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TOPOLOGY OF COMPUTER VISION 

Gerhard X. Ritter 

1. Introduction 

~he principal objective of this paper is to provide an 

introduction to some basic concepts and techniques in the 

domain of computer vision, and to focus attention on 

several diverse applications of topology to this novel 

discipline. These applications overlap the author's own 

areas of interest and research. Thus, this paper should 

not be viewed as un all encompassing survey of the ilpplica­

tions of topology to the field of computer vision. How­

ever, we do hope that this paper will attract the attention 

of topologists interested in applying their knowledge to the 

many problems that exist in the field of conlputer vision. 

The topics and references listed in the last section of this 

paper should provide a good introduction to these problems. 

The field of computer vision and its major subdisci­

plines--image processing, pictorial pattern recognition 

and image understanding--has grown considerably during the 

past decade due to the increased utilization of imagery in 

medical, industrial, space and military applications. The 

principal application areas are the improvement of pictorial 

information for human interpretation and the processing 

of pi~torial data for autonomous machine perception. Improve­

ment of pictorial information for human interpretation 

include the resolution improvement and noise filtering in 

X-ray tomography imagery, the compensation of sensor and 
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transmission errors of pictures transmitted from deep-

space probes, and the improvement of edge information in 

low resolution infrared images. 

Typical routine applications in machine perception are 

automatic character recognition, automatic processing of 

fingerprints, automatic morphological classification of 

blood cells, and the automatic processing of satellite 

imagery for weather prediction and milit?ry recognizance. 

2. Image Representation 

Computer images are modeled in terms of continuous 

physical images. To be more explicit, let [(X,y,t,A) 

represent the spatial energy distribution of an image 

source of radiant energy at spatial coordinates (x,y), 

time t and wavelength A. Since the light function is non­

negative and real, and the physical imaging system imposes 

some restriction on the brightness of the image, it is 

assumed that 0 < L(X,y,t,A) ~ c for some constant c. 

Furthermore, as a scene is observable only over some finite 

time interval, the light function is a bounded function 

with three bounded independent variables. 

In an imaging system, the observed image field is 

modeled as a spectrally weighted integral of the image 

light function: 

a(x,y,t) = J:L(X,y,t,A)S(A)dA 

where S(A) denotes the spectral response of the sensor. 

In many--but not all--imaging systems, the time 

variable is dropped as the image (e.g. photograph) does 

not change with time. 
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A digital image a(i,j,k) is viewed as the discretized 

version of a sampled, continuous image field a(x,y,t) in 

space, time and intensity. When manipulating digital 

images by computer for such purposes as edge detection or 

analysis in the Fourier domain, the positive integral 

values a(i,j,k) may be transformed into negative, real or 

complex numbers. In multisensor data analysis, data fusion 

algorithms often view an image a{i,j,k) as 

a(i,j,k) = (a (i,j,k) ,a {i,j,k) , ••• ,an{i,j,k)),l 2 

where 

a (x,y,t) = IooL(x,y,t,A)S. (A)dAi o l. 

and siCA) denotes the spectral response of the i-th sensor. 

In addition, spatial coordinates may not be restricted to 

2-dirnensional planar coordinates. In lasar-radar imaging, 

spatial coordinates are 3-dimensional since the returning 

signal provides for range information. It is these oDscrva­

tions that provide the model and basis for a general standard 

definition of a computer image. 

Henceforth let Z, R, C, and Z k denote the sets of 
2 

integers, real nwnbers, complex numbers, and binary numbers 

of fixed length k, respectively. For n E Z and n > 0, let 

Rn denote n-dimensional Euclidean space. 

RllDefinition 2.1. Given a compact set X c and a 

groupoid F with identity, then an F vaZued image A on X i.s 

the graph of a function a: X ~ F, i.e. A = {{x,a(x)): x EX}. 

X
The set of all F valued images on X is denoted by F An 

element (x,a(x)) E A is also called a pixeZ (=picture ele­

ment) of A and a(x) the gray value or gray level at location x. 



120 Hitter 

RnIf the groupoid F = R or F = , then we are dealing 

with real valued or n-dimensional vector valued images, 

respectively. Similarly, replacing F by Z, C, or Z k' 
2 

provides for integral, complex or finite digital images, 

respectively. These are the most commonly used value sets 

in image processing. It is also often convenient to 

replace R by R = R U {-w,oo} and allow extended arithmetic 

and logic operations. This extension is especially useful 

when manipulating "raw" radar images which, due to sensor 

recording errors, have spatial locations with "out-of-range" 

values and locations with no signal values, called missing 

values. These locations can be assigned special symbols 

corresponding to 00 and -00. 

In the remainder of this exposition, the term nimage n 

shall always mean an image as defined above. Unless other­

wise s,tated, we shall also asswne that F = R, and X is a 

Rnfinite subset of . This will facilitate and retain the 

discussion on the intended introductory level. 

By defining the "right" algebraic operations, images 

can be manipulated and behave very much like real numbers. 

In fact, the basic image operations reflect the arithmetic 

and logic operations OD R. In particular, the binary 

operations of addition, multiplication, maxim~l, and expo­

Xnentiation on R are defined as follows: 

XLet A,B E R . Then 

1. A + 13 { (x, c (x) ): C (x) a(x) + b(x),x EX} 

2. A * 13 {(x,c(x)): c(x) a(x) * b(x),x E Xl 

3. AVB_{(x,c(x)):c(x) a(x) v b(x),x EX} 
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B4.	 A :: {(x,c(x)): c(x) a(x)b(x) if a(x) ~ 0, else 

c(x) = O,x EX}. 

We restrict this binary operation to those pairs of 

images A,B for which a(x)b(x) E R. The inverse of 

exponentiation is defined in the usual way by taking 

the logarithm. In particular, we define: 

5.	 lo9AB :: {(x,c(x)): c(x) = loga(x)b(x),x EX}. 

As for real numbers, lo9AB is defined only for those 

images A and B for which a(x) > 0 and b(x) > 0 for all 

x E X. 

The next basic binary operation, called the dot product, 

distinguishes itself from the above five in that its output 

is not an image but a real number. 

Definition 2.2. An image A is called a oonstant image 

if all its gray values are the same; i.e. if a(x) = k for 

some real nwnber k and for all x E X. 

Two important constant images are the zero image, 

defined by 0 = {(x,O): x t X}, and the unit image, defined 

by I :: {( x , 1): x EX}. 

