TOPOLOGY PROCEEDINGS

Volume 12, 1987 Pages 239–256

http://topology.auburn.edu/tp/

HOMEOMORPHISMS OF COMPOSANTS IN KNASTER CONTINUA

by

W. Debski and E. D. Tymchatyn

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOON	0140 4104

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

HOMEOMORPHISMS OF COMPOSANTS IN KNASTER CONTINUA

W. Debski and E. D. Tymchatyn¹

1. Introduction

H. Cook classified the solenoids in [2]. He showed that there exists a family S if solenoids such that S has cardinaltiy c and no two distinct members of S are homeomorphic. Recently Debski [4] (see also Watkins [9]) gave a similar classification of the simplest Knaster indecomposable continua. However, realtively little is known about individual composants of Knaster continua and of solenoids.

Two composants M and L of an indecomposable continuum K are said to be in the *same position* if there exists a homeomorphism g: $K \rightarrow K$ such that g(M) = L. It is obvious for example that every pair of composants of a homogeneous indecomposable continuum are in the same position. Hence, every pair of composants of the pseudo arc are in the same position.

Bellamy [1] described a homeomorphism h: $K_2 \rightarrow K_2$ of Knaster's dyadic indecomposable continuum which fixes exactly two composants of K_2 . Debski [5] showed that two composants L and M of K_2 are in the same position if and only if there exists an integer n such that $h^n(L) = M$. He obtained analogous results for the other simplest Knaster indecomposable continua. In particular, for each Knaster

¹The authors were supported in part by NSERC Grant No. A5616.

indecomposable continuum K and each composant L of K there exist at most countably many composants of K with the same position as L.

It is our purpose in this paper to make a preliminary investigation of composants of solenoids and Knaster continua and to compile a short list of problems.

2. Preliminaries

All spaces considered in this paper are separable and metric. A *continuum* is a compact, connected, metric space. A *continuum* is *indecomposable* if it is not the union of two proper subcontinua. If $p \in X$ and X is a continuum then the *composant* of p in X is the union of all proper subcontinua of X which contain p. If X is an indecomposable metric continuum the composants of X are pairwise disjoint and dense in X and X has c composants [8].

Let R be the topological group of real numbers with addition. Let Z be the subgroup of integers in R. Let π : R + R/Z be the natural homomorphism of R onto the quotient group R/Z. Then R/Z is topologically isomorphic to the unit circle in the complex plane.

Let $\underline{n} = \{n_i\}_{i=1}^{\infty}$ be a sequence of integers greater than 1. For each i let $R_i = R$, $Z_i = Z$, $R/Z_i = R/Z$, $\pi = \pi_i$: $R_i \neq R/Z_i$ and let $n_i: R_{i+1} \neq R_i$ be the homeomorphism given by $n_i(x) = n_i x$. We have the cummutative diagram

Let $L_{\underline{n}} = \lim_{\leftarrow} (R_{\underline{i}}, n_{\underline{i}})$ and $S_{\underline{n}} = \lim_{\leftarrow} (R/Z_{\underline{i}}, n_{\underline{i}})$ be the inverse limits [6]. Let $\phi_i: L_n \rightarrow R_i$ and $\Psi_i: S_n \rightarrow R/Z_i$ be the natural projections of the inverse limit space to the coordinate space. Since each $n_i: R/Z_i \rightarrow R/Z_i$ is a topological group homomorphism of the compact abelian group R/Z_i we have S_n is a compact abelian topological group called a solenoid. Since each $n_i: R_{i+1} \rightarrow R_i$ is a topological group isomorphism ${\bf L}_{{\bf n}}$ is a topological group isomorphic to R. Let $\pi_{\infty} = \lim_{\leftarrow} \pi_i : L_n \rightarrow S_n$ be the induced map. Then C_0 , the composant of the identity element 0 in ${\bf S}_{\bf n}$ is the one to one continuous image of ${\bf L}_{\bf n}$ under ${\boldsymbol \pi}_{\infty}.$ For each i let

 $Z! = \pi_{...} \circ \phi_{...}^{-1}(Z_{...})$

 $C_0 \subset S_n$ that is Note tha group isomorphic to Z.

To describe the topology of the topological group \boldsymbol{S}_{n} it suffices to describe a neighbourhood basis at the identity element 0 of S_n.

Note that $\Psi_{i}^{-1}(0)$ is a Cantor set (i.e. a zero-dimensional, compact set without isolated points) and $\Psi_i^{-1}(0) \cap C_0 = Z_i'$. Also, Z_i' is a countable dense set in

 $\Psi_{i}^{-1}(0)$. Hence, $Z_{i}^{!}$ is homeomorphic to the set of rational numbers.

