TOPOLOGY PROCEEDINGS

Volume 12, 1987

Pages 111-116

http://topology.auburn.edu/tp/

ON THE SUBGROUPS OF THE FUNDAMENTAL GROUP AND THE REPRESENTATIONS

by Jingyal Pak

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON THE SUBGROUPS OF THE FUNDAMENTAL GROUP AND THE REPRESENTATIONS

Jingyal Pak

1. Introduction

Let X be a compact, connected ANR. Let E(X) and H(X) be the space of self-homotopy equivalences and the group of homeomorphisms of X, respectively. Let $\gamma: E(X) \rightarrow X$ and γ' : $H(X) \rightarrow X$ be the evaluation maps at $x \in X$. Then γ and γ' induce $\gamma_{\#}: \pi_{1}(E(X), id) \rightarrow \pi_{1}(X, x)$ and $\gamma_{\#}^{*}: \pi_{1}(H(X), id) \rightarrow \pi_{1}(X, x)$ $\boldsymbol{\pi}_{1}\left(\boldsymbol{X},\boldsymbol{x}\right)$ such that if i: $\boldsymbol{H}\left(\boldsymbol{X}\right)$ 2 $\boldsymbol{E}\left(\boldsymbol{X}\right)$ denotes the inclusion map, then we have the following commutative diagram

McCarty [6] has shown that $\gamma_{\#}^{!}(\pi_{1}(H(X),id))$ lies in the center $Z(\pi_1(X,x))$ and each element $\alpha \in \gamma_{\#}^1(\pi_1(H(X),id))$ acts trivially on $\pi_k(X,x)$ for all $k \ge 1$ if X is an admissible space, i.e., X, is at least locally compact, locally connected and Hausdorff. Therefore, the natural question is whether α \in $\gamma_{\#}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}(\text{H}(X)\,\text{,id})$ if any α \in $\pi_{1}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}(X\,\text{,}x)$ acts trivially on $\pi_k^-(X,x)$, for all $k \ge 1$. This question arose while I was studying the Nielsen fixed point theorems, which heavily depend on the structure of the fundamental group [1].

All those elements $\alpha \in \pi_1(X,x)$ which act trivially on $\pi_{k}^{-}(X,x)$ are called k-simple elements of $\pi_{1}^{-}(X,x)$ [4]. Then our question can be rephrased as: if $\alpha \in \pi_1(X,x)$ k-simple for all $k \ge 1$, then is $\alpha \in \gamma_{\#}^{!} \pi_{1}(H(X),id))$?

112 Pak

Let $P(X,x)=\{\alpha\in\pi_1(X,x)\mid\alpha\text{ is }k\text{-simple for all }k\geq 1\}$. Then $P(X,x)\subset Z(\pi_1(X,x))$, the center of $\pi_1(X,x)$. In 1965, Gottlief [3] showed that if X is aspherical, then $\gamma_\#(\pi_1(E(X),id))\simeq P(X,x)\simeq Z(\pi_1(X,x))$. Now our question can be rephrased as follows: if X is aspherical then under what conditions $\gamma_\#'(\pi_1(H(X),id))\simeq P(X,x)\simeq Z(\pi_1(X,x))$, that is, whether $\gamma_\#'$ hits the center.

Let E(X,x) and H(X,x) be the based self-homotopy equivalences and the based homeomorphisms at $x \in X$. For any homeomorphism $g \in H(X,x)$, we have an induced automorphism $g_{\#}: \pi_{K}(X,x) \to \pi_{K}(X,x)$. If g is based homotopic to g' then the induced automorphisms agree, i.e., $g_{\#} = g_{\#}'$, and yield a representation

$$\psi$$
: $\pi_0(H(X,x),id) \rightarrow Aut(\pi_k(X,x))$.

We answer the above question in the following form. Let X = M be a closed, connected aspherical manifold. Then $\gamma_\#^i$ hits the center if and only if the representation $\psi\colon \pi_0\left(H(M,x),\mathrm{id}\right) \to \operatorname{Aut}(\pi_1(M,x))$ is faithful. This implies that if $\pi_1(M,x)$ is centerless then the representation ψ is faithful. At the end we will give some examples satisfying our hypothesis.