Suppose k E R and A is a constant image with a(x) k. 

Then we define: 

k A kB Bi.	 B B and A

ii. kB A B and k + B A + 13* 

iii. lo9kB = lo9AB, of course k > 0 and b(x) > 0 for all x. 

We note that exponentiation is defined even when 

a(x) = O. Subtraction, division and minimum are defined 
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in terms of the basic operations and inverses. Specifi ­

cally: 

iv.	 A - B = A + (-B) and A/B A * B
-1 

, where
 

-B = {(x,-b(x)): (x,b(x)) E B}
 

v. A A B = -(-A v -B) 

The images 0 and I have the obvious property A + 0 = A 

and A * I = A. On the other hand, B * B
-1 

does not neces­

sarily equal I. However, B * B- 1 * B = B. For this reason 

B-1 is called the pseudo inverse of B. Inequalities between 

images are defined in terms of maximum and minimum. Thus, 

for example, A ~ B if A v B = B. These observations show 

that the ring (Rx ,+,*) and the lattice (Rx,v,<) behave very 

much like the ring and lattice of real numbers. 

The complement of an image A is denoted by A and is 

defined as X = I - A * A-I. The definition of characteristic 

value makes use of the concept of complementation. In 

particular, if A and B are images, then 

c>B (A) = [(A - B) v 0]
-1 * [(A - B) v 0] 

Thus, 

{(x,c(x)): c(x) 1 if a(x) > b(x), 

else c(x) = OJ. 

The remaining characteristic functions of images can be 

defined in a similar fashion, using complementation and 

products. For example, 

C<B(A) = c>B(A) 

and 
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Whenever B is the constant image with gray values equal to 

k it	 is customary to replace B by k in the above defini­

tions. Note that the characteristic function provides a 

good example as to the use of the pointwise maximum and 

minimum operations. 

3.	 Cellular Topology 

The cellular automata of von Neumann and Moore and 

computer image manipulation share a common framework [1,2]. 

Each	 point (x,a(x» E A can be viewed as a point x E X in 

a given state a(x). Be defining neighborhood relationships 

and cell transi tion functions--also known as teml> la te j"una­

tions and template operators--the state of a cell can be 

changed to a new state, where the new state depends on the 

states of the cells in its neighborhood. Because of the 

dependence of these transition functions on a cells' neigh­

borhood, these functions are also known as neighborhood 

transforms. 

We begin by defining the concept of a generalized 

template function. Recall that a function I from a set Y 

to a cartesian product X x Z, I: Y ~ X x Z, induces a pair 

of coordina te functions !-1' 12 called the coordinates of 1-. 
Hore precisely, /- = (1- ', 1 ), where for each y E Y,

1 2 

!-(y)	 = (Il(y), 1 (y», with ~l(Y) E X and 1- (y) E Z.2	 2 

kDefinition 3.1. Let X,Y be compact subsets of Rand 

Rn , respectively, and A E pX. A generalized F-valued tem­

X FXplate from Y to X is a function T = (],t): Y ~ 2

whose second coordinate satisfies the property 

x 
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t = {(x, t (x»: t (x) = 0 if x K. J (y) },
y y y 

where t - t(y), and 0 denotes the identity of Fi i.e. the 
y 

support of t lies in J(y). The point y is called the 
y 

target point of the source configuration J(y), and the values 

t (x) for x E J(y) are called the weights of T(y).y 

Given a template T = (J,t), then T is called a tem­

pZate function with configuration J, and J is called a 

source or neighborhood configuration of Y on X. If Y = X, 

then (J,t) is simply called a tempZate on X and J a neigh­

borhood configuration on x. 

For real valued templates and images, there are three 

basic template or neighborhood operations which are used 

to transform an image. They are denoted ~, 0, and~. These 

neighborhood operations transform each image point by 

performing the basic operation of addition or maximum on a 

weighted collection of neighboring image values. In par­

ticular, if A E RX and T is a template from Y to X, with 

J(y) finite for each y E Y, then 

A ~ T - {(y,c (y»: c (y) 

where y E Y) 

A 0 T - {(y, c (y) ): c (y) 

where. y E Y} 

A [ii.J T - {(y,c(y»: c(y) VXf.J(y)a(x) + ty(x), 

wher~ y E y} 

The complementary minimum operations are defined by 

A ~ T = -(A 0 -T) and A ~ T = -(-A ~ -T). 

The operands (images and templates) and operators 

(+,*,V,$,O,~) listed above define a heterogeneous algebra 
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which provides a uniform mathematical environment to manipu­

late and transform computer images in order to compress or 

smoothen data, identify, classify and/or track objects, or 

to perform other desired tasks. A typical sequence of these 

manipulations, called an image processing algorithm, may 

consist of noise filtering, thresholding and background 

removal. This sequence may then be followed by such 

processes as thinning, edge de~ection or skeletonizing in 

order to obtain shape descriptors and/or achieve data com­

pression. The geometric properties inherent in the trans­

formed objects usually serve as a basis for object classi­

fication. Of special importance are such topological 

properties as nearness, connectivity, path-connectivity, 

genus, homotopy, and dimension. 

Whenever such notions as connectivity, genus and 

homotopy are considered, topologies must be defined on the 

set of spatial coordinates. For the ensuing discussion, let 

k kX c Z , where Z denotes the k-fold cartesian product of Z. 

Any topology on X is called a cellular topology [3]. A 

comnlonly used topology is the von Neumann topo logy 

defined as follows: 

Let J = {-I,O,l} and x E X. The neighborhood N(x) is 

defined by 

{x}, if \~ lX' is odd
1.. 1 = 1N(x) 

{ (xl' • • • , x. l' x . ., x . +1' • • • ,xk ) : ).- J.+J J. 

1 < i < k, j E J}, otherwise 

The collection N = (N(x): x E X} is a neighborhood 

basis for the von Neumann topology on X. 
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In order to simplify our discussion, we first consider 

the case when k = 2. In this case, a connected set in the 

von Neumann topology is also called a 4-connected set since 

any point (cell) x = (x,y) is connected to each of its 

four horizontal and vertical neighbors; namely (x ± l,y) 

and (x,y ± 1), respectively. This topology was first 

described by A. Rosenfeld [4]. Observe that the set 

{(x,y), (x + l,y + I)} is not connected. There are various 

topologies such that for each point (x,y) and for every pair 

i,j E J, the pair (x,y), (x + i,y + j) forms a connected 

set. However, there does not seem to exist an example of 

a "finest" topology J for X (i.e., one having the smallest 

max {IN(x) I: N(x) E N where N is a neighborhood basis for 

]}) which provides for 8-connectivity. 

