < 0, 
P2 (x,y) { 

max{-x,-y,O}, otherwise 

It is easily seen that PI and P2 are pseudometrics on X. 

It is also easily seen that (X,PI) and (X,P2) are complete 

pseudometric spaces. It is clear that any PI-Cauchy sequence 

which is not eventually constant will PI-converge to any 

I - f E X, while any P2-Cauchy sequence which is not eventually 

constant will P2-converge to any ~ E X. Letting P 

sUP{PI,P2}' one easily sees that 

IX - yl if xy > 0, 
p(x,y) = { 

max{lxl ,IYI} if xy < 0. 

Consequently, e generates the uniformity of X, since it is 

easily seen that p does. However, X is not o*-complete, 

because {!} is a p-Cauchy sequence which does not p-converge
n 

in X. 

It is noteworthy that a uniform space (X,V) may be sub-

complete without being complete (see [4]): The space no 

of countable ordinals with the order uniformity is totally 

bounded and sub-complete but it is not complete, since it 

is not compact. (The deatils appear at the top of p. 553 

of [2], where "gage" should be replaced by "subgage.") 

However, the following result shows that n is indeed sub
o. 

complete with respect to the gage for its order uniformity. 
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The reason that no is not compelte is that the net 

{S = a} E~ is p-Cauchy, for each p in its gage, and it 
a a ~'o 

does converge to many points in (no'p), but it does not 

converge in (no' order topology). 

Proposition 12. If a uniform space (X,U) is pseudo-

compact then X is totally bounded and sub-compZete. 

Proof. Let e = {PA}AEA be any subgage for U. Then, 

the identity map j: (X,U) ~ (X,PA) is continuous, for each 

A E A. Consequently, each (X,P ) is pseudocompact. Since
A

P is a pseudometric on X, we then get that each (X,P ) is
A A

compact, which proves that each (X,P ) is totally bounded
A

and complete; that is, (X,U) is totally bounded and sub-

complete. 

Again, as suggested by the referee, the space X of 

Example 11 can be used to show that the converse of Propo

sition 12 is false: Using the notation of Example 11, we 

get that X is a-complete; hence, X is sub-complete. Also, 

X is clearly e-totally bounded, which implies that X is 

e**-totally bounded, by Lemma lO(a); hence, X is totally 

bounded. However, X is not pseudocompact (for example, 

f: X ~ El , defined by f(± !) = n, is an unbounded continuous 
n 

function) • 

It is noteworthy that Proposition 12 leads naturally 

to a class of spaces which contains the class of pseudo-

compact spaces and the class of totally bounded uniform 

spaces. 
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Definition 13. A uniform space (X,U) is said to be 

uniformly pseudocompact if every uniformly continuous real

valued function on X is bounded. 

Proposition 14. A totally bounded uniform space (X,U) 

is uniformly pseudocompact. 

Proof. Let e be a subgage for U. Next, let f: X ~ El 

be a uniformly continuous function. Then, letting 

p{x,y) = If{x) - f{y) I, for each x,y E X, we get that p 

is a uniformly continuous pseudometric for X; this means 

that p E 0**, which implies that p is bounded, by Lemma 

lO{a). The boundedness of p clearly implies that f is 

bounded, which completes the proof. 

We conclude with further generalizations and improve

ments of known results, including the Banach Contraction 

Principle. 

Proposition 15. Let (X,V) be a uniform space and e a 

subgage for ~ If X is a-totally bounded and f: X ~ X is 

a (e'~o)-expansive map~ for some ~o > O~ then f(X) is dense 

in x. 

Proof. By Lemma lO(b), f is a (e*'~o)-expansive map. 

Consequently, for each p E 0*, f(X) is dense in (X,p), by 

the proof of Lemma 3. Since 0* generates a base for U we 

then get that f{X) is~dense in X. 

Recall that a space X is said to be sequential if any 

sequentially closed subset of X is closed. 
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Proposition 16. Let (X, U) be a sequential J sequentially 

compact uniform space and e a subgage for V. If f: X ~ X 

is a continuous (e'~o}-expansive map, for Borne ~o > 0, then 

f(?{) = X. 

Proof. By Propositions 12 and 15, f(X} is dense in X. 

Assume there exists y E X - f(X} and pick a sequence 

{x } in X such that lim f(x } = y. Let {x } be a con
n n n n k 

vergent subsequence of {x }; say lim x = x. We will show 
n k n k 

that y = f(x}: Suppose not. Pick p E 0 such that 

p(f(x},y} > O. Since f: (X,U) ~ (X,p) is continuous, we 

get that {f(x )} p-converges to the distinct points f(x}
n k 

and y which are a positive p-distance apart, a contradiction. 

Since y = f(x} contradicts the assumption that 

Y E X - f(X}, we have proved that f(X} = X. 

Note that the preceding result applies to the space of 

countable ordinals with the order topology. 

Naturally, Proposition 16 raises a variety of questions, 

none of which appears trivial: Is the hypothesis that (X,U) 

be sequential superfluous? Is the conclusion of Proposition 

16 valid for any countably compact (pseudocompact) space 

(X,V)? If (X,V) has a subgage e such that X is 8-totally 

bounded and a-complete, and f: X ~ X is a (O,~}-expansive 

map, for some ~ > 0, is f(X) = X? (The preceding questions 

remain open even if f is a 8-isometry.) 

Definition 17. Let (X,U) be a uniform space, 0 a sub-

gage for U and f: X + X a function. We say that f is a 
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6-contraction if there exists 0 ~ a(p) < 1, for each p E 8, 

such that p(f(x) ,f(y») < a(p)p(x,y), for each pEe and 

all x,y E X. 

Theorem 18. Let (X,V) be a uniform space~ which is 

e-complete for some s~bgage 6 for V~ and let f: X ~ X be 

a function. If f is a 6-contraction then f has a unique 

fixed point. 

Proof. By the standard proof of Banach's Contraction 

Principle _for metric spaces, we get that, for each p E 6, 

n n+l n n mp(f (x),f (x») ~ a(p) p(x,f(x» and p(f (x),f (x)) < 

a(p)n d( f()) where fn(x) is the nth iterate of f.l-a(p) x, x ,
 

Since lim a(p)n = 0 we then get that {fn(x)} is a p-Cauchy

n 

sequence, for each p E 6. Consequently, lim fn(x) = x in 
n p 

(X, p), for each p E 6. 

Next, note that f(x ) = x , for each pEe (x
p p p 

lim fn(x) implies f(x ) = lim fn+1(x) = x in (X,p) because 
n p n p 

f: (X,p) ~ (X,p) is continuous, for each p E 0). Finally, 

note that x = x for all p,~ E 6 (i.e. f has a unique fixed 
p ~ 

point): Suppose not; say x t x , for some p,~ E 8. Pick 
p ~ 

p' E e such that p'(x ,x) > O. Then p'(x ,x) = p'(f(x)
P ~ p l.1 P , 

f(x » < a(p')p' (x ,x ), a contradiction. 
l.1 p l.1 

The preceding result generalizes Theorem 2.3 of [5]. 

Consequently, several results from [5] can be generalized 

from sequentially complete spaces to sub-complete spaces. 
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