Finally I would like to thank Gottlieb for his comments made on the original version of this paper.

2. On the Homeomorphism Groups and Representations

Let X = M be a closed, connected aspherical manifold. A manifold M is called aspherical if its universal covering space M is contractible, i.e., M is a $K(\pi,1)$ -space. As before, let E(M) and H(M) be the self-homotopy equivalences

and the based homeomorphisms at $x \in M$ respectively. The evaluation maps $\gamma \colon E(M) \to M, \gamma' \colon H(M) \to M$ defined by $\gamma(h) = h(x)$ and $\gamma'(g) = g(x)$ at $x \in M$ are fiberings [2], [6], and we have the following fiber-homotopy commutative diagram:

Lemma 1. Let M be a closed, connected aspherical manifold. If the induced homomorphism $0^{i}_{\#}$: $\pi_{0}(H(M,x),id) \rightarrow \pi_{0}(E(M,x),id)$ is a monomorphism then $1^{i}_{\#}$: $\pi_{1}(H(M),id) \rightarrow \pi_{1}(E(M),id)$ is an epimorphism.

Proof. From the Gottlieb theorem [3], we know $\pi_1(H(M,x),id)=0$ and $\pi_1(E(M,x),id)=0$, and we have the following commutative diagram:

We can see that $\mathbf{1}^{\mathbf{i}}\, \#$ is a monomorphism, since it factors through

$$0 \rightarrow \pi_{1}(H(M),id) \xrightarrow{r_{\#}^{*}} \pi_{1}(M,x)$$

$$1^{i_{\#}^{*}} \qquad r_{\#}^{*}$$

$$0 \rightarrow \pi_{1}(E(M),id)$$

Now by diagram chasing, i.e., by the Weak Four Lemma [7], we know that $_1i_{\#}$ onto if $_0i_{\#}$ is a monomorphism.

Corollary 2. $Y_{\#}^{!}(\pi_{1}(H(M),id)) \cong Z(\pi_{1}(M,x))$ if $0^{i_{\#}}$ is a monomorphism.

114 Pak

Proof. Since $\gamma_{\#}(E(M),id) \simeq Z(\eta_1(M,x))$ [3] and $j^i_{\#}$ is onto from the lemma 1, we have the result.

Lemma 3. Let M be a closed, connected aspherical manifold such that $\pi_0(H(M),id) \rightarrow \pi_0(E(M),id)$ is a monomorphism. If $1^i \# is$ an epimorphism then $0^i \# \pi_0(H(M,x),id) \rightarrow \pi_0(E(M,x),id)$ is a monomorphism.

Proof. This lemma again follows from diagram chasing. This time we apply The Five Lemma [7]. Note that $_0i_{\#}$ is an epimorphism if $\pi_0(H(M),id) \rightarrow \pi_0(E(M),id)$ is onto.

Corollary 4. With the hypothesis of lemma 3, we have a representation $\psi\colon \pi_0(H(M,x),id)\to Aut(\pi_1(M,x))$, which is faithful.

Proof. Let $\psi = {}_0i_\# \ \phi$, where $\phi \colon \pi_0\left(\mathrm{E}\left(M,x\right),\mathrm{id}\right) \to \mathrm{Aut}\left(\pi_1\left(M,x\right)\right)$ is an isomorphic representation [2]. Since ${}_0i_\#$ becomes monic, the result follows.

Combining these two lemmas, we have

Theorem 5. Let M be a closed, connected aspherical manifold such that $\pi_0(H(M),id) \simeq \pi_0(E(M),id)$. Then $1^i \# is$ an isomorphism if and only if $0^i \# is$ an isomorphism i.e., there is an isomorphic representation $\psi \colon \pi_0(H(M,x),id) \to Aut(\pi_1(M,x))$.