Although the von Neumann topology satisfies only the weak TO 

separation axiom, it "models" many conunon and important 

geometric and topological properties of Euclidean 2-space 

surprisingly well. The subsequent examples are d case in 

point. Proofs and a more detailed treatment of these 

examples and other related material can be found in the 

referenced literature. 

A 4-neighbor or, simply, a neighbor of a point x (in 

the von Neumann topology) refers to one of its immediate 

vertical or horizontal neighbors. The set of 8-n(3ighlJoY's 

of x = (x,y) consist of its 4-neighbors together with the 

diagonal neighbors (x + l,y ± 1) and (x - l,y 1 1). 

Let B c X and, in order to avoid special cases, aSSWle 

that B does not intersect the boundary of X. Then B is 
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called an arc if B is connected, contains two points which 

have exactly one neighbor in B and any other points in B 

have exactly two neighbors in B. 

Let E(x) denote the set of 8-neighbors of x but not 

including x. A point x E B is called a simple [Joint of B 

if B n E(x) has the same number of components as B n (E(x) 

U {x}). The following theorem was proven by A. Rosenfeld 

[4] • 

Theorem 3.1. B is an arc if and if it is simply con­

nected and has exactly two simple points. 

Arcs, simple closed curves and bouquets of simple 

closed curves in image processing are obtained from thinning 

wide objects into idealized thin forms which are then used 

in shape analysis or data reduction schemes. A connected 

set B is called a simple closed curve if 

(i) each of its points has exactly two neighbors in 

Band 

(ii) if a point x of B has a diagonally adjacent neigh­

bor (an a-neighbor which is not a 4-neighbor) y in B, then 

one of the two neighbors common to both x and y must also 

be in B. 

If only condition (i) holds, then B is commonly known as a 

curve. 

Theorem 3.2. B is a simple closed curve if and only if 

B is connectcd J separates X into two components and B has 

no simple points. 
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The proof of this theorem can be derived by appro­

priately modifying Rosenfeld's curve classification theorem 

and taking condition (ii) into account. We also note that 

connected is equivalent to path-connected and that digital 

simple closed curves in z2 have the same behavior in terms 

of separation properties, homotopy and genus as do simple 

closed curves in the plane. Similar observations hold for 

digital arcs and lines [4,5]. 

Although the von Neumann topology is a very elementary 

topology, defining efficient algorithms for the extraction 

of simple topological features or geometric measurements is 

far from trivial. Consider the case of defining an 

algorithm that computes the Euler characteristic of an 

object in an image. In addition, suppose that the algorithm 

design should be such that its implementation computes the 

Euler characteristic in terms of local knowledge of the 

object under consideration--i.e. new pixel values can only 

be computed in terws of neighboring pixel values. Before 

presenting an example of an algorithm satisfying these 

conditions, we briefly outline a computer architecture 

which: (i) is capable of implementing the algebraic 

operations described earlier, (ii) models the von Neumann 

and 8-connected topologies; and (iii) provides the rationale 

as to why one would like to consider "local" image process­

ing schemes. 

About 25 years ago, Unger proposed that many algorithms 

for image processing and analysis could be implemented in 

parallel using "cellular array" computers [6]. These 
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cellular array computers were first inspired by von Neumann 

[7]. Von Neumann envisioned arrays of thousands of pro­

cessing elements connected in such a fashion that each 

processing element could communicate with its directly 

adjacent neighboring processors in a square (or hexagonal) 

tessellation. Recent advances in VLSI technology finally 

permitted the realization of such arrays. Cellular com­

puters for image processing are now in use in hundreds of 

laboratories worldwide. NASA's massively parallel processor 

or MPP [8], Martin Marietta's GAPP 11+ [9], and the CLIP 

series of computers developed by Duff [10], represent the 

classic embodiment of von Neumann's original cellular 

automation. The CLIP4 consists of an array of 9216 

(96 x 96) processors with sets of eight processors inte­

grated on a single chip. The MPP also integrates eight 

processors per chip in an assemblage of 128 x 132 process­

ing elements. In distinction to the CLIP, where each 

processing element has the capability of co~nunicating 

with its eight i~nediate neighbors, an MPP processing 

element has connections to only four inunediate neighbors 

as indicated by the solid lines in Figure 1. 

Using these types of hardwired co~nunication links 

between neighboring processors, each processor is responsi­

ble for one pixel and is capable of performing local opera­

tions on the image via its comrnunica tion links. 'fhese 

local operations correspond to the previously defined 

algebraic operations and are performed in parallel on the 

whole image. Consequently, the operands for these opera­

tions are whole images and local templates, and each 
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Figure 1.	 Cellular image processing automaton of identical 
processors with nearest neighbor connection. 

operation is applied to a whole image as a one-step real-

time operation. Hence these architectures provide for 

real-time or quasi real-time image manipulation [11]. In 

comparison, convolution-like operations on large arrays 

such as e on sequential machines are computationally 

intensive and extremely time consuming. 

Given the availability of cellular array computers, 

we are faced with the new problem of writing algorithms 

that will take advantage of their architectures. The 

design of such algorithms is not necessarily an easy or 

straight forward task. This should become apparent in 

the computation of the Eular characteristic. 

A black and white or Boolean image is an image in 

which a pixel has value 0 or 1. The set of pixels having 

value 1 is called the black part of an image. Now suppose 

A is a black and white image, B is the black part of A and 

the goal is to find the Euler characteristic of B. Con­

sider the follvwing set of 2 x 2 pixel patterns, called 

bit quads: 
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m,rn,m,mm m m rn 
m,rn 
~ ~ 

rn,rn,rn,rn 
~rnrnm 

The Euler characteristic X of B can be expressed in 

terms of the number of bit quad counts of the image A by 

the formula 

The proof that this formula represents the Euler 

characteristic is non-trivial and employs R. Bott'~ 

critical point theory [12]. 

Since each bit quad pattern constitutes a "local" 

pattern, the formulation of X in terms of bit quad 

counts simplifies the task of formulating an algorithm 

that satisfies the previously mentioned requirements. 