Since $S_{\underline{n}}$ is an inverse limit of the simple closed curves $R/Z_{\underline{i}}$ a basic neighbourhood of 0 in $S_{\underline{n}}$ is of the form $\Psi_{\underline{i}}^{-1}(U_{\underline{i}})$ where $U_{\underline{i}}$ is an open interval which is a basic neighbourhood of $\Psi_{\underline{i}}(0)$ in the simple closed curve $R/Z_{\underline{i}}$. Let $V_{\underline{i}}$ be the open interval in $R_{\underline{i}}$ about 0 which projects by $\pi_{\underline{i}}$ one to one onto $U_{\underline{i}}$. Then $\Psi_{\underline{i}}^{-1}(U_{\underline{i}})$ is the algebraic sum of the interval $\pi_{\infty} \circ \phi_{\underline{i}}^{-1}(V_{\underline{i}})$ (without endpoints and containing 0) in C_0 and the Cantor set $\Psi_{\underline{i}}^{-1}(0)$. Hence, $\Psi_{\underline{i}}^{-1}(U_{\underline{i}}) \cap C_0$ is a basic neighbourhood of 0 in C_0 and is the algebraic sum of the interval $\pi_{\infty} \circ \phi_{\underline{i}}^{-1}(V_{\underline{i}})$ with $Z_{\underline{i}}^{\underline{i}} = \Psi_{\underline{i}}^{-1}(0) \cap C_0$.

To describe the topology of the topological group Z_{i}^{i} it suffices to describe a neighbourhood basis at the identity element 0. A basic neighbourhood of 0 in Z_{i}^{i} is

 $\begin{aligned} \Psi_{i+j}^{-1} (U_{i+j}) &\cap Z_{i}' = (\pi_{\infty} \circ \phi_{i+j}^{-1} (V_{i+j}) + Z_{i+j}') \cap Z_{i}' \\ &= Z_{i+j}' = n_{i} \cdot n_{i+1} \cdot \cdots n_{i+j-1} Z_{i}' \end{aligned}$

for all sufficiently small basic open neighbourhoods U_{i+j} of $\Psi_{i+j}(0)$ in $\mathbb{R}/\mathbb{Z}_{i+j}$ and V_{i+j} the component of 0 in $\pi_{i+j}^{-1}(U_{i+j})$. Now, Z_i^{i} is a topological group which is group isomorphic to the group Z by $\xi_i: Z \rightarrow Z_i^{i}$. If we give Z the topology with basic neighbourhoods of the identity having the form $n_i \cdot n_{i+1} \cdot \cdots n_{i+j}^{Z}$ then ξ_i becomes a topological group isomorphism.

3. Homeomorphisms of Composants and Maps of Integers

Let $\underline{n} = \{n_i\}_{i=1}^{\infty}$ and $\underline{m} = \{m_i\}_{i=1}^{\infty}$ be two sequences of integers greater than 1. Let C_0 be the composant of the

identity 0 in S_n and let $\tilde{C_0}$ be the composant of the identity 0 in S_{m} . Let $Z_{i}^{=} = C_{0} \cap \Psi_{i}^{-1}(0)$ and $\tilde{Z}_{i} = \tilde{C}_{0} \cap \Psi_{i}^{-1}(0)$.

We will establish a correspondence between the set of homeomorphisms of C_0 onto $\tilde{C_0}$ and the set of all one to one, order preserving, open continuous mappings of some Z' to Z! (i and j are not fixed).

Let h: $C_0 \rightarrow C_0$ be a homeomorphism. Since \tilde{C}_0 is homogeneous we may suppose h carries the identity 0 of C_0 onto the identity of C_0 . Since the mapping $x \rightarrow -x$ is a homeomorphism of C_0 we may suppose h preserves order. We show that h can be used to define a one to one, order preserving, open, continuous function f: $Z_{j}^{i} \neq Z_{j}^{i}$ for some i and j.

Let $V_0 + Z_1'$ be a small basic open neighbourhood of the identity in C_0 . Since h is open there is a basic open neighbourhood $U + Z_{1}^{2}$ of the identity in C_{0}^{2} such that $\mathbf{U} + \mathbf{Z}'_{\mathbf{i}} \subset h(\mathbf{V}_{0} + \mathbf{Z}'_{\mathbf{i}})$. Since h is continuous there exists a neighbourhood $V_1 + Z'_1 \subset V_0 + Z'_1$ of the identity in C_0 such that $h(V_1 + Z'_1) \subset U + Z'_1$. Then

$$z_j = v_1 + z_j \stackrel{h}{=} v + z_i \stackrel{\tilde{}}{=} z_i$$

where p is the second coordinate projection. Then p is open. Now, $h' = p \circ h | Z'_j$ maps Z'_j to Z'_j . Since $p \circ h$: $V_1 + Z'_1 \rightarrow Z'_1$ is open and p \circ h factors through h' it follows that h' is open. Since p and h are order preserving h' is order preserving. Finally, since

 $h \circ h^{-1} | U + \tilde{z}_i : U + \tilde{z}_i \neq U + \tilde{z}_i$

is the identity and distinct components of $V_1 + Z_2^{\dagger}$ lie in distinct components of $V_0 + Z_j^{\dagger}$ it follows that h' is one to one. Hence, h defines a one to one, order preserving, continuous, open mapping h': $Z'_{i} \rightarrow Z'_{i}$.

