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CONVERGENCE IN THE BOX PRODUCT OF
COUNTABLY MANY METRIC SPACES!

L. Brian Lawrence

0. Introduction and Theorems

Notation. Suppose that for each i € w, Xi 1s a metric

space, and let X be the box product o, Xi (the point-set

l1€w
of X is I, . X. and a typical base element is Il,_ U. where
i€w™i 1€w 1
each U is a proper open set in Xi)' Is X normal or

paracompact? This problem was originally posed by A. 1.
Stone over twenty years ago and remains in large part
unsolved (see the survey articles of E. K. van Douwen,
[vD], and S. Williams, [W]). The first positive consistency
result was obtained by M. E. Rudin in [R]: the Continuum
Hypothesis implies that if each X is locally compact and
g-compact, then X is paracompact. In [K], K. Kunen gen-
eralized both the factor spaces and the method of proof.
At the heart of the Rudin-Kunen strategy is the following
decomposition of X.

Define two points in X to be equivalent if they disagree
at most a finite number of times, and for each p, let E(p)
be the equivalence class to which p belongs. For each
P € X and each i € w, let F;(p) = {qg € X: (vj > 1)

(qj = pj)}. Then E(p) F,(p). Let V., X . be the

= Ui€w i €w 1

quotient space on X induced by E (sometimes called the

lThis paper is partially based on Part II--Chapter 2 of
the author's Ph.D. Thesis, State University of New York at
Binghamton. The author thanks his thesis advisor Professor
Prabir Roy. The author also thanks the referee for a very
helpful report.
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nabla product), and let ¢ be the quotient map, so g (p)
denotes E(p) as a point in the quotient space.

The purpose of this paper is to show how convergence
in X, across and inside the fibers of the Rudin-Kunen
decomposition, depends upon local compactness in the factor

spaces.

Proposition. Suppose p € X and Y ¢ X. Then (1) p is
a limit point of a countable subset of Y iff p is a limit
point of Y n E(p); and (2) there is a seguence in Y~{p}
converging to p iff there exists 1 € u such that p is a

limit point of Y n Fi(p).

Theorem 1. Suppose Xi 18 locally compact for each
i € w, and C is a closed subset of X. [Then for every limit

oint of C, there 15 a sequence in C~ converging to p.
J I

So in light of the Proposition, if C is closed and C n E(p)

= {p}, then p is an isolated point of C.

Theorem 2. Suppose that for each i € w, p; 18 a
point in X that does not have a compact neighborhood.
Then there is a closed set C ¢ X containing p such that:

(1) ¢ n E(p) = {p};

(2) p its a limit point of C;

(3) p is the only limit point of C.

So in light of the Proposition, there is a closed set C
where p is isolated from each countable subset but is

nevertheless a limit point.
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1. Lemmas

Notes. Lemma 1 below is in [K], where it is attributed
to Rudin. We include a proof for the convenience of the
reader. Lemma 2 is a generalization of the fact that ¢ is
closed if each xi is compact, which is in (K] and implicitly

in [R].

Lemma 1. The quotient space, V g ~open

w1

(i.e., the intersection of every countable collection of

. X,
1€w 1

open sets is open).
Proof. First observe that ¢ is an open map (so
{o(U): U is open in X} is a base for the quotient space),

and for all U = HiEin and V = Hiewvi’ o(U) ¢ o(V) iff

(37 € w) (vi > j) (U,

; € V;). Suppose p € X, and for each

n € w, U(n) is a basic open set in X containing p. Define

Vo= vy by v, = ﬂ{U(n)i: n < i}, Then p € V and for

Hi€w

each n, g(V) < o(U(n)).