To begin with, let x = (x,y) be an arbitrary point of X, 

Xl = (x,y - 1), x (x + l,y), and x = (x + l,y - 1).
2 3 

Let T be the template defined by the weights tx(x) = t (x )x 3 

= 3, tx(x l ) = t (x 2 ) = 1, and tx(y) = 0 if Y ~ x, xl' x 2 ' x 

or x Thus, T(x) has configuration as shown:
3

. 
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l 
T (x) = .~
 1 3 

where the shaded cell represents the target point x of T(x). 

The algorithm for computing X can now be expressed by 

the one line algebraic formula 

1
X = i[Cl(A ~ T) + 2C 2 (A mT) + C (A ~ T)3 

- CS(A ~ T) + 2C 6 (A m T) - C (A mT)] • I7 

This formula will be accepted by an appropriate translator 

as a valid computer code. It will be instructive to 

examine the algebraic formulation representing X. We first 

note that overlaying T with one of the 01 bit quad patterns 

and computing A m T for one of these patterns results in 

either the number 1 or 3. For a 02 pattern we obtain 

either 2 or 6, and for a 03 pattern either 5 or 7. Thus, 

T distinguishes between the different Oils. In particular, 

Cl(A mT) + C (A mT) is a black and white image (as c and3 l 

c are characteristic functions which set each pixel to3 

zero unless it has value 1 or 3, respectively, in which 

case the new value is 1) where the number of black pixels 

corresponds to the number n(Ol). Continuing with this 

type of argument, it is not difficult to prove that the 

sum of the non-zero pixels in the image 

c = c l (A ~ 't) + 2c 2 (A m T) + c (A ~ T)
3 

- CS(A m T) + 2C (A ~ T) - C (A ~ T)6 7 

represents the number n(Ol) + 2n(02) - n (03) · An example 

is provided by Figure 2. Thus, 



133 TOPOLOGY PROCEEDINGS Volume 12 1987 

X = -1 C • I = -I \ c(x)4 4 LxEX · 

As a second observation we note that although the 

algebraic formula for expressing X may seem a bit lengthy, 

A m T needs to be computed only once! The remaining 

operations for computing the image C are obviously locul 

operations as addition is performed only between spatially 

corresponding pixels and the characteristic function 

determines the new state of a pixel in terms of its given 

state. The final dot product C • I can be computed by 

shifting the occurrences c(x) across all the rows in 

parallel into the leftmost cells and then summing the result 

in the leftmost cells. The sums can then be shifted upward 

from these leftmost cells and summed in the uppermost 

left cell. Assuming that adding two numbers takes unit 

time, then the total time required for shifting and summing 

is proportional to the width plus height of the image, or 

of order n[O(n)] for an nxn image. This method can be used 

to compute the dot product in O{n) time. An alternative 

approach is the cellular pyramid architecture which allows 

for computation of the dot product in O{log n) time [11]. 

0 0 0 0 0 0 3 4 4 4 1 0 1 0 0 0 1 0 
0 1 1 1 1 0 4 5 4 7 4 0 0 -1 0 -1 0 0 
0 1 0 0 1 0 4 4 0 4 4 0 0 0 0 0 0 0 
0 -I 0 0 1 0 4 7 4 5 4 0 0 -1 0 -1 0 0 
0 1 1 I 1 0 1 4 4 4 3 0 1 0 0 0 1 0 
0 0 o 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 

(a) (b) (c) 

Figure 2. (a) The Boolean image Ai (b) the image A E9 Ti 
(c) the image C. 

Note that the sum of the entries of C equals zero which is 

the Euler characteristic of the "black" part of A. 
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It also follows from Gray's result that when using the 

template 

l 

T(x)= ffij4 2 

the formula for computing the Euler characteristic reduces 

to the shorter formula: 

x = [C 2 (A e T) - C (A e T) + C10(A mT)] · I.7 

The proof is similar to the one given previously. 

A short induction proof of the genus of a black and white 

image can be found in [13]. 

Computation of perimeter and area of black objects 

in Boolean images can also be achieved by bit quad pattern 

counting, and can be algebraically formulated in terms of 

the same template T as was used for the computation of 

X [14]. Of course, Euler characteristic, boundary and 

interior can be rigorously defined in terms of the cellular 

topology used. Thinning on the other hand depends on the 

des~red type of thinned image output. One thinning method-­

a variant of what is con®only known as the medial axis 

transform--is reminiscent of collapsing regular neighbor­

hoods to their spines. The basic idea behind this thinning 

scheme is to find and label the centers of the largest 

disks that fit into t~e object to be thinned (shrumk) such 

that the boundary of the disk touches the boundary of the 

object in at least two points. 
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To be more precise, let A be a Boolean image and B(A) 

the black part of A. Let D(x) denote the "digital disk of 

radius 1" at location x, 02(x) the digital disk of radius 

2, and, in general, Oi(x) the digital disk of radius i (see 

Figure 3). 

Figure 3.	 The shaded center cell corresponds to the loca­
tion x. 

The medial axis transform is then obtained by writing a 

program which computes the image M = {(x,m(x)): m(x) = k 

if Ok(x) c B(A) and oj (y)/cB(A) whenever j > k and 

Y E D(x), else m(x) = oJ. The nonzero pixels of Mare 

the weighted "medial axis" pixels of B(A). The medial axis 

pixel values correspond to the radii of the maximal disks 

and can be used to reconstruct most of B(A). The medial 

axis transform can be computed in parallel using neighbor­

hood operations. In particular, if T denotes the template 

defined by 

T(x)= 

then the following short algorithm computes the medial axis 

transform in terms of the image algebra: 
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BEGIN 

i = 0
 

A = A
O
 

DO UNTIL B. = 0
 
1 

= A. ~ TAi +1 l. 

B. = Ai +1 * Co [ (A i +1 
(i T) ~ T]

l. 

i = i + 1
 

ENDDO
 

B = L~=lkBk 
Here A denotes the Boolean input image, Co the characteristic 

function which sets all zero values equal to one and all 

nonzero values to zero, and B represents the medial axis 

image. Figure 4 illustrates the medial axis for a very 

simple case. 

I I I I I 1 I 0 0 0 0 0 o 0 
1 1 I 1 I 1 I 0 I 0 0 0 I ·0 
1 1 I 1 1 I I 0 0 2 0 2 o 0 
1 1 1 I 1 1 1 0 0 0 3 0 o 0 
1 1 1 1 1 1 1 0 0 2 0 2 o 0 
1 I I I I I 1 0 1 0 0 0 1 0 
1 1 1 1 1 1 1 0 0 0 o 0 o 0 

(a)	 (b) 

Figure 4.	 The medial axis transform: (a) shows the black 
part of the Boolean input image A and (b) the 
essential part of the medial axis image B. 

