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DYNAMICAL SYSTEMS, FRACTAL 

FUNCTIONS AND DIMENSION 

Peter R. Massopust 

o. Introduction 

Recently there has been some interest in fractal func­

tions, i.e. functions whose graph is a fractal set, 

especially in the ones which are generated by iterating a 

given class of continuous mappings. These mappings are 

defined via a set of interpolation or data points and the 

graph of the so-generated continuous but in general nowhere 

differentiable function passes through this set of interpo­

lation points. Two-dimensional fractal functions of this 

type (by this we mean fractal functions whose graph is a 

subset of R
2 ) were first introduced in [Bl] and are used 

to model natural objects which exhibit some kind of geometric 

self-similarity, such as mountain ranges, rivers and clouds. 

A calculus of 2-dimensional fractal functions was 

developed in [BHa] and a formula for the (fractal) dimen­

sion for the graphs of a special class of fractal functions 

was derived. 

The question of the connection to dynamical systems and 

in particular to the Lyapunov dimension commenced in [HM]. 

A more general dimensiQn formula was also presented. An 

extended formula containing all the previous cases is 

derived in [BEHM] and its generalization to n-dimensional 

fractal functions is given in [M2]. 
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The investigation of connections between fractal 

functions generated by a deterministic algorithm using 

methods from the theory of iterated function systems and 

the associated dynamical system led to the discovery of a 

new class of fractal functions, the so-called "hidden­

variable fractal functions." This new class arises from a 

relation between an attractor for an iterated function sys­

tern and its associated code space. This relation, pro­

vided certain conditions on the attractor and its defining 

maps hold, defines the graph of a continuous fractal func­

tion having the same dimension as the attractor. The 

2projections of this function onto R yields then the hidden-

variable fractal functions, objects that depend continuously 

on all the "hidden" variables. Formulas for the dimension 

of these new fractal functions, a relation to the dimension 

of the embedding space of the original attractor and 

connections to the associated dynamical system, although 

only briefly, were considered in [BEHM] and in more detail 

in [MIl. 

We felt the need for combining all these results and 

for showing their common origin as representations of an 

associated dynamical system. The former has partially been 

done in [BEHM] but without reference to the underlying 

dynamical system. Barnsley considered parts of the latter 
~ 

in [B2] but the dynamics of his system is different from 

ours. 

We also will show that for our fractal functions the 

Lyapunov dimension of the associated dynamical system equals 
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one plus the fractal dimension of the graph of the fractal 

function. 

The structure of this paper is as follows. In section 1 

we introduce iterated function systems, define the associated 

dynamical system and some of its characteristics, and give 

an example and some illustrations. Section 2 is then devoted 

to the presentation of the results. 

At this point I would like to mention Michael F. 

Barnsley, Jeff Geronimo and Douglas Hardin. The collabora­

tion with them in the past has proved to be very fruitful 

and I am thankful for their advice and their helpful sugges­

tions. 

1. Definitions and Preliminaries 

Let X be a compact metric space and w: = {wi: i = 

1, ... ,n}, n E N, a collection of Borel measurable functions 

wi: X ~ X. Let p: = {Pi: i 1, ... ,n} be a set of non­

zero probabilities, i.e. Pi E (0,1) and LPi = 1. 

Definition 1. The pair (X,w) is called an iterated 

function system (IFS) if 3p = {Pi: i = 1, ... ,n} such that 

the operator T defined by 

(Tf) (x): = \', p. (f • w.)" x) , Vf E CO(X)
L1 1 1 

maps CO(X) into itself.
 

Note that if w. E CO(X), Vi 1, ... ,n, then (X,w) is an IFS
 
1 

for any set of probabiiities. 

Convention. From now on we assume that all w. E CO(X).
1 

(X,w) is called a hyperbolic IFS (HIFS) if 3s E [0,1) 

such that 
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d(w i (xl) ,wi (x 2 )) 
< s Vi, vx l 'X 2 E X d(x

l 
,x )

2
 

(here d denotes the metric on X) .
 