Lemma 2. Suppose that for each i € uw, Ki < X 18
compact, and let K = HiEwKi' Then for cach closed set
A © K, o(A) is closed in the quotient spacc. We will prove

and subsequently use the following limit point verston of
the statement that o|K is a closed map. (festricting g to
K is not to be confused with changing the points of the
quotient space by intersecting the equivalence classes with
K; the quotient map and space remain intact.) Suppose

P € K and A € K where A N E(p) = ¥ and g(p) s a limit
point of o(A) in the quotient space. Then there exists

q € KN E(p) where q is a limit point of A in X.
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Proof. Assume our conclusion does not follow and let
S be a basic open cover of K N E(p) where US n A = g. By
the compactness of each Ki’ we can choose a sequence T of
finite subcollections of S where for each n, K n Fn(p) <
UT(n). We also assume that each set in T(n) intersects
Fn(p); equivalently, for each U ¢ T(n) and each i > n,
p. € u; - Define V = Hivai by v. = X  and for i > 0 by

i 0 0

v, = n{ui: (3n < i) (U € T(n))}. Then p € V and U{K n E(q):

q € V} is contained in US and is therefore disjoint from A.
Since A < K, U{E(g): g € VI N A =g, sooc(V) N o(A) = g in
the quotient space. This result (and the fact that ¢ is an

open map) contradicts the hypothesis.

2. Proofs of the Proposition and the Theorems

Proof of the Proposition. Part (l)--Sufficiency.

For each i € w, let {Ui(n): n € w} be a local base at P

For each j € w and each s: w +~ w, let Gj(s) = HiGin<Si) n
Fj(p). Let Z be a countable subset of Y such that for
each j and s, if Y n Gj(s) # @, then Z n Gj(s) # g. We
can take Z to be countable since Gj(s) = Gj(t) if s and t
agree on [0,]3].

We claim that p is a limit point of Z. Let s: w » w.
By hypothesis, there exists q € “iE
Let j € w such that g € Fj(p). Then q € Gj(s), SO

in(Si) nyneE(p.

Z N Gj(s) 7z 9.

Part (l)--Necessity. Suppose gq: w - YSE{(p). Then

for each n € w, there exists k(n) >'n such that

q(n)k(n) # Pk (n) * Since the map k is finite to one, we

can choose an open set U about p so that for each i € Ym Xk
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{the image of k) and each n € k_l(i), q(n)i 4 U;- Sop
is not a limit point of 9m q.

Part (2)--Sufficiency is immediate. For Part (2)--
Necessity, suppose q: w » Y where there does not exist i € u
with 9m g < Fi(p). Then we can choose a subsequence gq o 2
where for each n € w, there exists k(n) > n such that
q(i(n))k(n) # Px (n) * .As in the proof of Part (1l)--
Necessity, the finite to one property of k implies the

existence of an open set U about p that excludes each term

of the subsequence. So g does not converge to p.

Proof of Theorem 1, Suppose C c X is closed and p € C
where p is a limit point of C.

Clatm 1. We first show that p is a limit point of
C N E(p). Assume otherwise and by the regularity of X and
the local compactness of the factors, choose a basic open
set U = II; U, where p € U, UncnE(pE ={p}, and for each

i€y, Ui is compact (as usual the horizontal bar denotes

the closure operator in the appropriate space). For each
(i,j) € w x w, where j is nonzero, let A(i,j) = {g € U n C:
the distance between q; and p; is at least % . Note that

by the choice of U, each A(i,j) is disjoint from E{(p).
Since p is a limit point of B = U{A(i,j): (i,3) € w *x w,
j # 0}, o(p) is a limit point of o(B) in the quotient

space. dy Lemma 1, there exist i  and jO such that o(p) is

0
a limit point of O(A(io,jo)). By Lemma 2, there 1is a
point in U N C N E(p) that is a limit point of A(ig,3,) in
X. By the definition of A(io,jo), this point 1s neccs-

sarily different from p. This result contradicts the

choice of U.
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Claim 2. There exists i €  such that p is a limit
point of C N Fi(p). We assume otherwise anq by an induc-
tive process choose the projections of a basic open sct
U = ni€in where p € U and U N C N E(p) = (p}. The existence
of such an open set contradicts Claim 1.