In higher dimensional cases (X c zk, k > 2) algorithm 

description and proof of algorithm correctness becomes a 

much more difficult and intricate task. Surface classifica­

tion theorems, similar to Theorems 3.1 and 3.2 in the 

2-dimensional case, have yet to be established. In many 

three dimensional imaging applications, the three-dimensional 

scene is represented by a three-dimensional array of pixels 
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called volume elements, or voxels for short. An object B 

of voxels in the scene is specified by some property and it 

is often of interest to detect the surface of B for display 

purposes and analysis. An application area is computerized 

tomography which provides a representation of the human body 

by assigning density values to three-dimensional spatial 

locations. Organs can be distinguished from their immediate 

surroundings if the density value of voxels just inside the 

organ are different from those of adjacent voxels just out­

side the organ. The boundary between the organ and its 

surroundings can then be represented by a set of faces 

separating pairs of voxels. The faces are the intersecting 

faces of the cells representing the pairs of voxels. 

Using classical three-dimensional topology, Dallas 

Webster and G. Herman provided a sequence of topological 

proofs which allow the detection of object surfaces in a 

computationally efficient way [15]. However, the proofs do 

not address the classification problem. 

4. The Topology of Biological Vision Systems 

Bionics is concerned with the study and design of 

machines that emulate biological systems. Thus, understand­

ing the architecture and functions of the biological system 

to be modeled is of prime importance. Since the biological 

brain is the least und~rstood system, it is not surprising 

that bionic vision is only in its primordial stage of 

development. 

The importance of biological vision can be inferred 

from the fact that nature invented the eye at least three 
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times. The cephalopod eye, the insect eye, and the verte­

brate eye all have totally different and independent 

evolutionary histories. Nevertheless, these histories have 

converged to essentially the same result. The neural net­

works in each of these eyes are surprisingly similar. The 

basic components of these living image processing systems 

can be represented by a block diagram containing four main 

elements as illustrated in Figure 5. The main elements 

are: a sensor for image acquisition, a preprocessing ele­

ment for image enhancement, filtering and image transforma­

tion, a processing unit for the analysis, recognition and 

interpretation of the sensed image, and a memory which may 

be dynamic and/or static (genetically imprinted) for 

referencing and possibly storing image information. This 

does not mean that sensed images are processed and perceived 

in a similar manner. The processing and perception of, and 

responses to, sensed images vary greatly between different 

species. For instance, octopi and humans do not see the 

same things. Octopi cannot distinguish between mirror 

images. 

Image ~ ISensor] ~ Ipreprocessorl ~ I Processor] ~~ IMemorYI 

1 
Response 

Figure 5.	 The four basic components of an image processing 
system. 

As an image processing system, the human eye and visual 

cortex are unsurpassed. Humans are capable of recognizing 
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a myriad of objects in his visible environment as well as 

artificial abstractions of these objects. The human visual 

system uses over 120,000,000 sensing elements in each eye. 

Preprocessing of the raw sensed image takes place in the 

second and third layer neurons of the retina and the neurons 

of the geniculate body. The neurons of the geniculate 

body are connected to the retinal cells of the optic nerve 

bundle which consists of approximately 800,000 nerve fibers. 

The geniculate body transmits the transformed images to the 

6,000,000,000 neurons of the visual cortex that are directly 

involved with image perception. Although the mechanisms 

have only been hypothesized, neurons may have the capacity 

of storing billions of bits of information. Neurons have 

both analog and digital properties. Input and processing 

consists of graded potentials, while output consists of 

fixed voltage, all-or-none pulse trains. 

The neurons of the visual cortex are organized into 

columns of up to a hundred thousand neurons per column. 

Processing in columns proceeds in parallel. For example, 

a portion of an image can be processed in parallel by 

columns which extract lines, edges and other features. 

Columns are arranged with inputs from other columns at 

many layers. This allows multiple overlays of two-dimen­

sional patterns in the horizontal plane while maintaining 

the topology of connections with other areas [16,17]. 

Even the largest computers and novel connection 

machines, using VLSI technology in order to integrate 

100,000 transistor devices per chip, are minute in compari­

son to this enormous neural network. It should therefore 
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not be surpr~sing that current computer based image pro­

cessing systems are still a long way from being capable of 

recognizing the wide variety of objects that any ordinary 

human being can recognize. However, the human visual 

system serves as an excellent example that general purpose 

image processing systems can be built. It should be clear 

that this emulation will be more of style than of detail. 

VLSI devices will remain in a different class from that of 

biological vision systems. We should not expect--or even 

strive for--the exact machine duplication of a biological 

system. What can be expected is the design of machines 

that emulate and surpass a particular biological vision 

system in the performance of many tasks while being up­

staged by that biological system in the performance of 

various other tasks. It is very much like the "airplane 

versus bird" analogy. Airplanes are a direct result of 

man's attempt to mimic birds. They outperform birds in 

terms of speed and carrying capacity and lag far behind a 

bird's maneuverability and flight safety. 

As a first attempt in modeling the vertebrate visual 

system, we shall only consider the sensor and preprocessing 

components. In the human visual system, the sensor is the 

eye which is shaped like a sphere. The retinal layer of 

the eye consists of three sets of neurons arranged in layers. 

The innermost layer contains the rod and cones which are 

the receptor$ of sight. The part of the outside world 

seen by one eye at any moment is called the visual field 

of that eye. Due to the restriction of the visual field 
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caused by the nose, brow, and cheek, the stereographic pro­

jection of the retina into a plane does not result in a 

circular visual field. 

When light strikes the retinal receptors, impulses are 

set up and transmitted to the nerve cells of the other 

layers, called the first neurons and second neurons. The 

second neurons are also called the ganglions. The series 

of cells, receptors, first neurons and second neurons, and 

their synapses do not form a simple bucket brigade of 

impulses. A receptor may send impulses along its axon and 

dendrites to more than one cell of the first neuron and 

several receptors may synapse with the same cell. The 

axons of the ganglion cells form the optic nerve. There 

is general agreement among physiologists that the principal 

function of the first and second nerve cells of the retina 

is probably to compress the information contained in the 

activity of a very large number of receptors into a much 

smaller number of channels, the fibers of the optic nerve. 