Associated with every IFS is an invariant measure, called 

the p-balanced measure ~, satisfying 

~E = \ P (W-IE) VE E B(X)Li i~ i 

or J fd~ = LiPi J f • wid~ Vf E CO(X) 
x x 

(B(X) denotes the Borel sets of X). 

If 3A E P(X) so that 

n 
A = Ui=lwiA 

then A is called an attractor for the IFS (X,w). 

We note that A E K(X) and that A = supp~. If furthermore 

(X,w) is a HIFS then the attractor A is unique. It can be 

shown that A can be obtained as follows: Let X E X,o 
define x : w(x _ ), mEN, where w is interpreted as a m m l 

set-valued map w: H(X) ~ H(X), w(S): = UWi(S) VS E H(X). Then 

m 
A = ~im w (xo) 

and A is independent of xC. 

It follows from the above characterization that A can be 

generated by iterating a starting point X using the map wi o 
with probability Pi to obtain xl = wi (Xo). In general we 

have then after m iterations 

X W (x ) 
m wI .•. w 0 m 

where w : = w • wand w. E {l, ... ,n} Vj
wI···wm \wm wI J 

If we set~: = {l, ... ,n}N then xm ww(xo) for some u) E ~2. 

We call S"2 the code space associated with the IFS (X,w). 

With the metric I·,· I: ~2 ~ RO+ defined by 
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Iw. - w·1
Iw,w I: = L ] ]

j.::l (n + l)j 

(n,1 .,. I) is a compact metric space homeomorphic to the 

classical Cantor set. There exists also a surjection 

o
SEC (SG,A) such that 

lim w (x ) 
m~oo wI ••• w a m 

and this limit is uniformly independent of X E X (for moreo 
details and proofs we refer the reader to [BD]). 

To better understand the dynamics of the maps wi we 

associate a dynamical system with the IFS (X,w) as follows 

(see also [P]): Let I: = [0,1] c R and denote by m uni­

form Lebesgue measure on I. Define M: = X x I and a map 

F: M ~ M by 

F (x,t) : = (wi (x) ,hi (t)) if (x,t) E X x I. 
1 

where I. : + ... + + . .. + Pi) , i 1, ... , n - 1,[PI Pi-I,PI1 

I : + + and where h. E cO (I) , 
n [PI Pn-l,l] , 1 

t - (PI + 
hi (t): = Vi=l, ... ,n.p.

1 

Note that F is piece-wise cO. We could make F continuous 

by connecting the components of graph (F) by appropriate 

COO-functions having support on [PI + ••. + Pi - E, 

PI + .•. + Pi + E], £: > o. 

F possesses a (strange) attractor A(M) and its associ­

ated invariant measure v is given by v = ~ x m. Furthermore 

projxA(M) = A(X), the attractor of (X,w) 

projxv ~ 

Notice that if F E CO(M) then its invariant measure v is 

"close" to \) in the weak*-topology. 
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The triple D= (M,F,v) is called the dynamical system 

associated with the IFS (X,w). As an example let us con­

sider X: = [0,1] c Rand w: = {w
l 

,w } where wi: X ~ X is2 

defined by 

31 x, 

A(X) is then the classical middle-thirds Cantor set. If 

we choose the .probabili ties PI = P2 = 1/2 then 

hI (t) = 2t, 

and 

(! x,2t) 1
(x,t) E X x [0'2] 

F (x, t) {i 2 1(3 x + 3,2t - 1) (x,t) t X x [2,1] 

The action of F on D is depicted in Figure 1. We are 

interested in the (fractal) dimension or as it is sometimes 

called the capacity of A(M). 

kRecall that for a bounded set S c R the fractal 

dimension is defined by 

dim(S): = lim sup log N(£)
-1

£-+0 log £ 

where N(£) denotes the minimum number of k-dimensional 

£-balls needed to cover S. J. Yorke et ale (see for instance 

[FKYY]) defined another notion of dimension, called the 

Lyapunov dimension, to further characterize dynamical sys­

terns and their attractors. They conjectured that this 

dimension agrees with the Hausdorff-Besicovitch dimension 

for "typical" attractors. We showed that this conjecture 

is false for a wide class of "typical" attractors (see [Ml]). 