ĩ

We shall need the following proposition:

Proposition 3.1. If $f: Z_j^{i} \rightarrow \widetilde{Z_i^{i}}$ is a one to one, order preserving continuous, open function then there exists an integer k such that $f(a + 1) - f(a) \leq k$ for all $a \in Z_j^{i}$.

Proof. Since f is open there exists an integer q such that $\tilde{Z}'_{i+q} \subset f(Z'_{j})$. Now,

 $\tilde{Z}'_{i+q} = m_i \cdot m_2 \cdot \cdots m_{i+q-1} \tilde{Z}'_{1}.$ Let $k = m_1 \cdot m_2 \cdot \cdots m_{i+q-1}$. Then for $a \in Z'_{j} f(a + 1) - f(a) \leq k$ since f is order preserving.

Now, suppose f: $Z_j \rightarrow Z_i$ is a one to one, order preserving, continuous, open function. Since \widetilde{Z}_i is homogeneous we may suppose f(0) = 0. We denote by 1 a generator of Z_j . Let g: $C_0 \rightarrow \widetilde{C}_0$ be the linear extension of f, i.e. g(x) = f(k) + (f(k + 1) - f(k))(x - k) if $k \le x \le k + 1$ for $k \in Z_j$. Clearly, g is one to one, preserves order and carries C_0 onto \widetilde{C}_0 . We must prove g is continuous and open.

Define r: $Z_j \rightarrow \widetilde{Z_i}$ by r(a) = f(a + 1) - f(a). By Proposition 3.1 $r(Z_j)$ is a finite discrete set. Since r is continuous r is a locally constant function. Also, g(x) = f(k) + r(k)(x - k) where $k \le x \le k + 1$, $k \in Z_j^{!}$.

Let $x \in C_0 \setminus Z_j^{\prime}$. Then k < x < k + 1 for some $k \in Z_j^{\prime}$. Let U be a basic open neighbourhood of g(x) in C_0^{\prime} . Then $U = (-\varepsilon, \varepsilon) + g(x) + \widetilde{Z}_{i+q_1}^{\prime}$ for some $\varepsilon > 0$ and some positive integer q_1 . Since f is continuous and f(0) = 0 there exists a positive integer q_2 such that the neighbourhood $k + Z_{j+q_2}^{\prime}$ of k in Z_j^{\prime} maps into the neighbourhood $f(k) + z_{i+q_1}$ of f(k) in \tilde{C}_0 . We may also suppose r is constant on $k + z_{j+q_2}^{\prime}$. Then $V = (-\frac{\varepsilon}{r(k)}, \frac{\varepsilon}{r(k)}) + x + z_{j+q_2}^{\prime}$ is a neighbourhood of x in C_0 . We have

$$g(V) = f(k + Z'_{j+q_2}) + [(-\frac{\varepsilon}{r(k)} + x - k, \frac{\varepsilon}{r(k)} + x - k)]r(k)$$

$$\subset f(k) + Z'_{i+q_1} + (-\varepsilon, \varepsilon) + (x - k)r(k)$$

$$= (-\varepsilon, \varepsilon) + g(x) + Z'_{i+q_1}$$

and g(V) is open.

If $x \in Z_{j}^{\prime}$ let $U = (-\varepsilon, \varepsilon) + f(x) + \widetilde{Z}_{i+q_{1}}^{\prime}$, $U_{-} = (-\varepsilon, 0] + \widetilde{f}(x) + \widetilde{Z}_{i+q_{1}}^{\prime}$ and $U_{+} = [0, \varepsilon) + f(x) + \widetilde{Z}_{i+q_{1}}^{\prime}$. One can then carry through the above argument for each of U_{-} and U_{+} to get an open neighbourhood V of x such that g(V) is open and contained in U.

This completes the proof that g is both open and continuous. So g is the required homeomorphism of Z'_j into $\tilde{Z'_j}$.

Theorem 3.2. If h, g: $C_0 \neq C_0$ are homeomorphisms and h - g is bounded then h is homotopic to g.

Proof. Suppose $-a \le h(x) - g(x) \le a$ for all $x \in C_0$. Let H: $C_0 \times I \rightarrow C_0$ be the linear homotopy

$$H(x,t) = H_t(x) = (1 - t)h(x) + tg(x) = h(x) + t(q - h)(x).$$

To prove H is an homotopy from h to g it clearly suffices to show that the function H_{+} is a continuous function for each t \in I.