In doing this, a great deal of information is being dis­

carded. This loss of information is necessitated by the 

compression into fewer channels. Some discarding can be 

advantageous if biologically important information is to be 

efficiently sifted from unimportant information. There 

can be little doubt that it is easier for a brain to deal 

with little information than with too much. For our pur­

poses it is, therefore, not unreasonable to assume that 

the first and second neurons are part of an imaging pre­

processing system which compresses and filters information 

[18,17] . 
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The fibers of the optic "nerve that supply visual infor­

mation to the cerebral cortex do not pass directly to it, 

but synapse with the cells in the lateral geniculate body. 

Several theories as to the function of the geniculate body 

have been proposed. The most widely accepted hypothesis is 

that the neurons of the geniculate body compress and trans­

late received information into a code that can be accepted 

by the neurons of the cerebral cortex. Thus, the geniculate 

body may be viewed as a preprocessing system which sets the 

stage for the image understanding system of the cerebral 

cortex. 

The retina is mapped in a regular manner to the lateral 

geniculate body. Cells that are spatially close in the 

retina fire neurons in the geniculate body that are near to 

each other. The mapping of the retina on the cat's and 

rhesus monkey's geniculate body have been thoroughly 

examined by electrophysiological methods. In particular, 

the maps preserve spatial continuity both from the retina 

to the geniculate body and from the geniculate body to the 

retina. The area of a receptor moasic in the retina feed­

ing into a single cell of the geniculate is called the 

receptive field of that cell. The receptive field of a 

geniculate cell consists of a small disk-like mosaic of 

retinal cells. This disk is very small near the fovea cen­

tralis, the center of direct vision, and increases in size 

toward the outer edge of the retina which is involved with 

peripheral vision. It is also well known that the receptive 

disk is the union of two functionally distinct regions, con­

sisting of a smaller central disk and a surrounding annulus. 



TOPOLOGY PROCEEDINGS Volume 12 1987 143 

One of these regions is called an "on" region and the other an 

"off" region. Depending on which region a spot of light falls, 

either of two responses could be produced. The firing rate of 

cells in the "on" region is increased under the stimulus of 

light, while in the "o ff" region the stimulus of light dec­

creases the cell's firing rate. The two effects tend to 

neutralize each other. When both the center and the surround 

are stimulated together, the antagonistic input sum-- in a 

still unspecified, but most likely algebraic way-- to produce 

the next result [19,20,21]. 

One important consequence of this "on"-"off" organiza­

tion of the receptor disks can be demonstrated by using large 

stimulus figures. For example, consider a bright white 

figure on a black background. If the figure covers the 

whole receptive disk, a weak response is elicited because 

both the "on" and "off" regions are stimulated. But if the 

figure is positioned so that the black contrast border 

falls just to one side of the smaller central disk region, 

and if this region is an "on" region, then the surrounding 

annulus is not stimulated as strongly and the response is 

increased. This phenomenon corresponds to edge filtering 

in image processing by computer. 

The cellular topology and algebraic structure discussed 

in the previous sections provide a rather natural interpre­

tation of the retino-geniculate structure as a bionic sys­

tem. Suppose X denotes the planar projection of the right 

visual field into the plane. Since X is discrete, we assume 

further that X c z2. Each point of X corresponds to a 
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retinal receptor. Let Y denote neurons of the geniculate 

body having synaptic connections with the cells of X. In 

comparison to X, which is "flat," Y is 3-dimensional. For 

this reason we think of Y as a subset of z3. 

There are several choices for defining topologies on 

x and Y. Since the von Neumann topology is particularly 

simple and actually provides for the close mimicking of the 

biological visual pathway, we endow both X and Y with the 

von Neumann topology. Now let ](y) c X denote the receptive 

field of y € Y. Recall that ](y) is a small disk-shaped 

mosaic of sensors. Thus, it is reasonable to let 

](y) = Di(x ), where Di(x ) is a digital disk of radius i 
y Y 

and center x. If i = 0, then ](y) = x. We also assume 
y y 

that i is even if the sum of coordinates of y is odd, and 

i is odd if the sum of coordinates is even. 

Defining the set t = {(x,t (x)): t (x) the contri­
y y y 

bution of x on the firing or on inhibiting the firing of yJ 

defines a template T (],t) from Y to X. We assume of 

course that t (x) is a determinable numeric quantity for y 

each pair x and y. Note also that t (x) = 0 whenever y 

x ~ ] (y). 

Now consider the stimulus response of the retina to a 

bright white figure on a black background. Let A = {(x,a(x)): 

a(x) = I if x is fired by the figure, else a(x) OJ. The 

geniculate response can then be interpreted as 

A ED T = {(y,c(y)): c(y) = ·LXE](y)a(x)ty(x),y E Y} 

For simplicity we suppose that A m T is Boolean, that is 

c(y) = 1 if the sum Ia(x)t (x) exceeds the firing threshold,
y 
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else	 c(y) = O. This supposition can easily be obtained by 

the operation c>k(A ffi T), where k denotes the firing 

threshold. 

Let	 B(A ffi T) = {y E Y: c(y) = I} and define a function 

f: B(A m T) ~ ](B(A m T)) by f(y) = x , where x denotes 
y y 

the center of ](y). It then follows from the definition 

of ] that f is continuous and, in fact, open. Thus, at 

least near the fovea, f is an embedding. Hence, what is 

"perceived" by the geniculate body corresponds to a 

"fattened-up" version of B(A) = {x E X: a(x) I}, where 

the	 "fattening" corresponds to covering B(A) by the recep­

tive	 disks. In particular, if B(A) corresponds to such 

figures as a digital line, disk, or circle of sufficiently 

large diameter, then f(B(A ffi T)) is a deformation retract 

of ]((B(A ED T)) and 

(I) rTl(B(A ffi T)) = rTl(f(B(A ffi T))) = 1T (](B(A ffi T))).l 

As a line and disk are (digitally) convex so are their 

covers by small digital disks, in which case we have that 

TII(](B(A ED T)) = 1T (B(A)). The same situation holds for
l 

circles of sufficiently large diameters. Thus, under the 

right conditions of visual resolution, equation (I) implies 

(II)	 TIl (B(A ffi T)) = TIl (B(A)). 

Hence, the object sensed by the retina is homotopically 

equivalent	 to the object perceived by the geniculate. 