For our dynamical systems we will see that there exists a 

certain set of probabilities p* for which the Lyapunov 

dimension attains a maximum value and this maximum value 

agrees with the fractal dimension. 
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p 1/2 

x x
1/3 2/31/3 2/3 

- -­

1/2 1/2 A(M) =A(X»)( I 

1/3 2/3 
x 

1/3 2/3 

A(X) 

x 

x x IFigure 1. The action of F on M 
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Let us state the definition of Lyapunov dimension. 

Definition 2. Let D= (M,F,v), M compact k-dimensional 

manifold, be a dynamical system and let ~l ~ ... ~ ~m be 

the Lyapunov exponents of F. Let g: = max{j E {l, ... ,m}: 

~l + ••• + Aj > OJ. If no such g exists then the Lua[Junov 

dimension A(v) of v is defined to be zero. If 1 < q < k 

then 

A (v) : 

If q k then A (v) : k. 

Remark. For 2-dimensional dynamical systems A(v) = 

Hausdorff-Besicovitch dimension = fractal dimension. This 

was shown by L. S. Young (see [Y]). 

2.	 Dynamical Systems and Fractal Functions 

We are interested in a special class of IFS's, namely 

the ones for which A(X) = graph(f) for some f E cO. 

Continuous functions defined this way will be referred 

to as fl)Qcta l fun.ctions since their graph is in general a 

fractal set. We will define two classes of IFS's which 

generate fractal functions. 

2.1	 Fractal Interpolation Functions 

kLet X	 E K(R ), k> 2, and suppose that 'I': = {('[.,t:.) E 
J J 

k-lR x R : 1 < ••• < 1 n' j = 0, 1, ... , n, n t::: N} is a given0 

set of interpolation points in X. Set J: [T 0' Tn] • 

Define maps wi: X ~ X by 

wi (1,t,): = (¢i(1), 4J i(1,t:)) vi i, ... , n 
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where <Pi: J ~ [T i - l ,l ] is a linear homeomorphism withi 

<P i (1 0): = T i-I and ¢ i (1 n): = °l i vi = 1 I • I n 

k l k land	 ~i: J x R - ~ R - is a linear cO-map with 

~i (1,-) contractive 

~i(-'~) E Lip(R
k

-
l 

) vi ,v~ 

4J i (or 0 ' t: 0): = ~ i-I and ~ i (1 n I ~ n): = (i 

The maps wi are then uniquely determined by '!' together with 

parameters 0 
-
< Ie

m,l
. I < 1, i = l, ... ,n and m = l, ••. /k - 1 

(we	 refer to the e . as the ~-component scaling factors).
m,l 

If a denotes the constant of contractivity of the ~i and y 

the	 Lipschitz constant of the ~i we can define a new metric 

2
0: x ~ R + by setting

O
1 -	 l'i ....8(x,x): = d (l,'1) + \ d ((" ~o)

l (n + l)y Lm 2 Sm''7 rI1 

with ~ = (~m)l<m<k-l and Z= (~m)l<m<k-l 

where d and d denote metrics on J and R, respectively.l 2 

It is straight-forward to show that (X,O) is a compact 

metric space and that in this new metric (X,w) is a HIFS. 

Hence (X,w) has a unique attractor A(X). 

o k-lProposition 1. A(X) = graph(f) where f	 E C (J,R ), 

-1 
f(Lj) = ~j Vj = O/l/ ••• /n and f(<Pi(l)) = lJ;i(<Pi (T), 

-1
f(<P i (1)) vi = l, ... ,n. 

o k-lProof· Let F: = {g E C (J,R ): 9(1 ) = ~O and0 

9(l ) = ~n} and let d(g,h): = max{lg(l) - h(T)I: T E J},n 

g,h E F. Then (F,d) is a complete metric space. 

