

http://topology.auburn.edu/tp/

LOTS WITH S_{δ} -DIAGONALS

by

H. R. BENNETT

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

LOTS WITH S $_{\delta}$ -DIAGONALS

H. R. Bennett

In $[L_1]$ it was shown that a LOTS (=linearly ordered topological space) with a G_{δ} -diagonal is metrizable. In this note the effect of a generalization of a G_{δ} -diagonal in a LOTS is studied.

A subset A of a topological space X is an S_{δ}^{-} set if there is a countable collection l' of open sets that if $x \in A$ and $y \notin A$ then there exists $U \in l'$ such that $x \in U$ and $y \notin U$. If each $u \in l'$ contains A then A is a G_{δ}^{-} set. Clearly a G_{δ}^{-} set is an S_{δ}^{-} set but the set of rational numbers in the real line is an S_{δ}^{-} set which is not a G_{δ}^{-} set. S_{δ}^{-} sets are studied in $[BB_1]$ and $[BB_2]$.

Let ω denote the first infinite ordinal. An open cover 0 of X is a countable open point-separating cover if $|0| \leq \omega$ and if x and y are distinct points of X then there exists $0 \in 0$ such that $x \in 0$ and $y \notin 0$. Obviously each subset of a space with a countable open point-separating cover is an S_{δ} -set. Notice also that if a space has a weaker second-countable topology, then it has a countable open point separating cover.

A base β for a topological space X is a σ -disjoint base if $\beta = \bigcup \{\beta_n : n \in \omega\}$ such that for each $n \in \omega$ if $B_1, B_2 \in \beta_n, B_1 \neq B_2$, then $B_1 \cap B_2 = \beta$. A σ -disjoint base B has property * if, given $x \in X$, and $y, z \in X$ such that $y \neq z$, then there exists $n \in \omega$ such that $x \in \bigcup \beta_n$ and no two distinct elements of $\{x, y, z\}$ are in the same member of β_n . Notice that y or z could be x and $\bigcup \beta_n$ need not contain y or z if x \neq y or x \neq z.

If X is a LOTS with order \leq , then let $\langle a, b \rangle$ denote the ordered pair with its first component a and second component b. A space X has an S_{δ} -diagonal (G_{δ} -diagonal) if $\Delta = \{\langle x, x \rangle: x \in X\}$ is an S_{δ} -subset (G_{δ} -subset) of X × X. Let $(a,b) = \{x \in X: a < x < b\}$ and $[a,b] = \{x \in X:$ $a \leq x < b\}$ with (a,b] and [a,b] defined in a similar fashion. A subset A of X is an order-convex component if whenever $a,b \in A, a < b$, then $[a,b] \subset A$ and A is not a subset of another set with this property.

Theorem 1.1. A LOTS X has an S_{δ} -diagonal if and only if X has a g-disjoint base with property *.

Proof. Let $\{U_1, U_2, \dots\}$ be a countable collection of open subsets of $X \times X$ that witnesses that $\Delta = \{\langle x, x \rangle: x \in X\}$ is a S_{δ} set in $X \times X$. No generality is lost if it is assumed that $\{U_1, U_2, \dots\}$ is closed under finite intersections. For each $n \in \omega \setminus \{0\}$ let \mathcal{G}_n be the set of orderconvex components of $\{x \in X: \langle x, x \rangle \in U_n\}$. If $\mathcal{G}_0 = \{\{x\}: x \in X, \{x\} \text{ open in } X\}$ then $\mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \dots$ is a σ -disjoint collection for X. To see that $\mathcal{G}_0, \mathcal{G}_1, \dots$ is a base for X, let $x \in X$ and $a, b \in X$ such that $a \leq x < b$. If $\{x\}$ is open in X then $\{x\} \subset [a, b)$. If $\{x\}$ is not open in X and a = x, then, since x is a LOTS, there exists $x^- < x$ such that $(x^-, x) \neq \emptyset$, then $[a, b) = (x^-, b)$. Choose U_n such that $(x, x) \in U_n, \langle x^-, x \rangle \notin U_n$, and $\langle x, b \rangle \notin U_n$. Then neither x^- nor b are in the same order component of \mathcal{G}_n that contains x.

 σ -disjoint base for X. To see that $\mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \cdots$ has property *, let x \in X and let y,z be distinct elements of X. If {x} is open in X then \mathcal{G}_0 witnesses property *. Otherwise choose n $\in \omega$ such that $\langle x, x \rangle \in U_n$, $\langle x, z \rangle \notin U_n$, $\langle x, y \rangle \notin U_n$ and $\langle y, z \rangle \notin U_n$ (with appropriate accommodations being made if either x = y or x = z). Then x $\in \cup \mathcal{G}_n$ but no member of \mathcal{G}_n contains two distinct members of {x,y,z}.

