TOPOLOGY PROCEEDINGS Volume 12, 1987

Pages 111–116

http://topology.auburn.edu/tp/

ON THE SUBGROUPS OFTHE FUNDAMENTAL GROUP AND THE REPRESENTATIONS

by

JINGYAL PAK

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON THE SUBGROUPS OF THE FUNDAMENTAL GROUP AND THE REPRESENTATIONS

Jingyal Pak

1. Introduction

Let X be a compact, connected ANR. Let E(X) and H(X) be the space of self-homotopy equivalences and the group of homeomorphisms of X, respectively. Let γ : E(X) \rightarrow X and γ' : H(X) \rightarrow X be the evaluation maps at x \in X. Then γ and γ' induce $\gamma_{\#}$: $\pi_{1}(E(X), id) \rightarrow \pi_{1}(X, x)$ and $\gamma'_{\#}$: $\pi_{1}(H(X), id) \rightarrow \pi_{1}(X, x)$ such that if i: H(X) \rightarrow E(X) denotes the inclusion map, then we have the following commutative diagram

McCarty [6] has shown that $\gamma_{\#}^{*}(\pi_{1}(H(X),id))$ lies in the center $Z(\pi_{1}(X,x))$ and each element $\alpha \in \gamma_{\#}^{*}(\pi_{1}(H(X),id))$ acts trivially on $\pi_{k}(X,x)$ for all $k \geq 1$ if X is an admissible space, i.e., X is at least locally compact, locally connected and Hausdorff. Therefore, the natural question is whether $\alpha \in \gamma_{\#}^{*}(H(X),id)$ if any $\alpha \in \pi_{1}(X,x)$ acts trivially on $\pi_{k}(X,x)$, for all $k \geq 1$. This question arose while I was studying the Nielsen fixed point theorems, which heavily depend on the structure of the fundamental group [1].

All those elements $\alpha \in \pi_1(X, x)$ which act trivially on $\pi_k(X, x)$ are called k-simple elements of $\pi_1(X, x)$ [4]. Then our question can be rephrased as: if $\alpha \in \pi_1(X, x)$ k-simple for all $k \ge 1$, then is $\alpha \in \gamma_{\#}^* \pi_1(H(X), id)$)?

Let $P(X,x) = \{ \alpha \in \pi_1(X,x) \mid \alpha \text{ is } k \text{-simple for all} \\ k \geq 1 \}$. Then $P(X,x) \subset Z(\pi_1(X,x))$, the center of $\pi_1(X,x)$. In 1965, Gottlief [3] showed that if X is aspherical, then $\gamma_{\#}(\pi_1(E(X),id)) \approx P(X,x) \approx Z(\pi_1(X,x))$. Now our question can be rephrased as follows: if X is aspherical then under what conditions $\gamma_{\#}^{+}(\pi_1(H(X),id)) \approx P(X,x) \approx Z(\pi_1(X,x))$, that is, whether $\gamma_{\#}^{+}$ hits the center.

Let E(X,x) and H(X,x) be the based self-homotopy equivalences and the based homeomorphisms at $x \in X$. For any homeomorphism $g \in H(X,x)$, we have an induced automorphism $g_{\#}: \pi_{k}(X,x) \neq \pi_{k}(X,x)$. If g is based homotopic to g' then the induced automorphisms agree, i.e., $g_{\#} = g_{\#}^{*}$, and yield a representation

 $\psi: \pi_0(H(X,x),id) \rightarrow Aut(\pi_k(X,x)).$

We answer the above question in the following form. Let X = M be a closed, connected aspherical manifold. Then $\gamma_{\#}^{*}$ hits the center if and only if the representation $\psi: \pi_{0}(H(M,x),id) \rightarrow Aut(\pi_{1}(M,x))$ is faithful. This implies that if $\pi_{1}(M,x)$ is centerless then the representation ψ is faithful. At the end we will give some examples satisfying our hypothesis.

Finally I would like to thank Gottlieb for his comments made on the original version of this paper.