Since g - h is bounded and t \in I t(g - h) is bounded. Since the topology on each bounded interval of \tilde{C}_0 is the usual topology it follows that t(g - h) is continuous since g - h is continuous. It follows that H_t is continuous since it is the sum of two continuous functions.

If x < y in C₀ then h(x) < h(y) and g(x) < g(y) in $\tilde{C_0}$ since h and g are one to one and order preserving. Hence,

$$H_t(x) = (1 - t)h(x) + tg(x) < (1 - t)h(y)$$

+ tg(y) = $H_t(y)$.

We have proved that H_t is one to one and order preserving. The theorem is proved.

Proposition 3.3. If h, g: $C_0 \rightarrow \tilde{C}_0$ are homeomorphisms and H: $C_0 \times I \rightarrow \tilde{C}_0$ is a homotopy from h to g then h - g is bounded.

Proof. The set $H(\{0\} \times I)$ is an arc of some length a. Let V be a neighbourhood of $H(\{0\} \times I)$ in \tilde{C}_0 whose components have length less than 2a. Since $\{0\}$ is compact there exists a neighbourhood U of 0 in C_0 such that $H(U \times I) \subset V$. Hence, for $x \in U h(x)$ and g(x) lie in an arc in V. So (h - g)|U is bounded. Let i be an integer with $Z_i \subset U$. Then $(h - g)|Z_i$ is bounded.

Since h is a homeomorphism $\{h(i + 1) - h(i) | i \in Z_i^!\}$ is bounded by Proposition 3.1. Let 1 be a generator of $Z_i^!$. If $z \in C_0$ then $j \leq x \leq j + 1$ for some $j \in Z_i^!$. So $h(j) \leq h(x) < h(j + 1)$ and $g(j) \leq g(x) \leq g(j + 1)$. Thus, h - g is bounded.

Corollary 3.4. If h, g: $C_0 \rightarrow C_0$ are homeomorphisms and h is homotopic to g then h^{-1} is homotopic to g^{-1} . Proof. We may suppose h is order preserving. By Proposition 3.1 there exists an integer k such that $h^{-1}(j + 1) - h^{-1}(j) \leq k$ for $j \in Z_1'$. Let $a \in Z_1'$ such that $-a \leq h(x) - g(x) \leq a$ for $x \in C_0$ by Proposition 3.3. For $y \in \tilde{C}_0$ $h^{-1}(h(g^{-1}(a))) - h^{-1}(g(g^{-1}(a))) = g^{-1}(a) - h^{-1}(a)$. So $-ak \leq g^{-1}(a) - h^{-1}(a) \leq ak$.

Theorem 3.5. If h, g: $C_0 \rightarrow C_0$ are homeomorphisms such that h - g is bounded then h is isotopic to g.

Proof. By 3.3 and 3.4 there exists a number a such that

$$-a < h(x) - g(x) < a$$
 for $x \in C_n$

and

$$-a \leq h^{-1}(y) - g^{-1}(y) \leq a \text{ for } y \in \tilde{C}_0.$$

Let H: $C_0 \times I \rightarrow C_0$ be the linear homotopy from h to g defined in 3.2. It was proved in 3.2 that each $H_t: C_0 \rightarrow \tilde{C}_0$ is continuous, one to one and order preserving. It remains to prove that H_t is open.

Let $x_0 \in C_0$.

Let W be a basic open neighbourhood of 0 in \tilde{C}_0 such that components of \tilde{C}_0 W have length greater than l0a. Let U be a basic open neighbourhood of 0 in C_0 such that components of C_0 U have length greater than l0a and since h and g are continuous $h(U + x_0) \subset W + h(x_0)$ and $g(U + x_0) \subset$ $W + g(x_0)$. Since h and g are open there exists $V \subset W$ a basic open neighbourhood of 0 in \tilde{C}_0 such that V + h(x₀) ⊂ h(U + x₀) and V + g(x₀) ⊂ g(U + x₀). We prove H₊(U + x₀) ⊃ V + H_t(x₀).

Define homeomorphisms

 $h': C_0 \neq \tilde{C}_0 \text{ and } g': C_0 \neq \tilde{C}_0$ by $h'(x) = h(x + x_0) - h(x_0) \in W$ and $g'(x) = g(x + x_0) - g(x_0) \in W$ for $x \in C_0$. Then -2a < h'(x) - g'(x) < 2a for $x \in C_0$. Hence, if $x \in U$ then h'(x) and g'(x) lie in the same component of W and $h(x + x_0)$ and $g(x + x_0)$ lie in the same component of $W + h(x_0)$. Let $y \in V$ then $y + h(x_0) = h(x + x_0)$ and $y + g(x_0) = g(x' + x_0)$ for some $x, x' \in U$. Hence, $x + x_0$ and $x' + x_0$ lie in the same component of U. Hence, $x + x_0$ and $x' + x_0$ lie in the same component of U. We may suppose x < x' and $h(x + x_0) < g(x' + x_0)$. Then, $h(x_0) < g(x_0)$. It follows that $g(x' + x_0) < g(x + x_0)$ and $h(x' + x_0) < h(x + x_0)$ since g and h are order preserving. Now,

