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HOMEOMORPHISMS OF COMPOSANTS 

IN KNASTER CONTINUA 

w. Debski and E. D. Tymchatyn1 

1. Introduction 

H. Cook classified the solenoids in [2]. He showed 

that there exists a family 5 if solenoids such that 5 has 

cardinaltiy c and no two distinct members of 5 are homeo

morphic. Recently Debski [4] (see also Watkins [9]) gave 

a siluilar classification of the simplest Knaster indecom

posable continua. However, realtively little is known about 

individual composants of Knaster continua and of solenoids. 

Two composants M and L of an indecomposable continuum 

K are said to be in the same position if there exists a 

homeomorphism g: K ~ K such that g(M) = L. It is obvious 

for example that every pair of composants of a homogeneous 

indecomposable continuum are in the same position. Hence, 

every pair of composants of the pseudo arc are in the same 

position. 

Bellamy [1] described a homeomorphism h: K ~ K of2 2 

Knaster's dyadic indecomposable continuum which fixes 

exactly two composants of K • Debski [5] showed that two2 

composants Land M of K are in the same position if and2 

only if there exists an integer n such that hn(L) = M. He 

obtained analogous results for the other simplest Knaster 

indecomposable continua. In particular, for each Knaster 

lThe authors were supported in part by NSERC Grant 
No. A56l6. 
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indecomposable continuum K and each composant L of K there 

exist at most countably many composants of K with the same 

position as L. 

It is our purpose in this paper to make a preliminary 

investigation of composants of solenoids and Knaster con

tinua and to compile a short list of problems. 

2.	 Preliminaries 

All spaces considered in this paper are separable and 

metric. A continuum is a compact, connected, metric space. 

A continuum is indecomposabZe if it is not the union of 

two proper subcontinua. If p E X and X is a continuum then 

the composant of p in X is the union of all proper sub-

continua of X which contain p. If X is an indecomposable 

metric continuum the cornposants of X are pairwise disjoint 

and dense in X and X has c composants [8]. 

Let R be the topological group of real numbers with 

addition. Let Z be the subgroup of integers in R. Let 

TI: R ~ R/Z be the natural homomorphism of R onto the 

quotient group R/Z. Then R/Z is topologically isomorphic 

to the unit circle in the complex plane. 

Let n = {ni}~=l be a sequence of integers greater than 

1. For each i let R. 
1. 

R ~	 R/Z and let n R ~ R be the homeomorphism giveni i i : i + l i 

by ni(x) = niX. We have the cummutative diagram 



241 TOPOLOGY PROCEEDINGS Volume 12 1987 

n n
l 2+- ...Z. +-Zl Z2 +-

1 

n n n <p.
1 

n l n
2 ~ 

R +- R +- R. +- Ll 2 1 n 

Tr + Tr + Tr.+ Tr + 
00l 2 1 \li. 

1 

n n ......~ l 2R/Z +- R/Z +- ... R/Z i 
+- ... S :::> Col 2 n 

inverse limits [6]. Let <Pi: L ~ R and \lii: Sn ~ R/Z in i 

be the natural projections of the inverse limit space to 

the coordinate space. Since each n i : R/Z ~ R/Z is ai i 

topological group homomorphism of the compact abelian 

group R/Z we have Sn is a compact abelian topological
i 

group called a solenoid. Since each n : R + ~ R is ai i l i 

topological group isomorphism L is a topological groupn 

isomorphic to R. Let Tr = lim Tr.: L ~ S be the induced 
00 +- 1 n n 

map. Then CO' the cornposant of the identity element 0 in 

Sn is the one to one continuous image of L
n 

under TI 
oo 

For• 

each i let 

Z! = Tr
1 00 

Note that Zi is a topological group in Co c Sn that is 

group isomorphic to Z. 

To describe the topology of the topological group Sn 

it suffices to describe a neighbourhood basis at the 

identity element 0 of Sn. 

-1
Note that ~i (0) is a Cantor set (i.e. a zero-dimen

sional, compact set without isolated points) and 

Also, Z! is a countable dense set in 
1 
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~~l(O). Hence, Zi is homeomorphic to the set of rational 

numbers. 