2. On the Homeomorphism Groups and Representations

Let X = M be a closed, connected aspherical manifold. A manifold M is called aspherical if its universal covering space \tilde{M} is contractible, i.e., M is a K(π ,1)-space. As before, let E(M) and H(M) be the self-homotopy equivalences and the based homeomorphisms at $x \in M$ respectively. The evaluation maps $\gamma: E(M) \rightarrow M, \gamma': H(M) \rightarrow M$ defined by $\gamma(h) = h(x)$ and $\gamma'(g) = g(x)$ at $x \in M$ are fiberings [2], [6], and we have the following fiber-homotopy commutative diagram:

Lemma 1. Let M be a closed, connected aspherical manifold. If the induced homomorphism $_{0}i_{\#}: \pi_{0}(H(M,x),id) \rightarrow \pi_{0}(E(M,x),id)$ is a monomorphism then $_{1}i_{\#}: \pi_{1}(H(M),id) \rightarrow \pi_{1}(E(M),id)$ is an epimorphism.

Proof. From the Gottlieb theorem [3], we know $\pi_1(H(M,x),id) = 0$ and $\pi_1(E(M,x),id) = 0$, and we have the following commutative diagram:

$$0 \rightarrow \pi_{1}(H(M), id) \rightarrow \pi_{1}(M, x) \rightarrow \pi_{0}(H(M, x), id) \rightarrow \pi_{1}(H(M), id) \rightarrow 0$$

$$1^{i} \#^{i} \qquad \downarrow || \qquad 0^{i} \#^{i} \qquad \downarrow$$

$$0 \rightarrow \pi_{1}(E(M), id) \rightarrow \pi_{1}(M, x) \rightarrow \pi_{0}(E(M, x), id) \rightarrow \pi_{0}(E(M), id) \rightarrow 0$$

We can see that $l^i \#$ is a monomorphism, since it factors through

$$0 \rightarrow \pi_{1}(H(M), id) \xrightarrow{r_{1}^{\prime}} \pi_{1}(M, x)$$

$$1^{i} \# \xrightarrow{r_{1}^{\prime}} r_{\#}$$

$$0 \rightarrow \pi_{1}(E(M), id)$$

Now by diagram chasing, i.e., by the Weak Four Lemma [7], we know that $i_{1}i_{\pm}$ onto if $i_{1}i_{\pm}$ is a monomorphism.

Corollary 2. $\gamma'_{\#}(\pi_1(H(M), id)) \approx Z(\pi_1(M, x))$ if $0^{i_{\#}}$ is a monomorphism.

Proof. Since $\gamma_{\#}(E(M), id) \simeq Z(\pi_1(M, x))$ [3] and $\mu_1^i = 1$ is onto from the lemma 1, we have the result.

Lemma 3. Let M be a closed, connected aspherical manifold such that $\pi_0(H(M), id) \rightarrow \pi_0(E(M), id)$ is a monomorphism. If $1^i_{\#}$ is an epimorphism then $0^i_{\#}: \pi_0(H(M, x), id) \rightarrow \pi_0(E(M, x), id)$ is a monomorphism.

Proof. This lemma again follows from diagram chasing. This time we apply The Five Lemma [7]. Note that $_{0}i_{\#}$ is an epimorphism if $\pi_{0}(H(M),id) \rightarrow \pi_{0}(E(M),id)$ is onto.

Corollary 4. With the hypothesis of lemma 3, we have a representation ψ : $\pi_0(H(M,x),id) \rightarrow Aut(\pi_1(M,x))$, which is faithful.

Proof. Let $\psi = {}_{0}i_{\#} \phi$, where $\phi: \pi_{0}(E(M,x),id) \rightarrow$ Aut $(\pi_{1}(M,x))$ is an isomorphic representation [2]. Since ${}_{0}i_{\#}$ becomes monic, the result follows.

Combining these two lemmas, we have

Theorem 5. Let M be a closed, connected aspherical manifold such that $\pi_0(H(M), id) \simeq \pi_0(E(M), id)$. Then $\lim_{ 1^+ \# } is$ an isomorphism if and only if $\lim_{ 0^+ \# } is$ an isomorphism i.e., there is an isomorphic representation $\psi: \pi_0(H(M, x), id) \rightarrow \operatorname{Aut}(\pi_1(M, x))$.

