TOPOLOGY PROCEEDINGS

Volume 12, 1987
Pages 211-216
http://topology.auburn.edu/tp/

LOTS WITH S_{δ}-DIAGONALS

by
H. R. Bennett

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

LOTS WITH $\mathbf{S}_{\boldsymbol{\delta}}$-DIAGONALS

H. R. Bennett

In $\left[L_{1}\right]$ it was shown that a LOTS (=linearly ordered topological space) with a G_{δ}-diagonal is metrizable. In this note the effect of a generalization of a G_{δ}-diagonal in a LOTS is studied.

A subset A of a topological space X is an $S_{\delta}-s e t$ if there is a countable collection U of open sets that if $x \in A$ and $Y \notin A$ then there exists $U \in U$ such that $x \in U$ and $Y \notin U . \quad$ If each $u \in U$ contains A then A is a G_{δ}-set. Clearly a $G_{\delta}-s e t$ is an S_{δ}-set but the set of rational numbers in the real line is an $S_{\delta}-$ set which is not a G_{δ}-set. $S_{\delta}-$ sets are studied in $\left[\mathrm{BB}_{1}\right]$ and $\left[\mathrm{BB}_{2}\right]$.

Let w denote the first infinite ordinal. An open cover 0 of X is a countable open point-separating cover if $|0| \leq \omega$ and if x and y are distinct points of X then there exists $O \in O$ such that $x \in O$ and $y \notin O$. Obviously each subset of a space with a countable open point-separating cover is an $S_{\delta}-$ set. Notice also that if a space has a weaker second-countable topology, then it has a countable open point separating cover.

A base B for a topological space X is a σ-disjoint base if $B=U\left\{B_{n}: n \in \omega\right\}$ such that for each $n \in \omega$ if $B_{1}, B_{2} \in B_{n}, B_{1} \neq B_{2}$, then $B_{1} \cap B_{2}=\varnothing$. A o-disjoint base B has property * if, given $x \in X$, and $Y, z \in X$ such that $y \neq z$, then there exists $n \in \omega$ such that $x \in U \mathcal{B}_{n}$ and no two distinct elements of $\{x, y, z\}$ are in the same member of
B_{n}. Notice that y or z could be x and $U B_{n}$ need not contain y or z if $x \neq y$ or $x \neq z$.

If X is a LOTS with order \leq, then let $\langle a, b\rangle$ denote the ordered pair with its first component a and second component b. A space X has an $S_{\delta}-$ diagonal (G_{δ}-diagonal) if $\Delta=\{\langle x, x\rangle: x \in X\}$ is an S_{δ}-subset $\left(G_{\delta}-\right.$ subset $)$ of $X \times X$. Let $(a, b)=\{x \in X: a<x<b\}$ and $[a, b)=\{x \in X$: $a \leq x<b\}$ with $(a, b]$ and $[a, b]$ defined in a similar fashion. A subset A of X is an order-convex component if whenever $a, b \in A, a<b$, then $[a, b] \subset A$ and A is not a subset of another set with this property.

Theorem l.l. A LOTS X has an S_{δ}-diagonal if and only if X has a o-disjoint base with property *.

Proof. Let $\left\{\mathrm{U}_{1}, \mathrm{U}_{2}, \cdots\right\}$ be a countable collection of open subsets of $X \times X$ that witnesses that, $\Delta=\{\langle x, x\rangle$: $\mathrm{x} \in \mathrm{X}\}$ is a_{δ} set in $\mathrm{X} \times \mathrm{X}$. No generality is lost if it is assumed that $\left\{U_{1}, U_{2}, \cdots\right\}$ is closed under finite intersections. For each $n \in \omega \backslash\{0\}$ let G_{n} be the set of orderconvex components of $\left\{x \in X:\{x, x\rangle \in U_{n}\right\}$. If $G_{0}=\{\{x\}:$ $x \in X,\{x\}$ open in $x\}$ then $G_{0}, \mathscr{G}_{1}, \mathscr{G}_{2}, \cdots$ is a σ-disjoint collection for x. To see that $G_{0}, \mathscr{G}_{1}, \ldots$ is a base for X, let $x \in X$ and $a, b \in X$ such that $a \leq x<b$. If $\{x\}$ is open in X then $\{x\} \subset\{a, b)$. If $\{x\}$ is not open in X and $a=x$, then, since x is a LOTS, there exists $x^{-}<x$ such that $\left(x^{-}, x\right)=\varnothing$, then $[a, b)=\left(x^{-}, b\right)$. Choose U_{n} such that $\langle x, x\rangle \in U_{n},\left\langle x^{-}, x\right\rangle \notin U_{n}$, and $\langle x, b\rangle \notin U_{n}$. Then neither x^{-} nor b are in the same order component of G_{n} that contains x. All other cases are similar. Hence $\mathscr{G}_{0}, \mathscr{G}_{1}, \mathscr{G}_{2}, \cdots$ is a
σ-disjoint base for X. To see that $G_{0}, \mathcal{G}_{1}, \mathcal{G}_{2}, \ldots$ has property *, let $x \in X$ and let Y, z be distinct elements of X. If $\{x\}$ is open in X then G_{0} witnesses property *. Otherwise choose $n \in \omega$ such that $\langle x, x\rangle \in U_{n},\langle x, z\rangle \notin U_{n}$, $\langle x, y\rangle \notin U_{n}$ and $\langle y, z\rangle \notin U_{n}$ (with appropriate accommodations being made if either $x=y$ or $x=z$). Then $x \in \cup G_{n}$ but no member of G_{n} contains two distinct members of $\{x, y, z\}$. If $B=U\left\{B_{n}: n \in \omega\right\}$ is a σ-disjoint base for X and B has property $*$, let $U_{n}=u\left\{B \times B: B \in B_{n}\right\}$. If $\langle x, x\rangle \in \Delta$ and $\langle y, z\rangle \notin \Delta$ choose $n \in \omega$ such that $x \in U B_{n}$ and no two distinct points of $\{x, y, z\}$ are in the same element of B_{n}. Then $\langle x, x\rangle \in U_{n}$ and $\langle y, z\rangle \notin U_{n}$ since if $\langle y, z\rangle \in U_{n}$ then there exists $B \in B_{n}$ such that $Y, z \in B$.