$$H_{t}(x + x_{0}) = (1 - t)h(x + x_{0}) + t g(x + x_{0})$$

= (1 - t)(y + h(x_{0})) + t(g(x' + x_{0}) - t(g(x' + x_{0})))
- g(x + x_{0})))
= (1 - t)(y + h(x_{0})) + t(y + g(x_{0})) - t(g(x' + x_{0})))
- g(x + x_{0}))
= y + H_{t}(x_{0}) - t(g(x' + x_{0}) - g(x + x_{0})) < y
+ $H_{t}(x_{0})$.

Similarly, $H_{t}(x' + x_{0}) > y + H_{t}(x_{0})$.

Since x and x' are contained in an arc in U it follows that $H_t(x^{"}) = y + H_t(x_0)$ for some x" \in U. Hence, $V + H_t(x_0) \subset H_t(U + x_0)$ and the theorem is proved. Theorem 3.6. Let h: $C_0 + \tilde{C}_0$ be a homeomorphism, f: $Z'_j + \tilde{Z}'_i$ is a continuous, one to one, order preserving, open mapping induced by h and g: $C_0 + \tilde{C}_0$ is the homeomorphism of C_0 onto \tilde{C}_0 induced by f as in the paragraph following Proposition 3.1. Then h is isotopic to g.

Proof. We proved that $h | Z_j - f$ is bounded. Let 1 be a generator of Z_j . If $x \in C_0$ then k < x < k + 1 for some $k \in Z_j$. Now,

h(k) < h(x) < h(k + 1) and f(k) < g(k) < f(k + 1). Hence, h - g is bounded. The theorem now follows by Theorem 3.5.

A homeomorphism h: $C_0 \rightarrow \tilde{C}_0$ is said to be *regular* if there exists a linear homeomorphism g: $C_0 \rightarrow \tilde{C}_0$ such that h is homotopic to g.

Remark 3.7. If g, h: $C_0 \rightarrow C_0$ are homotopic linear homeomorphisms then f - g is constant.

Remark 3.8. If $g: C_0 \to \tilde{C}_0$ is a linear map then g is uniformly continuous and, hence, g extends to a linear map $\overline{g}: S_{\underline{n}} \to S_{\underline{m}}$. Similarly, g^{-1} extends to a linear map g^{-1} : $S_{\underline{m}} \to S_{\underline{n}}$. Then $g^{-1} \circ \overline{g}$ is the identity on C_0 . By continuity it is the identity on $S_{\underline{n}}$. So \overline{g} is one to one. Hence, since $S_{\underline{n}}$ is compact \overline{g} is a homeomorphism.

4. Lifting Homeomorphisms of Composants of K_n

Let $S_{\underline{n}}$ be a solenoid. Let $\mathcal{N}_{\underline{n}} = \mathcal{N}: S_{\underline{n}} \to K_{\underline{n}}$ be the quotient map onto the quotient space $K_{\underline{n}}$ where point inverses under $\mathcal{N}_{\underline{n}}$ are the pairs $\{x, -x\}$ for $x \in S_{\underline{n}}$. The decomposition of $S_{\underline{n}}$ into $\{\{x, -x\}: x \in S_{\underline{n}}\}$ is upper semi-continuous so $K_{\underline{n}}$

is a continuum. We call $K_{\underline{n}}$ a simplest Knaster indecomposable continuum. The map $N_{\underline{n}}$ folds the composant C_0 of 0 in $S_{\underline{n}}$ so $N_{\underline{n}}(C_0)$ is the one to one continuous image of $[0,\infty)$ and $N_{\underline{n}}(0)$ is an end point of $K_{\underline{n}}$. If all but finitely many of the integers $\{n_i\}_{i=1}^{\infty}$ are odd then N_n also folds the composant of the point $(a_1, \cdots, a_r, \pi, \pi, \pi, \pi, \cdots) = a$ so that $N_{\underline{n}}(a)$ is also an endpoint of $K_{\underline{n}}$. All other composants of $S_{\underline{n}}$ are mapped one to one onto composants of $K_{\underline{n}}$.

Let D be a composant of $K_{\underline{n}}$ which is the one to one continuous image of a line. Give D some orientation.