A somewhat similar but weaker result was obtained by 

E. C. Zeeman in his classical paper on the topology of the 

brain [22]. He showed that the right visual field X and 

the right visual lobe Y have isomorphic homology theories. 
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In particular, ignoring the geniculate body, and using his 

tolerance topology on X and Y, this result implies the 

Czech homology groups for A and A ffi T are isomorphic. 

The insistence on circles with sufficiently large 

diameter has to do with the eye's visual resolution or 

visual acuitu. Visual acuity refers to the eye's ability 

to determine the precise shape or detail of an object, or 

recognize the separateness of two small objects placed 

close together. This ability is exhibited in the highest 

degree near the fovea centralise Pairs of points that are 

indistinguishable by the eye are said to be within visual 

acuity tolerance. In looking at a straight line, the eye 

-5 can detect a lateral break that forms an image only 1 x 10 

em wide. This corresponds to approximately a 30-th of the 

diameter of a retinal receptor. This precision, 30 times 

finer than the size of a receptor cell, seems to be due 

to the tiny scanning motions, or saccadeD, that are neces­

sary for keeping a static pattern in view even over a 

short period of time [23]. 

It would be interesting and extremely worthwhile to 

attempt to model a mosaic of receptors, much like the region 

of the fovea, complete with scanning motions, that is capable 

of similar accuracy. This model would probably involve 

some group theory. Fuzzy cellular topologies instead of 

rigid ones might provide an architectural description that 

is more in tune with the actual biological system. Current 

multi-aperture mosaics, based on the retina of the insect 

eye, have not incorporated saccade-like scanning motions 

and have extremely poor resolving power [24]. 
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A great deal of work remains to be done to establish 

a solid theoretical and practical foundation of bionic 

vision systems. The topic not discussed in this section, 

namely image interpretation and understanding, will without 

doubt remain a major obstacle to this goal. To this day, 

only a few bionic vision systems have been built, generally 

in computer vision experiments. However, since biological 

vision systems are working examples of massively parallel, 

densely interconnected computational networks, crossfertili­

zation of knowledge of biological and computer based systems 

will no doubt remain as active and important in the future 

as it is in the present. 

5. Simplicial Codes 

In order to analyze, synthesize, and manipulate geo­

metric configurations by means of a digital computer, the 

need arises for precise methods of describing these con­

figurations. For example, if one wishes to transmit the 

surface contour of an airplane over a con~unication link, 

the contour must first be described and encoded in a 

fashion that permits efficient transmission. The decoding 

at the receiving end should permit a faithful pictorial 

reconstruction of the airplane's surface. 

One of the simplest and most useful methods which 

permits the encoding of arbitrary digital planar curves is 

known as the octagonaZ chain code [25]. Suppose we have 

a black digital curve on a white background with X c z2. 

If a point on the curve is known, the:n the "next" point 

can assume only one of eight possible adjacent positions as 
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shown in Figure 6. If one assigns the integers zero through 

seven to these eight positions, starting with the one which 

is horizontally to the right and progressing in a counter­

clockwise direction, the code shown in Figure 7(b) is 

obtained from the digital curve in Figure 7(a) if the start ­

ing point is the pixel closest to the upper left hand 

corner of the image. 

3 2 

4 0 

5 

'Figure 6 

(a)	 (b) 

The chain code 00707655334222 

Figure 7 

The reconstruction of the image from its contour code 

is straight forward, given an understanding of the mapping 

strategy. Given the starting point, we simply fill in the 

cells sequenti~lly according to the direction given by each 
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element of the code, starting with the left most integer 

of the code. Given the code without a starting point, the 

original curve can still be faithfully reconstructed modulo 

a shift in location. Using clever progra~ling techniques, 

Boolean images containing many digital simple and non-simple 

(self-intersecting) curves can be encoded using the basic 

eight direction scheme. One important observation about 

the octagonal chain code is the fact that only three bits 

are required to specify one point on the curve; i.e. in 

binary form a equals 000, 1 equals 001, 7 equals Ill, etc. 

The required memory capacity for a curve encoded in this 

manner is then only 15% of that required for a curve which 

has all its points independently specified in a 1024 x 1024 

point array. 

However what makes the octagonal chain code extremely 

interesting is not necessarily its simplicity and data 

reduction capability, but rather its manipulative properties. 

That is, if the code for the boundary of an object is known, 

then it is possible to compute such measures as area, 

perimeter, center of gravity, moments, maximum height, 

maximum width, homotopy, and so on, directly from the code 

[25]. The number of self-intersection points and whether 

or not the curve is closed or not can also be directly 

determined from the code. Another interesting fact is that 

addition of 2 (mod 8) to each integer in the code causes 

the curve represented by the code to be rotated counter­

clockwise by 90°. Doubling the number of odd digits in the 

code representing the boundary of a figure and then adding 
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1 (mod 8) to each integer in the code, will rotate the 

figure and double its size. The doubling is necessary in 

order to preserve connectivity properties. 

From a topologist's point of view it is interesting to 

note that the chain code is essentially an oriented simplicial 

I-complex, each letter representing a I-simplex with a given 

orientation (see Figure 7(b)). However, as a I-complex it 

can not be employed for coding digitized 2-dimensional 

regions. In particular, the I-complex fails to relate 

information that is independent upon the contour of a 

2-dimensional region. Information as to coloration and 

different depths could never be retrieved from any type of 

contour encoding. 

One method of encoding digital surfaces in two or three 

dimensional space consists of generalizing the concept of 

the octagonal chain code to oriented 2-dimensional simplicial 

complexes. In order to simplify our discussion, we present 

the code for planar digital surfaces and refer the interested 

reader to [26] for an in-depth discussion of encoding sur­

faces in 3-dimensional space. 

When subdividing a digital surface into a simplicial 

complex, we will use only the four basic triangles shown in 

Figure 8. We agree that each triangle has a counterclock­

wise orientation. Thus, using the standard octagonal code, 

the orientation of the 2-simplex labeled 0 is given by 614; 

1 has orientation 036; 2 has orientation 250; and 3 has 

orientation 472. Each triangle has a vertical, a horizontal, 

and a diagonal (hypotenuse) side. We denote the vertical 
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side by V, and horizontal side by H, and assume that each 

has unit length. 

Figure 8 

If a and b are two triangles, then the symbol aVb 

means that a and b are attached along their vertical sides. 

Similarly, aHb and ab will mean that a and b are attached 

along their horizontal and along their diagonal sides, 

respectively. The 10 possible combinations are shown in 

Figure 9. Several observations are now in order. First, 

the operation of attaching is commutative, that is OH2 = 2HO. 