Corollary 6. Let M be a closed, connected aspherical manifold. If $\pi_1(M,x)$ has no non-trivial center, then there is a faithful representation. $\psi\colon \pi_0(H(M,x),id)\to Aut(\pi_1(M,x))$.

Remark. Let M be an arbitrary manifold. If $[\alpha] \in$ $\boldsymbol{\pi}_1\left(\mathbf{M},\mathbf{x}\right)$ then we can lift the loop α to $\alpha^{\textstyle\star}$ in $H\left(\mathbf{M}\right)$ such that α^* is a path from the identity homeomorphism to $g \in H(M,x)$. McCarty [6] has shown that the induced automorphism $g_{\underline{\pi}} \colon \pi_{\underline{k}}(M,x) \to \pi_{\underline{k}}(M,x)$ is the same as the standard action of $[\alpha]$ on higher homotopy groups for all k [4]. Thus if $[\alpha] \in P(M,x)$, then $g_{\#}$ becomes the identity automorphism for all k > 1. If this implies that g is isotopic to the identity homeomorphism relative to x on M then qbelongs to the identity path component in $\pi_0(H(M,x))$. Let β be a path from g to identity map in H(M,x). Then β \circ α^* is a loop in H(X) such that $\gamma'(\beta \circ \alpha^*) = \alpha$. This implies $\gamma_{\#}^{\bullet}(\Pi_{1}(\mathbb{M}), \mathrm{id}) = P(M, x)$. We ask the following question. If $g_{\#}: \pi_{k}(M,x) \to \pi_{k}(M,x)$ is the identity automorphism for all $k \ge 1$, what conditions are necessary to ensure that g belongs to the path component of the identity homeomorphism in H(M,x).

Example 1. Let M be a closed, connected 3-manifold which is irreducible and sufficiently large [8]. These manifolds are aspherical and Waldhausen has shown $\pi_0(E(M)) = \pi_0(H(M))$. On the other hand Laudenbach [5], pushing further Waldhausen's result, has shown $\pi_1(E(M), id) = \pi_1(H(M), id)$ if in addition M is P^2 -irreducible. Thus these manifolds satisfy our hypothesis, and there is an isomorphic representation

 ψ : $\pi_0(H(M,x),id) \rightarrow Aut \pi_1(M,x)$.

Example 2. For the higher dimensional examples, we show "The model aspherical manifolds" from [2]. Let (W,N) be a properly discontinuous action of a discrete group N on a contractible manifold W so that W/N is compact. Then for each torsion free extension $1 \rightarrow z^k \rightarrow \pi \rightarrow N \rightarrow 1$ the space $M = (T^k XW)/N$ is an aspherical manifold and the map $M \rightarrow W/N$ is a Seifert fibering. These manifolds M satisfy our hypothesis; $\pi_0(E(M)) \simeq \pi_0(H(M))$ and $\pi_1(E(M), id) \simeq \pi_1(H(M), id)$. Thus we have an isomorphic representation $\psi \colon \pi_0(H(M,x),id) \rightarrow Aut(\pi_1(M,x))$.

References

- R. F. Brown, The Lefschetz fixed point theorem, Scott Foresman and Co., Glenview, Ill., 1971.
- P. E. Conner and F. Raymond, Deforming homotopy equivalences to homeomorphisms in aspherical manifolds, Bulletin of A.M.S. 83 (1977), 36-85.
- 3. D. H. Gottlieb, A certain subgroup fo the fundamental group, Amer. J. Math. 87 (1965), 840-856.
- 4. S. T. Hu, *Homotopy theory*, Academic Press, New York, 1959.
- 5. F. Laudenbach, Topologie de la dimension trois: homotopie et isotopie, Astérisque, Soc. Math. de Franc 12 (1974).
- G. S. McCarty, Jr., Homeotopy groups, Trans. of A.M.S. 106 (1963), 293-304.
- 7. S. Maclane, Homology, Academic Press, New York, 1963.
- 8. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 18 (1968), 56-88.

Wayne State University
Detroit Michigan 48202