Corollary 6. Let M be a closed, connected aspherical manifold. If $\pi_1(M, x)$ has no non-trivial center, then there is a faithful representation. $\psi: \pi_0(H(M, x), id) \rightarrow Aut(\pi_1(M, x))$.

Remark. Let M be an arbitrary manifold. If $[\alpha] \in$ $\pi^{}_{1}\left(M,x\right)$ then we can lift the loop α to α^{\star} in H(M) such that α^* is a path from the identity homeomorphism to $g \in H(M,x)$. McCarty [6] has shown that the induced automorphism $g_{\#}$: $\pi_{k}(M, x) \rightarrow \pi_{k}(M, x)$ is the same as the standard action of $[\alpha]$ on higher homotopy groups for all k [4]. Thus if $[\alpha] \in P(M,x)$, then g_{μ} becomes the identity automorphism for all k > 1. If this implies that g is isotopic to the identity homeomorphism relative to x on M then g belongs to the identity path component in $\pi_{0}(H(M,x))$. Let β be a path from g to identity map in H(M,x). Then $\beta \circ \alpha^*$ is a loop in H(X) such that $\gamma'(\beta \circ \alpha^*) = \alpha$. This implies $\gamma_{\pm}^{i}(\pi_{1}(H(M), id) = P(M, x)$. We ask the following question. If $g_{\sharp}: \pi_{k}(M, x) \rightarrow \pi_{k}(M, x)$ is the identity automorphism for all $k \ge 1$, what conditions are necessary to ensure that g belongs to the path component of the identity homeomorphism in H(M, x).

Example 1. Let M be a closed, connected 3-manifold which is irreducible and sufficiently large [8]. These manifolds are aspherical and Waldhausen has shown $\pi_0(E(M)) =$ $\pi_0(H(M))$. On the other hand Laudenbach [5], pushing further Waldhausen's result, has shown $\pi_1(E(M), id) = \pi_1(H(M), id)$ if in addition M is P²-irreducible. Thus these manifolds satisfy our hypothesis, and there is an isomorphic representation

$$\psi: \pi_0(H(M,x),id) \rightarrow Aut \pi_1(M,x).$$

Example 2. For the higher dimensional examples, we show "The model aspherical manifolds" from [2]. Let (W,N) be a properly discontinuous action of a discrete group N on a contractible manifold W so that W/N is compact. Then for each torsion free extension $1 \rightarrow z^{k} \rightarrow \pi \rightarrow N \rightarrow 1$ the space M = $(T^{k}XW)/N$ is an aspherical manifold and the map M \rightarrow W/N is a Seifert fibering. These manifolds M satisfy our hypothesis; $\pi_{0}(E(M)) \simeq \pi_{0}(H(M))$ and $\pi_{1}(E(M),id) \simeq$ $\pi_{1}(H(M),id)$. Thus we have an isomorphic representation $\psi: \pi_{0}(H(M,x),id) \rightarrow \operatorname{Aut}(\pi_{1}(M,x))$.

References

- R. F. Brown, The Lefschetz fixed point theorem, Scott Foresman and Co., Glenview, Ill., 1971.
- P. E. Conner and F. Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bulletin of A.M.S. 83 (1977), 36-85.
- D. H. Gottlieb, A certain subgroup fo the fundamental group, Amer. J. Math. 87 (1965), 840-856.
- S. T. Hu, *Homotopy theory*, Academic Press, New York, 1959.
- 5. F. Laudenbach, Topologie de la dimension trois: homotopie et isotopie, Astérisque, Soc. Math. de Franc 12 (1974).
- G. S. McCarty, Jr., *Homeotopy groups*, Trans. of A.M.S. 106 (1963), 293-304.
- 7. S. Maclane, *Homology*, Academic Press, New York, 1963.
- F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 18 (1968), 56-88.

Wayne State University Detroit Michigan 48202