Let $\{x_i\}_{i=1}^{\infty}$ be a sequence in D which converges to a point $x \in D$. Let $V + Z'_k$ be a basic neighbourhood of 0 such that the closure of V + Z_k^{+} + x does not contain an endpoint of K_n . We may suppose each $x_i \in V + Z'_k + x$. We decompose the sequence $\{x_i\}_{i=1}^{\infty}$ into three disjoint subsequences $\{x_{1,j}\}_{j=1}^{\infty}, \{x_{2,j}\}_{j=2}^{\infty} \text{ and } \{x_{3,j}\}_{j=1}^{\infty}.$ The sequence $\{x_{1,j}\}_{j=1}^{\infty}$ is a sequence in a compact interval of D. We call such a sequence a type I sequence. The orientation of the component of V + Z_k' + x containing $x_{2,j}$ is the same as that of the component of V + x for large j. Such a sequence is called a type II sequence. The orientation of the component of V + Z_k^i + x containing $x_{3,i}^j$ is opposite to that of the component of V + x for large j. Such a sequence will be called a type III sequence. Such a decomposition is called a decomposition of type (t). Any two such divisions of $\{x_i\}_{i=1}^{\infty}$ differ in at most finitely many elements. If ϕ is a homeomorphism of D onto a composant D of ${\rm K}_{\rm m}$ then $\{\phi(x_{1,j})\}, \{\phi(x_{2,j})\}$ and $\{\phi(x_{3,j})\}$ is a decomposition of $\{\varphi(x_{i})\}$ of type (+). Hence, this division is topological.

Let C be a composant of $S_{\underline{n}}$ such that $N_{\underline{n}}(C) = D$. Let -C denote the inverse component to C. Let $\{y_i\}_{i=1}^{\infty}$ be a sequence in C U (-C) which converges to $y \in C$. Then the sequence $\{y_i\}_{i=1}^{\infty}$ may be decomposed into three disjoint sequences $\{y_{1,j}\}_{j=1}^{\infty}$, $\{y_{2,j}\}_{j=1}^{\infty}$ and $\{y_{3,j}\}_{j=1}^{\infty}$ such that the sequence $\{y_{1,j}\}$ is contained in a compact interval of C. We call $\{y_{1,j}\}$ a type I sequence. Each subsequence of the sequence $\{y_{2,j}\}$ is an unbounded sequence of C. We call $\{y_{2,j}\}$ a type II sequence. Each subsequence of $\{y_{3,j}\}$ is an unbounded sequence in -C. We call $\{y_{3,j}\}$ a type III sequence. Two such divisions of $\{y_n\}$ differ in at most a finite number of elements.

The composant C is the one to one image of a line so we can assign to it an orientation. This orientation is continuous on C since C projects by small open maps to a circle. Note that the orientation on C can be extended continuously to each composant of S_n .

Next we show that $\{N_{\underline{n}}(y_{1,j})\}, \{N_{\underline{n}}(y_{2,j})\}$ and $\{N_{\underline{n}}(y_{3,j})\}$ is a decomposition of the sequence $\{N_{\underline{n}}(y_{1})\}$ of the type (†). That $\{N_{\underline{n}}(y_{1,j})\}$ lies in a compact interval in D is clear. Clearly, also, no subsequence of $\{N_{\underline{n}}(y_{2,j})\}$ or $\{N_{\underline{n}}(y_{3,j})\}$ is contained in a bounded interval of D. That each small interval about a point $N_{\underline{n}}(y_{2,j})$ for large j has the same orientation in D as a small interval in D containing $N_{\underline{n}}(y)$ follows from the fact that intervals close to each other in C have the same orientation in C and $N_{\underline{n}}$ is continuous.

Note that the orientation of $D = N_{\underline{n}}(-C) = N_{\underline{n}}(C)$ introduced from C by $N_{\underline{n}}$ is opposite to the orientation introduced from -C by $N_{\underline{n}}$. It follows that for large j an interval in D containing $N_{\underline{n}}(y_{3,j})$ has opposite orientation to that of an interval in D containing $N_{\underline{n}}(y)$. Hence, $\{N_{\underline{n}}(y_{3,j})\}$ is a type III sequence.

Theorem 4.1. Suppose $K_{\underline{n}}$ and $K_{\underline{m}}$ are simplest Knaster indecomposable continua and $\underline{h}: D \rightarrow D$ is a homeomorphism of a composant D of $K_{\underline{n}}$ without an endpoint onto a composant \overline{D} of $K_{\underline{m}}$. Let C and -C be the composants of $S_{\underline{n}}$ which project by $N_{\underline{n}}$ onto D and let \overline{C} and $-\overline{C}$ be the composants of $S_{\underline{m}}$ which project by $N_{\underline{m}}$ onto \overline{D} . Then \underline{h} can be lifted uniquely to a homeomorphism $\overline{h}: C \cup (-C) \rightarrow \overline{C} \cup (-\overline{C})$ such that $\overline{h}(C) = \overline{C}$.

