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COMPOSANTS OF INDECOMPOSABLE
STONE-CECH REMAINDERS

David P. Bellamy

This article concerns the properties of certain spaces
which can occur as Stone-Cech remainders of locally compact
Hausdorff spaces. I want to thank B. Diamond for two very
useful conversations on this topic, and for calling to my

attention Lemma 1 which made this work possible.

A continuum is a compact, connected Hausdorff space.
Let Y be a continuum. Y is <Zrreducible between the points
a,b € Y if no proper subcontinuum of Y contains both of
them. This will be denoted by Y = [a,b], with the under-
standing that if a,b € R, the usual meaning applies. Y is
connected im Kleinen at p € Y provided every neighborhood
of p contains a neighborhood of p which is connected and
closed in Y. Y is indecomposable if it is not the union
of two of its proper subcontinua, or equivalently if every
proper subcontinuum of Y is nowhere dense. I1f p € Y, the
composant of p in Y, denoted C(Y;p), is defined by

C(y;p) = {y € Y|Y # [p,y]l}.

C(Y;p) is then the union of all the proper subcontinua of Y
containing p. If Y is nondegenerate and indecomposable, the
sets C(Y;p) partition Y; that is, y € C(Y;p) is an equiva-
lence relation. C(Y) will denote the set of composants of
Y. Nondegenerate metrizable indecomposable continua have

been known since the 1920's to have exactly c¢ composants
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[9]. For the nonmetric case, the situation is more compli-
cated. It is known that there exist indecomposable continua
X such that ((X) has cardinality 1, 2 or 2" for any infinite
cardinal number m [3], [12]. Whether other numbers are pos-
sible is open.

For any completely regular space X, BX will denote its
Stone-éech compactification and X* will denote the remainder
BX - X. A will always denote (0,1] and I will denote [0,1].
A* is an indecomposable continuum [1], [2] or [13], but the
cardinaltiy of ((A*) depends on your set theory; it is
known that it can be either one or 2° [5]1, [10]1, [11l]. The
purpose of this paper is to show that for many other non-
pseudocompact X with X* an indecomposable continuum CXX*)
and CXA*) are equipollent.

Dickman [7] showed that a half open interval is
essentially the only locally connected and locally compact
metric space with an indecomposable continuum as its Stone-
Cech remainder; however, L. R. Rubin and the author demon-
strated the existence of a broader class of objects, called

waves, with this property [4].

Definition. A wave from a to b is a topological pair
(Y,X) such that Y is a continuum irreducible between a and
b, Y is both connected im Kleinen and first countable at b,

and X = Y - {b}.

Theorem 1 [4). If (Y¥,X) is8 a wave from a to b, then

X* is an indecomposable continuum.
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An indecomposable continuum of this type will be

called a wave remainder.

Theorem 2. There exist wave remainders of arbitrarily
large cardinality.

Proof. Given a limit ordinal number m, perform a long
line construction on the ordinal o« = m X w. That is, define
X to be the set o x [0,l) with the lexicographic order
topology, and let Y be the one point compactification of X.
Let S, denote the closure of the subset of X, {(B,t)[s < m}es

0
and let S denote S0 with its top and bottom points identi-
fied. It is easy to see, using a spiral-like construction
in ¥ x S, that X has a compactification with remainder S,
and since BX - X admits a continuous map onto S, it has

cardinality at least as large as S. S, however, has car-

dinality at least that of m, so the proof is done.
The principal result here is:

Theorem 3, If X*is any wave remainder, then C(A*) and

C(X*) are equipollent.
To prove this, a number of Lemmas are needed.

Lemma 1. Let X and Y be completely regular spaces and
let f: X + Y be a monotone quotient map. Then Bf: BX + RY
18 a monotone map also.

Proof. This is a special case of B. Diamond's theorem

4.7 of [6, p. 76].
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Lemma 2. If X is a locally compact space and |) is a
decomposition of X into compact sets such that the nonde-
generate members of |) form a neighborhood finite collection,

then the quotient map q: X * % 18 perfect. Consequently,
£
D

Proof. Each point inverse is clearly compact, and [)

Bqx%) = (p)* and (B (F*) = x*,
is upper semicontinuous, since if A € [ and U is open with
AcU, U-uUu{BE D|B # A and B is nondegenerate} is a
saturated open set containing A and contained in U. The
last sentence follows from Lemma 1.5 of [8, p. 87] and the
definition of compactification. (Henriksen and Isbell use
the term fitting map for what is nowadays commonly called

a perfect map.)

Lemma 3. Suppose S and Z are indecomposable continua,
Z ¢s nondegenerate, and £: S * Z is a monotone onto map.
Then £ induces a bijection between ((S) and ((Z).
Proof. Let C be any composant of Z. Then
C = U{W|p € W, W a proper subcontinuum of 2}
for some p € 2. Thus,
£°(C) = U{f*(w)lp € W; W a proper subcontinuum
of Z}.
Since for W # 2, £ (W) # S, it follows that £ (C) is a
subset of a single composant of S. Define H: ((2) + ((S)
by H(C) = the composant of S containing f*(C). Then, if
x € S, f(x) € Z and thus f(x) € D for some composant D of
Z. Thus, f*(D) < C(S;x), so that H is surjective.
Suppose W is a proper subcontinuum of S and that

f(W) = 2. Since Z is nondegenerate, there is a nonempty,
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nondense open U < Z. W is nowhere dense in S, so neither
f+(U) nor £(z - U) is a subset of W. By monotonicity,
WU f+(z - U) and W U f+(5) are proper subcontinua of S
whose union is S, a contradiction to the indecomposability
of S. Consequently, for each proper subcontinuum W of §,
£(W) # 2.