Since p is not a limit point of C N Fo(p), we can
0 o is
y ncn Fo(p) = {p}. We can now

choose an open set U0 € X, containing Py such that U

compact and (50 x 1

choose an open set Ul c X

i>0xi
containing p; such that Ul is

)y ncoan Fl(p) = {p}. Other-

1

compact and (UO x Gl x I

wise, there is a seguence (g(n)) in (UO x ni>0xi

where (q(n)l) is a sequence in Xl\(pl} converging to Pyi

i>lxi
) ncnF(p)

but then (g(n)) has a convergent subsequence, and this
contradicts either the assumption (if the subsequence con-
verges to p) or the choice of UO' Continue this process
until for each 1 € g, Ui has been chosen using the compact-

ness of U0 X see X Ui—l'

Proof of Theorem 2. For each i € w, let {Ui(n): n € w}
be a nested locgl base about Py and let wi; W X w - xi
be a 1-1 function, where for each m € u, (wi(m,n): n € y}
is closed and discrete in X, and is a subset of Ui(m)\UzTﬁfrT).
We first define a closed set C' that satisfies (1) and
(2) in the conclusion of the theorem. We then define a

closed set C where C € C' and C satisfies all three proper-

v

. uw
ties. Let ¢: "w - X where q,(s)i = wi(si’si+l)’ and let
C' = Um ¢ (the closure of the image of ¢). Note that p

is a limit point of C'.
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We claim that C' n E(p) = {p}. Let & be a limit point
of Im ¢ distinct from p. Let i € w be the least index with
Ei # P - Since P is the only limit point in X of the i-th

i

projection of C', there are integers S and Si+1 with

£ =

i wi(si,si+l). Then 2 is a limit point in X of

{qge Imo: q; = wi(si,si+l)}. For each q in this collec-
tion, q; ., Ef¢i+l(si+l,j): j € w}. This set of values

does not have any limit points in X4 so there 1s an

ll

integer s with 2 =y (s ). We now have

+2 i+l i+1'5%i+175i+2

that £ is a limit point in X of {g € Im ¢: q,

i T Vilsyesig)

(s )}. Continuing this process gener-

Ay T V(8508540

ates the tail end of a function s € “w where % agrees with
¢ (s) on indices j > i. So ¢ ¢ E(p). Moreover, we have a
characterization of the limit set of Im ¢: {2 € X: & = P,

or, (3s € Yy) (3i € w) (V] € w) ((J < i~ 4, = ps)

J J

(3 > 1 -+ zj = wj(sj,sj+l)))}. This characterization indi-

cates the adjustment that must be made in the domain of ¢
to eliminate all limit points except p.
Let D < @, such that (1) D is strictly dominant (i.e.,

w

(vs € “yp) (3t € D) (Vi € ) (s. < ti)), and (2) each pair

1

of distinct functions in D disagree on an infinite number

of indices. Let C = 9m(¢]D).

Remark. The referee pointed out the following varia-
tion on the construction used to prove Theorem 2. Let C be
the closure of {q € E(p): (3m,n € « with m # 0) {qy =

o lm/n) & q = ¥ (n,0) & (Vi # 0,m) (q,

i = pi))}. Then C

is countable and p is the unique limit point of C, but p

is not the limit of a sequence in C~Npl}. To see this,
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first note that each point in C~{p} is different from p in
the first coordinate. Suppose gq: w -+ C~{p} converges to p.
Then there exists i € w such that Im q F;{p). This

implies that {m € w: (3k,n € w) (q(k)

0 wo(m,n))} is

bounded above by i, so Py is isolated from {q(k) k € wl,

0
in contradiction to the choice of g. This proves the

converse of Theorem 1 since the construction of C in this

example requires the failure of local compactness in only

one coordinate.
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