Second, the attachment results in a coherently oriented 

simplicial complex. Thus, when substituting the octagonal 

codes for the boundaries of the triangles, the interior 

edge cancels and we obtain the boundary of the simplicial 

complex defined by the two triangles. For example, 

OH2 (614) (025) = 61/4/025 = 6125. Note that we write 0 

and 2 so that their joining edges, H "4" and II = "0," 

respectively, appear ~n juxtaposition. This observation 

can be used to obtain the octagonal chain code of the 

boundary from the two dimensional simplicial code of the 

surface. Finally, observe that some combinations such as 

12 and IH2 are impossible or do not yield simplicial 

complexes. 
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§ ~ & w 0
 
02OH2 OV3OV2 OHl 

% ~8~~ 
2H3lV3 13 2VllH3 

Figure 9 

We are now in the position to define the grammar of 

our code. The triangles 0, 1, and 2, and the edges Hand 

V are called simplicial letters. Any finite string of 

simplicial letters written in juxtaposition, with triangles 

and attaching rules alternating, is called a sin~licial 

word. A simplicial word can be realized as a simplicial 

complex if the following conditions are satisfied: 

(1) The first and the last letter in the word are 

triangles. 

(2) Attaching the triangles via the attaching rules, 

in the order of occurrence when the word is read from 

left to right, yields a simplicial complex. 

(3) When attaching. the triangles, no triangle is super­

imposed on a previously attached triangle. 

A simpli~ial sentenee is a simplicial word which can be 

realized asa simplicial complex~ Thus IH02Vlll3 is a 

simplicial sentence, while lH02VlH3H2 and lH02Vlll31113Vl 

are not. In the last case we note that the 6th and lOth 

letters are superimposed. Obviously, the 10 combinations 
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given in Figure 9 are all simplicial sentences as well as 

the simplicial letters 0, 1, 2, and 3. 

In order to realize a large variety of simplicial com­

plexes, we need to introduce the notion of attaching a word 

to a sentence. Let Sl,S2, •.. ,Sk and T ,T2 , .•. ,T bel n 

simplicial letters, S = SlS2 •.. Sk a simplicial sentence, 

and T = T T ··-T a simplicial word. We say that J can bel 2 n 

attaahed to S at Si if SIS2- •. SiTIT2---Tn can be realized 

as a simplicial complex so that the triangles determined 

by T do not intersect the interiors of the triangles of S 

determined by Si+l ... Sk. If T can be attached to 5 at 5 i , 

then we write 

Si * T :: S 5 - - -5. (5. _. -S )T T - --T
1 2 1 1+1 k· 1 2 n 

and call si * T the simplicial sentence obtained by attach­

ing T to S at Si. Thus, Si * T determines a simplicial 

complex which can be realized by first realizing the com­

plex determined by S and then attaching the triangles of T 

to the triangles S by using SiTlT2-·-Tn as our sentence of 

instructions. Observe that if i = k, then si * T :: 

5lS2---SkTlT2---Tn is a word without parenthetic letters. 

We include the parenthetic symbols "(" and ")" in our 

set of simplicial letters, and note that our simplicial 

3alphabet contains 2 = 8 letters. 

Sentences which include parentheses are also called 

complex sentences, while those which do not are called 

simple sentences. We shall enlarge our class of simplicial 

words by including sequences of letters which are obtained 

from complex sentences by the deletion of either the first 
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or the last letter, or both. The concept of attaching a 

word to a complex sentence is analogous to the concept of 

attaching a word to a simple sentence. In particular, if 

U is a complex sentence and W a word, then vi * W means to 

attach the triangles of W to the triangles of U using V.W 
1 

as the sequence of instructions, where Vi denotes the ith 

letter in the sentence V. Again if ui * W can be realized 

as a simplicial complex, then vi * W is referred to as a 

simplicial sentence. For an algorithmic implementation 

of this code and further examples, we refer the interested 

reader to [26]. 

Since the simplicial 2-complex code represents the 

2-dimensional generalization of the octagonal chain code, 

it inherits many of the simple and powerful manipulative 

powers of its one dimensional predecessor. For example, 

addition (mod 4) to a triangle rotates the triangle through 

an angle of 90° counterclockwise. Forty-five degree rota­

tions are again obtained via expansion of the code. Area 

determination is particularly easy. It is simply 1/2 times 

the number of triangles appearing in the code. 

Coding non-planar surfaces such as digital spheres or 

tori in 3-space is somewhat more involved. However, the 

basic idea is the same as in the lower dimensional cases. 

It consists of attaching oriented 2-simplexes to grid points 

in discrete 3-space in a coherent fashion. Of course, since 

a point x E X c z3 has 26 grid neighbors, the number of 

letters of the coding alphabet increases accordingly. In 

4particular, 2 = 16 letters (symbols) are needed to encode 
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any digital surface in 3-space if the generalization of the 

octagonal chain code is used [27]. It has been conjectured 

n+l
(but not proven) that 2 letters suffice to encode an 

(n-l)-dimensional surface in n-space if the code represents 

the natural generalization of the above described simplicial 

scheme. 

Although it requires only 3 bits to encode a digital 

curve or surface point in z2 and four bits in z3, the 

simplicial codes are not as efficient as they appear at 

first glance. Simplicial sentences describing digital 

figures can be unnecessarily long and difficult to read 

since a large number of simplexes are necessary to describe 

even the simplest configurations such as a long line or a 

large rectangle. For example, a horizontal line consisting 

of n+l pixels could be more easily represented by a symbol 

such as On instead of a sequence of n .zeros. Using oriented 

cell complexes consisting of cells having regular shapes 

but varying sizes may be one possible approach to encode 

digital surfaces. A large rectangle should be representable 

by a single cell. The theoretic and algorithmic definition 

of such a code could be a major contribution to image pro­

cessing and would certainly be a worthwhile undertaking. 

There are many other topics that could have been 

included in this paper. There exists a considerable amount 

of literature on convexity; on shrinking; on homotopy and 

dimension [4]. The study of geometric properties, known as 

mathematicaZ morphoZogy and based on Minkowski's geometric 

measure theory has rapid~ grown during the past decade 
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[28]. Hausdorff dimension and fractal theory for modeling 

natural scenes are starting to play an important role [29]. 

Finding fractal invariants is considered an important and 

difficult problem. If these topological problems help 

generate sufficient interest among topologists, then the 

intent of this paper will have been fulfilled. 
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