Therefore, for any D € ((S), f£(D) is contained in a
single composant of Z. (Since f commutes with unions, the
same argument works as for f* above.) If for two composants

c, and C, of 2z, H(C;) = H(C,), then £°(c

1 2 1

so Cl U C2 < f(H(Cl)) < C3 for some single composant C3 of

Z. This is possible only if Cp =¢C, = C3; therefore, H is

U C2) c H(Cl) and

injective and hence bijective.

Definition. A wave (Y,X) from a to b has a cofinal
sequence of cutpoints provided that there is a sequence
{ by

bn n=0

n>1, bn separates bn-l from b,

converging to b such that b0 = a and for each

Remark. This is a fairly strong property. It is easy
to string together a sequence of indecomposable continua with
more than three composants to form a wave in which no con-

nected, nowhere dense set separates.

Lemma 4. Let (Y,X) be a wave from a to b. Then
there is a descending sequence of continua (Wi):=0 such

that W0 =Y # Wl; for each i > 1, Wi < Int(W and

i-1)3

® = {b}. The Wi's, i > 1, can be chosen to have one-

i=0"i

point boundaries if and only ©f (Y,X) has a cofinal sequence

n

of cutpoints.
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Proof. First countability and connectedness im Kleinen
at b enable one to do a simple recursive construction of

the Wi's. Irreducibility is used for the last sentence.

Convention. If (Y,X) is a wave from a to b and ]} is
an upper-semicontinuous decomposition of Y with {b} a
degenerate element of D, then % will be used to denote the
image of X under the quotient map Y - %. D - {b} is an

upper-semicontinuous decomposition of X in this case.

Lemma 5. Let (Y,X) be a wave from a to b., Then there
18 a monotone decomposition [ of Y such that every nonde-
generate member of |) is a subset of X, the nondegenerate

members of D form a neighborhood finite family in X, and

(%,%) is a wave from [a] to [b] with a cofinal sequence of
cutpoints.
Proof. Define Dn = Wn - wn+l’ and let ]) be the decom-

position with nondegenerate elements {Dnln odd}. By
irreducibility, each Dn is connected and becomes a cutpoint

of the quotient b4 as required. Both {a} and {b} are

D'

degenerate elements of [), making the necessary verifications

easy.

Lemma 6. Let (¥,X) be a wave from a to b and let |) be
an upper semicontinuous monotone decomposition of (Y,X) with
the nondegenerate elements forming a netighborhood fintte
collection tn X. Then X*has the same number of composants

as (%)*.
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Proof. 1If q: X - X is the gquotient map, then

X .
Ba(x*) = ()* and (Bq)*u%)*) = X*, and thus (gq)|X* is
monotone by Lemma 1. By Lemma 3, (gq)|X* induces a bijec-
tion between the set of composants of X* and that of (§)*,

completing the argument.

Definition. A wave (Y,X) from a to b has a cofinal

sequence of closed intervals if there is a descending

sequence of continua, (Wi g=0 with W0 =Y # Wl; for each

. oo .
i>1, Wi < Int(Wi_l), ni=0Wi = {b}; and for each odd i,

Wi - Wi+l is homeomorphic to I.

Lemma 7. Let (Y,X) be a wave from a to b, with a
eofinal sequence of cutpoints. Then there is a bijeetion

between ((x*) and ((A*).

Proof. Suppose {Wi}?=0 is a descending sequence of

continua in Y such that W, = ¥, and for i > 1, Wi has

0
o« Y —
boundary {bi}, and ”i=0wi = {b}. Define Li € Y by Li =
wi-l - Wi' Now, define X ¢ Y x I by
> o 1 © 1 1
X = (Ui=l(Li X {T})) U (Ui=l({bi} x [I:T'I]))'

The only limit point of X which does not belong to X is

(b,0). Thus, if ¥ = X U {(b,0)}, it is easy to see that

(Y,X) is a wave from (a,l) to (b,0) with a cofinal sequence

1 1, &
T -1

of them to a point is accomplished by restricting the pro-

of closed intervals, ({bi} x Shrinking each

jection Y x I -~ ¥ to Y, so that the quotient of (¥,X) so
obtained is (Y,X).

Thus ((X*) and ((X*) are equipollent.
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Continuing, the projection Y x I - I restricted to Y
is also monotone and has the effect of shrinking each

A A
Li X {%} to a point. Thus, (Y,X) also admits a monotone

quotient map onto (I,A), so that ((A*) and ((X*) are also

equipollent. Thus, the set of composants of X* and that

of A* are also equipollent, by transitivity.

Proof of Theorem 3., This is now immediate from

Lemmas 5, 6, and 7.
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