This theorem theorem would be nicer if the answer to the following question was known.

Question l.l. Does every LoTs with a o-disjoint base have a o-disjoint base with property (*)?

In order to give a partial answer, the following folklore observation is needed.

If Z is any set of size $\leq 2^{\omega}$, then there exists a countable collection of $Z=\left\{Z_{n}: n \in \omega\right\}$ of subsets of Z such that whenever $z_{1}, z_{2} \in z_{1} z_{1} \neq z_{2}$, then there exists $n \in \omega$ with $z_{1} \in Z_{n}$ and $z_{2} \notin Z_{n}$. If Z is closed under finite intersections then if z, z_{1}, \cdots, z_{k} are distinct elements of z then there exists n such that $z \in Z_{n}$ and $\left\{z_{1}, \ldots, z_{k}\right\} n$ $z_{n}=\varnothing$.

This observation follows by pretending that Z is a subset of the real line and letting 2 be the set of intersections of z with members of a countable base for the real line.

Theorem 1.2. If x is a LOTS with $\mathrm{c}(\mathrm{X}) \leq 2^{\omega}$, then x has a σ-disjoint base if and only if X has a σ-disjoint base with property (*).

Proof. Let $B=U\left\{B_{\mathrm{n}}: n \in \omega\right\}$ be a σ-disjoint base for x. Since $C(x) \leq 2^{\omega}$, for each $n \in \omega$ if $B_{n}=\{B(n, \alpha)$: $\left.\alpha \in A_{n}\right\}$, then $\left|A_{n}\right| \leq 2^{\omega}$. Let $A(n, i)$, $i \in \omega$, be a collection of subsets of A_{n} satisfying the observation above. If $B(n, i)=\left\{B(n, \alpha) \in B_{n}: \alpha \in A(n, i)\right\}$, then $\{B(n, i): n \in \omega$, $i \epsilon \omega\}$ is a σ-disjoint base satisfying (*).

Theorem 1.3. A perfect LOTS with an S_{δ}-diagonal is metrizable.

Proof. A perfect space with a σ-disjoint base in a Moore space and LOTS that are Moore spaces are metrizable.

Theorem 1.4. If a LOTS X has a countable open pointseparating cover then X has an S_{δ}-diagonal.

Proof. Let $0=\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \cdots\right\}$ be a countable open pointseparating cover for X that is closed under finite intersections. For each $n \in \omega$ let $U_{n}=\left\{\langle x, y\rangle: x, y \in O_{n}\right\}$. Let $\langle x, x\rangle \in \Delta$ and $\langle y, z\rangle \notin \Delta$. Choose $n \in \omega$ such that $x \in O_{n^{\prime}}$ $y \notin O_{n}$ than $\langle x, x\rangle \in U_{n}$ and $\langle y, z\rangle \notin U_{n}$. Thus $\left\{U_{0}, U_{1}, \cdots\right\}$ witnesses that X has an S_{δ}-diagonal.

Example l.l. There is a LOTS Z with an S_{δ}-diagonal that does not have an open countable point-separating cover.

Let I denote the set of integers and $k=\left(2^{\omega}\right)^{+}$. Let $Z=k \times$ I ordered lexicographically. Since Z is metrizable it has a G_{j}-diagonal. Suppose Z has an open countable point-separating cover $U=\left\{\mathrm{U}_{1}, \mathrm{U}_{2}, \cdots\right\}$. For each $\alpha<k$ let $U_{\alpha}=\left\{U_{1} \cap(\{\alpha\} \times I), U_{2} \cap(\{\alpha\} \times I), \cdots\right\}$. Since $k=\left(2^{\omega}\right)^{+}$ and since I has a countable base there exists ordinals α and $\beta, \alpha \neq \beta$ such that $U_{\alpha}=U_{\beta}$. Then for each $n \in I$, $\langle\alpha, m\rangle \in U_{k}$ if and only if $\langle\beta, m\rangle \in U_{k}$. This U is not pointseparating.

Of course the situation changes drastically if it only required that X be a GO-space (=subspace of a LOTS [L_{2}]). The Sorgenfrey Line [S] is a GO-space with a G_{δ}-diagonal (hence, S_{δ}-diagonal) that does not have a σ-disjoint base.

References

$\left[\mathrm{BB}_{1}\right]$ Z. Balogh and H. Bennett, Conditions which imply metrizability in manifolds, Houston J. Math. (to appear).
$\left[\mathrm{BB}_{2}\right.$] \qquad , On two classes of sets containing all Baire sets and co-analytic sets (to appear).
[L $\left.L_{1}\right]$ D. J. Lutzer, A metrizable theorem for linearly ordered spaces, Proc. Amer. Math. Soc. 22 (1969), 557-558.
$\left[L_{2}\right]$ ___ On generalized ordered spaces, Dissert. Math. 89 (1971), 1-36.
[S] R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc. 53 (1947), 631-632.

Texas Tech University
Lubbock, Texas 79409