If $\beta = \bigcup \{\beta_n : n \in \omega\}$ is a σ -disjoint base for X and β has property *, let $\mathcal{U}_n = \bigcup \{B \times B : B \in \beta_n\}$. If $\langle x, x \rangle \in \Delta$ and $\langle y, z \rangle \notin \Delta$ choose $n \in \omega$ such that $x \in \bigcup \beta_n$ and no two distinct points of $\{x, y, z\}$ are in the same element of β_n . Then $\langle x, x \rangle \in \mathcal{U}_n$ and $\langle y, z \rangle \notin \mathcal{U}_n$ since if $\langle y, z \rangle \in \mathcal{U}_n$ then there exists $B \in \beta_n$ such that $y, z \in B$.

This theorem theorem would be nicer if the answer to the following question was known.

Question 1.1. Does every LOTS with a σ -disjoint base have a σ -disjoint base with property (*)?

In order to give a partial answer, the following folklore observation is needed.

If Z is any set of size $\leq 2^{\omega}$, then there exists a countable collection of $Z = \{Z_n : n \in \omega\}$ of subsets of Z such that whenever $z_1, z_2 \in Z$, $z_1 \neq z_2$, then there exists $n \in \omega$ with $z_1 \in Z_n$ and $z_2 \notin Z_n$. If Z is closed under finite intersections then if z, z_1, \dots, z_k are distinct elements of Z then there exists n such that $z \in Z_n$ and $\{z_1, \dots, z_k\} \cap Z_n = \emptyset$.

This observation follows by pretending that Z is a subset of the real line and letting Z be the set of intersections of Z with members of a countable base for the real line.

Theorem 1.2. If X is a LOTS with $c(X) \leq 2^{\omega}$, then X has a σ -disjoint base if and only if X has a σ -disjoint base with property (*).

Proof. Let $\beta = \bigcup\{\beta_n : n \in \omega\}$ be a σ -disjoint base for X. Since $C(X) \leq 2^{\omega}$, for each $n \in \omega$ if $\beta_n = \{B(n, \alpha) :$ $\alpha \in A_n\}$, then $|A_n| \leq 2^{\omega}$. Let A(n, i), $i \in \omega$, be a collection of subsets of A_n satisfying the observation above. If $\beta(n, i) = \{B(n, \alpha) \in \beta_n : \alpha \in A(n, i)\}$, then $\{\beta(n, i) : n \in \omega, i \in \omega\}$ is a σ -disjoint base satisfying (*).

Theorem 1.3. A perfect LOTS with an ${\rm S}_{\delta}\mbox{-diagonal}$ is metrizable.

Proof. A perfect space with a σ -disjoint base in a Moore space and LOTS that are Moore spaces are metrizable.

Theorem 1.4. If a LOTS X has a countable open pointseparating cover then X has an S_g -diagonal.

Proof. Let $0 = \{0_1, 0_2, \dots\}$ be a countable open pointseparating cover for X that is closed under finite intersections. For each $n \in \omega$ let $U_n = \{\langle x, y \rangle: x, y \in 0_n\}$. Let $\langle x, x \rangle \in \Delta$ and $\langle y, z \rangle \notin \Delta$. Choose $n \in \omega$ such that $x \in 0_n$, $y \notin 0_n$ than $\langle x, x \rangle \in U_n$ and $\langle y, z \rangle \notin U_n$. Thus $\{U_0, U_1, \dots\}$ witnesses that X has an S_{δ} -diagonal. Example 1.1. There is a LOTS Z with an S_{δ} -diagonal that does not have an open countable point-separating cover.

Let I denote the set of integers and $k = (2^{\omega})^+$. Let $Z = k \times I$ ordered lexicographically. Since Z is metrizable it has a G_{δ} -diagonal. Suppose Z has an open countable point-separating cover $l' = \{U_1, U_2, \cdots\}$. For each $\alpha < k$ let $l'_{\alpha} = \{U_1 \cap (\{\alpha\} \times I), U_2 \cap (\{\alpha\} \times I), \cdots\}$. Since $k = (2^{\omega})^+$ and since I has a countable base there exists ordinals α and β , $\alpha \neq \beta$ such that $l'_{\alpha} = l'_{\beta}$. Then for each $m \in I$, $\langle \alpha, m \rangle \in U_k$ if and only if $\langle \beta, m \rangle \in U_k$. This l' is not pointseparating.

Of course the situation changes drastically if it only required that X be a GO-space (=subspace of a LOTS [L₂]). The Sorgenfrey Line [S] is a GO-space with a G_{δ} -diagonal (hence, S_{δ} -diagonal) that does not have a σ -disjoint base.

References

- [BB₁] Z. Balogh and H. Bennett, Conditions which imply metrizability in manifolds, Houston J. Math. (to appear).
- [BB₂] _____, On two classes of sets containing all Baire sets and co-analytic sets (to appear).
- [L₁] D. J. Lutzer, A metrizable theorem for linearly ordered spaces, Proc. Amer. Math. Soc. 22 (1969), 557-558.
- [L2] _____, On generalized ordered spaces, Dissert. Math. 89 (1971), 1-36.
- [S] R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631-632.

Bennett

Texas Tech University

Lubbock, Texas 79409