Proof. The existence of a unique one to one function $\overline{h}: C \cup (-C) \rightarrow \widetilde{C} \cup (-\widetilde{C})$ such that $\overline{h}(C) = \widetilde{C}$ and $\mathcal{N}_{\underline{m}} \circ \overline{h} = h \circ \mathcal{N}_{\underline{n}}$ is clear. Note that $\overline{h}(-x) = -\overline{h}(x)$ for $x \in C \cup (-C)$.

We must prove that \overline{h} is a homeomorphism. It suffices to prove \overline{h} is continuous.

Let $y \in C \cup (-C)$ and let $\{y_i\}$ be a sequence in $C \cup (-C)$ which converges to x. Without loss of generality $y \in C$. Note that the sequence $\{\overline{h}(y_i)\}$ has at most two limit points in $S_{\underline{m}}$ namely $\overline{h}(y)$ and $\overline{h}(-y)$ since $\{N_{\underline{m}} \circ \overline{h}(y_i)\}$ converges to $h \circ N_{\underline{n}}(y)$ by commutativity. We shall prove lim $\overline{h}(y_i) = \overline{h}(y)$.

Let $\{y_{1,j}\}, \{y_{2,j}\}$ and $\{y_{3,j}\}$ be a decomposition of the sequence $\{y_i\}$ into type I, type II and type III sequences respectively. Then $\{\overline{h}(y_{1,j})\}$ converges to $\overline{h}(y)$ since \overline{h} carries a bounded sequence in C to a bounded sequence in \widetilde{C} . The type II sequence $\{y_{2,j}\}$ goes to the sequence $\{h \circ N_{\underline{n}}(y_{2,j})\}$ which is a type II sequence in \tilde{D} since both $N_{\underline{n}}$ and h preserve type II sequences. If $\{\overline{h}(y_{2,j})\}$ were to converge to $\overline{h}(-y) \in -\tilde{C}$ then it would be a type III sequence converging to $\overline{h}(-y)$. But $N_{\underline{m}}$ preserves type III sequences. Hence, $\{\overline{h}(y_{2,j})\}$ converges to $\overline{h}(y)$. Similarly, $\{\overline{h}(y_{3,j})\}$ converges to $\overline{h}(y)$. The theorem is proved.

5. Regular Homeomorphisms of Compasants of Knaster Continua

Let $K_{\underline{n}}$ and $K_{\underline{m}}$ be simplest Knaster indecomposable continua. Let $D \subset K_{\underline{n}}$ and $D \subset K_{\underline{m}}$ be composants without endpoints. Let $h: D \rightarrow D$ be a homeomorphism. In section 4 we proved that h lifts to a homeomorphism

 \overline{h} : $C \cup (-C) \rightarrow \widetilde{C} \cup (-\widetilde{C})$ where C is a composant of $S_{\underline{n}}$ and \widetilde{C} is a composant of $S_{\underline{m}}$ and $\overline{h}(c) = \widetilde{C}$.

Let C_0 be the composant of the identity 0 in $S_{\underline{n}}$ and let $\widetilde{C_0}$ be the composant of the identity in $S_{\underline{m}}$. Let $a \in C$. For $x \in C_0$ define

 $g(x) = \overline{h}(x + a) - \overline{h}(a)$.

Then g(0) = 0. Clearly, $g: C_0 \rightarrow C_0$ is a homeomorphism. We say h: $D \rightarrow D$ is *regular* if $g: C_0 \rightarrow C_0$ is regular. Notice that this definition is independent of the choice of a and of the lifting \overline{h} .

Theorem 5.1. If h: $D \rightarrow D$ is a regular homeomorphism then $K_{\underline{n}}$ and $K_{\underline{m}}$ are homeomorphic and D and D are in the same position. *Proof.* Let C (resp. \tilde{C}) be a composant of $S_{\underline{n}}$ (resp. $S_{\underline{m}}$) such that $\mathcal{N}_{\underline{n}}(C) = D$ (resp. $\mathcal{N}_{\underline{m}}(\tilde{C}) = D$). Let $\overline{h}: C \cup (-C)$ $\rightarrow \tilde{C} \cup (-\tilde{C})$ be a lifting of h so $\overline{h}(C) = C$. Let $a \in C$ and define g: $C_0 \rightarrow \tilde{C}_0$ by $g(x) = \overline{h}(x + a) - \overline{h}(a)$ for $x \in C_0$.

Since g is a regular homeomorphism there exists a linear homeomorphism f: $S_n \rightarrow S_m$ such that $f|C_0$ is homotopic to g. Note that $f(C_0) = C_0$. We may suppose f(0) = 0.

Define
$$f' = S_{\underline{n}} \rightarrow S_{\underline{m}}$$
 by
 $f'(y) = f(y - a) + \overline{h}(a).$

Then f' is a linear homeomorphism (but $f'(0) = f(-a) + \overline{h}(a)$ is not necessarily zero).