If we define an operator T on F by 

-1 -1
(Tg)	 (1) : ~ i (<p i (1), 9 (<p i (1)) VT E ¢iJ, V9 E F 

then it is easy to show that T is well-defined, maps F 

into itself and is a contraction with the same constant of 
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contractivity as the 4Ji. Hence T has a unique fixed point 

f E F. Let G: = graph(f). G is then an attractor for the 

IFS (X,w) and by uniqueness G = A(X). The remaining state­

ments of the theorem follow immediateiy from the definition 

of T. 

Note. We refer to f as a (k-l)-dimensional fractal 

Rk linterpolation f~nction since graph(f) c - and since it 

interpolates the points in T. 

The associated dynamical system Dis then given by 

k lM = X x I c R + and F is as above. Figure 2 shows the 

action of F on M in the case k = 2. 

K
 

Figure 2. The action of Fix on M, i.e. the generation of 
A(X) for n = 4. The interpolation points are 
indicated by • 
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2
Another attractor A(X) c R is shown in Figure 3. 

Figure 3. An attractor A(X) 

The following theorem gives a formula for the (fractal) 

dimension of A(X). We won't give the rather lengthy and 

involved proof here (see [M2]). 

Theorem 1. Let (K,w) be the IPS defined ahove. Let 

A(X) be the graph of the fractal inte1l polation function f 

Suppose thatgenerated by (K,w). Le't E.: = n Ie. I · 
1. m m,l. 

Tis 12 0 teo -p l a n a r ( i • e. Tis not co 1l t a i 1l e d ·i rz (l n U hU[J e 1~ ­

Let b.: 1 i - 1 i-I" Vi. Then. ifl. 

a) LiE > 1" dim A(X) = d where d is the unique posi­
i
 

tive solution of
 

2.E.b~-k+l 1 
l. l. l. 
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b ) 2:. Ie. I 2. 1, Vm 1, ••• ,k - 1, dim A(X) 1
1 m,l
 

C) LiE i ~ 1 and
 

,: . Ie. I > 1 m 1, •.• , h
 1 m,l fOTl 

h=1, .•. ,k-2 
L: . Ie. I < 1 for m h + 1, •.• ,k 1 

1 m,l 

let E.( p): = II. E Ie. I W'l: t h If den 0 tina a 7T - t uI) e l 0 f e l em e n t s 
1 ] If m,l 

of {l, ... ,h}. Let q: = max{n: n c {l, ••. ,h}} such that 

LiElq) > 1. Then dim A(X) = max{d(q): q c {l, ••• ,h}} 

where d(q) is the unique positive solution of 

\.E.b~-q+l = 1 
Ll 1 1 

r r
If T C H where H is a hyperplane of co-dimension r of Rk~ 

1 < r < k - 1) then conclusions a)-c) hold with k + 1 

replaced by k + 1 - r. If T C uk then dim A(X) 1. 

Let us now show that the Lyapunov dimension A(v) of D 
equals dim A(M) 1 + dim A (X) • 

First notice that the Lyapunov exponents of Fare 

given by 

-l:Pi log (Pi) > 0 

Lp.log(le .1) < 0 Vm = l, ... , k - 1 
l. m,l. 

The Lyapunov dimension A(v) equals then 

E.(q) 
L' p .log (_1_) 

1 1 Pi 
A (v) (q + 1) 

L·P.l09(E.(Q+l)) 
1 1 1 

where q: = max{j = l, ... ,k: Al + ... + A. > O} and E.(q) is 
] 1. 

as in the statement oe Theorem 1. 

Using methods from calculus it can be shown that there 

exists a set of probabilities p* which maximizes A(v) and 

this maximum value A* satisfies 



TOPOLOGY PROCEEDINGS Volume 12 1987 105 

~ (q) 1\*-1- (k-l) +q
iEi b i = 1 

for T not contained in any hyperplane of dimension < q. But 

this implies that dim A(X) = 1\* - 1. 

2.2 Hidden Variable Fractal Functions 

Let again X E K(R
k 
), k > 2. Suppose that {Xj}o~j~n' 

n E N, is a collection of distinct points in X with 

d(xj,x j + l ) < d{xO'x ), yj, a~d that the polygon n{xO' ... 'x )n n 

[0,1] (here d denotes the metric in X). 

oRecall that a map SEC (X) is a similitude or 

similarity map if it is given by 

S{x) sR{x) + t 

where s E [0,1), R{x) E SO(k) and t E X. 

Let w: {wi: i = l, ... ,n} be a collection of simili­

tudes wi: X ~ X satisfying 

X. 
1. 

yi 1, ... , n 

C2) Open Set Condition (Hutchinson): 3 open set G c X so 

that 

Uw.G c G and w.G n w.G = ~ for i ~ j
1. 1. J 

(X,w) is a HIFS with unique attractor A(X) and associated 

code space S""2. 

Proposition 2. Let Z E I = [0,1] c R. Let 

Z = (zlz2 ... zr ... )' zm E {l, ... ,n}, denote the n-aiJ~f expan­
.. 

sion of z. Let P: I ~ st be defined by 

P(Z = (zl· .. zr·.·»: = o+(zl···zr···) 

whe l'e a+ i s the rig h t - s hi f t 0 [J e l~ a t 0 i ~ • The n pis a home 0 ­

morphism. 

The proof is straight-forward. 
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Now define a map f: I ~ A(X) c X by 

f (z) : SP(z) 

where S is the continuous surjection from n onto A(X) • 

Since S E CO(Sl,A(X)) f is a continuous function. Further­

more, f passes through {(z.,x.) E I x X: z.: = j/n,
] ] ] 

j = O,l, •.. ,n}. 

Let A(I x X): = graph(f). Then A(I x X) is the unique 

attractor of the HIFS (I x X,w) where w: 
and 

w.: I x X ~ I x X 
1. 

1 ( .n z + 1. w. (z,x): Vi
1. 

wi (x) 

(for more details see [Ml]). 

Note that A(X) proj graph(f).
X 

We then have the 

following result. 

Theorem 2. diIll A(X) dim graph(f). 

Remark. It is well known that under the above condi­

tions on (X,w) the Hausdorff-Besicovich dimension of A(X) 

is the unique positive solution of ES~ = 1 where 
1. 

si: = Lip(wi ), vi = l, ... ,n (see for instance [Hu], [BD], 

[Ml]). We furthermore 'have that d dim A(X) agrees with 

fractal dimension of A(X), and the over the probabilities 

maximized Lyapunov dimension A(v) of the associated 

dynamical system equals 1 + d (the set p* of probabilities 

is given by pi = si/(ES i ); see [MI] for more details). 
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Now let us project A(I x X) onto I x R. We obviously 

obtain the graph of a continuous fractal function f*: I ~ R. 

Since f* still depends continuously on all the "hidden 

variables" graph(f*) is in general not self-affine, i.e. 

graph(f*) ~ Uwigraph(f*). The projections f* are thus 

called hidden variable fractal functions. 

Figure 4 shows an attractor A(X) and the projections 

2of A(I x X) onto R and Figure 5 the projections of an 

2attractor A(I x X) onto R . 

The following theorem gives a formula for the 

(fractal) dimension of graph(f*). 

Theorem 3. dim graph{f*) = 1 + l09 {LS ). (2.1)n i
 

The proof can be found in [Ml].
 

There exists an interesting relation between dim 

graph(f*) and the dimension of the embedding space of 

A(X). To derive this relationship notice that we have 

Ls. > 1 and Ls~ < 1 ( 2 . 2 ) 
1 - 1 ­

(these inequalities follow immediately from Cl) and C2): 

the first reflects the fact that A{X) is connected and the 

latter the fact that A{X) c Rk and thus dim A{X) < k). 

Applying the Chauchy-Schwartz inequality to (2.1) and 

(2.2) yields 

-1Theorem 4. 1 < ~im graph(f*) < 2 - k . 
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Figure 4. The attractor A(X) in X and the projections of 
A(I x X) onto I x R 
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Figure 5. The projections of an attractor A(I x X) onto
 
I x R c R2
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