Since f'(a) = f(0) + $\overline{h}(a) = 0 + \overline{h}(a) \in \overline{C}$ we have f'(C) = \overline{C} .

We prove next that
$$f'(-C) = -\overline{C}$$
. For $x \in C$
 $\overline{h}(x) - f'(x) = \overline{h}(x) - f(x - a) - \overline{h}(a)$
 $= g(x - a) - f(x - a) \in C_0$.

Since $x - a \in C_0$ and $f|C_0$ and g are homotopic we have $f|C_0 - g$ is bounded. Hence, $(f|C_0 - g)(C_0)$ is contained in a compact interval J of $\tilde{C_0}$. By continuity $(\bar{h} - f')(C \cup (-C))$ is contained in J since C is dense in C U (-C). So $f'(-C) \subset -\tilde{C}$.

Since f' is linear f'(x) = p(x) + f'(0) for each $x \in S_{\underline{n}}$ where p: $S_{\underline{n}} \stackrel{+}{\to} S_{\underline{m}}$ is linear and p(0) = 0. For $x \in C$ f'(x) + f'(-x) = p(x) + f'(0) + p(-x) + f'(0) $= 2f'(0) \in \tilde{C}_0$ since f'(x) $\in \tilde{C}$ and f'(-x) $\in -\tilde{C}$. Hence, $2f'(0) = 2\alpha$ where $\alpha \in \tilde{C}_0$. Define $\overline{f}: S_{\underline{n}} \to S_{\underline{m}}$ by $\overline{f}(x) = f'(x) - \alpha.$

Then $\overline{f}(-x) = f'(-x) - \alpha$ but $f'(-x) = 2\alpha - f'(x)$ so $\overline{f}(-x) = \alpha - f'(x) = -(f'(x) - \alpha) = -\overline{f}(x)$. Hence, \overline{f} is a linear homeomorphism of $S_{\underline{n}}$ onto $S_{\underline{m}}$, $\overline{f}(C) = \widetilde{C}$, $\overline{f}(-C) = -\widetilde{C}$ and $\overline{f}(-x) = -\overline{f}(x)$.

Define a homeomorphism

$$f^*: K_{\underline{n}} \to K_{\underline{m}}$$

by $f^*(\mathbf{x}) = N_{\underline{m}} \circ \overline{f}(N_{\underline{n}}^{-1}(\mathbf{x}))$. Then $f^*(D) = D$ since $\overline{f}(C) = C$.

Remark 5.2. The converse to Theorem 5.1 is true. If D and D are in the same position in $K_{\underline{n}}$ then Debski [5] has shown that there exists a regular homeomorphism of $K_{\underline{n}}$ which takes D onto D.

Remark 5.3. If D is a composant of $K_{\underline{n}}$ without an endpoint then there exist by [5] at most countably many composants of $K_{\underline{n}}$ which are homeomorphic to D under a regular homeomorphism. Hence, there exists a family of cardinality c of composants of $K_{\underline{n}}$ such that no two members of the family are homeomorphic under a regular homeomorphism.

6. Questions

We list a few open questions about composants of Knaster continua and solenoids.

(1) (Bellamy) Do there exist in K_2 two composants without endpoints which are *not* homeomorphic?

(2) Are two homeomorphic composants of $K_{\underline{n}}$ in the same position?

(3) If $C \subset S_n$ and $\tilde{C} \subset S_m$ are homeomorphic composants is S_n homeomorphic to S_m ? (4) Is each homeomorphism h: $C \neq \tilde{C}$ of composants of solenoids homotopic to a linear homeomorphism $\bar{h}: C \neq \tilde{C}$ (i.e. $\bar{h}(x) = ax + b$ for each x)?

A position solution to Question 4 would imply a positive solutions to Questions 1, 2 and 3.

References

- D. P. Bellamy, Homeomorphisms of composants, Houston J. Math. 5 (1979), 313-318.
- H. Cook, Upper semi-continuous, continuum-valued mappings onto circle-like continua, Fund. Math. 60 (1967), 233-239.
- [3] R. H. Crowell, Invertible isotopies, Proc. Amer. Math. Soc. 14 (1963), 658-664.
- [4] W. Debski, On topological types of the simplest indecomposable continua, Colloq. Math. 49 (1985), 203-211.
- [5] ____, The positions of composants in indecomposable arc-like continua of the simplest type (to appear).
- [6] R. Engelking, General Topology, Polish Scientific Publishers, Warsaw, 1977.
- [7] E. Hewitt and K. E. Ross, Abstract Harmonic Analysis, Vol. 1, Springer-Verlag, Berlin, 1963.
- [8] K. Kuratowski, Topology, Vol. 2, Academic Press, New York, 1968.
- [9] W. T. Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math. 103 (1982), 589-601.

Silesian University Katowice, Poland and University of Saskatchewan Saskatoon, Saskatchewan, Canada