Since Sn is an inverse limit of the simple closed 

curves R/Z i a basic neighbourhood of 0 in Sn is of the form 

~i 
-1 (U i ) where Ui is an open interval which is a basic 

neighbourhood of ~i (0) in the simple closed curve R/Z i .
 

Let Vi be the open interval in R about 0 which projects
i
 

by TI i one to one onto Ui. Then ~i 
-1 

(U i ) is the algebraic
 

0sum of the interval TI ¢~l(V,) (without endpoints and 
00	 ]. ]. 

-1containing 0) in Co and the Cantor set ~i (0). Hence, 

~i 
-1 

(U i ) n Co is a basic neighbourhood of 0 in Co and is
 

-1
the algebraic sum of the interval TI ¢i (Vi) with0 
oo 

Zl ,¥~1(0) ncO. 

To describe the topology of the topological group
 

Zi it suffices to describe a neighbourhood basis at the
 

identity element O. A basic neighbourhood of 0 in Zi is
 

~~+l, (U,+,) n Z! = (TI ¢-:-+l, (V,+') + Z!+') n Z! 
1 J 1 J ]. 00 

0 
1 J 1 J 1 J 1 

= Z!+, = n, • n'+l • ••• n,+, lZ!
1 J 1 1 1 J- 1
 

for all sufficiently small basic open neighbourhoods
 

u,+' of ~,+, (0) in R/Z,+, and V,+' the component of 0 in
]. J 1 J l. J l. J 
-1TI,+, (U,+,). Now, Z! is a topological group which is group
l. J 1 J 1 

isomorphic to the group Z by ~i: Z ~ Zi. If we give Z the 

topology with basic neighbourhoods of the identity having 

the forn1 n, • n i +l • ••• ni+jz then Si becomes a topologi
1 

cal group isomorphism. 

3.	 Homeomorphisms of Composants and Maps of Integers 

Let n = {n,}~ 1 and m = {m,}~ 1 be two sequences of 
-	 l. l.= - l. l.= 

integers greater than 1. Let Co be the composant of the 
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identity 0 in Sn and let Co be the composant of the identity 

-1 -1 
o in Sm. Let Z1 = Co n "Pi (0) and Zi = Co n "Pi (0). 

We will establish a correspondence between the set of 

homeomorphisms of Co onto Co and the set of all one to one, 

order preserving, open continuous mappings of some Z~ to 
] 

Zi (i and j are not fixed). 

Let h: Co ~ Co be a homeomorphism. Since Co is homo

geneous we may suppose h carries the identity 0 of Co onto 

the identity of CO. Since the mapping x ~ -x is a homeo

morphism of Co we may suppose h preserves order. We show 

that h can be used to define a one to one, order preserving, 

open, continuous function f: Zj ~ Zi for some i and j. 

Let Va + Zi be a small basic open neighbourhood of the 

identity in CO. Since h is open there is a basic open 

neighbourhood U + Z1 of the identity in Co such that 

U + Zi C h(V Z1). Since h is continuous there existsO + 

a neighbourhood Vl + Zj C V~ + Zi of the identity in Co 

such that h(V + Z~) C U + Z!. Then
l ] l
 

Zj V 1 + Zj ~ U + Zl e ~l
C 

where p is the second coordinate projection. Then p is 

open. Now, hi = P 0 hlz~ maps Z ~ to Z! • Since p h:0 

] ] l 

V + Z! ~ Z! is open and p h factors through hi it
l ] l 

0 

follows that hi is open. Since p and h are order preserv

ing hi is order preserving. Finally, since 

h 0 h-llu + Z!: U + Z! ~ U + Z! 
l l l 

is the identity and distinct components of Vl + Zj lie 

in distinct components of V + Zj it follows that hi is one o 

to one. Hence, h defines a one to one, order preserving, 

continuous, open mapping hi: Z~ ~ Z!. 
] l 
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We shall need the following proposition: 

Proposition 3.1. If f: Zj + Zi is a one to one~ order 

preserving continuous, open function then there exists an 

integer k such that f(a' + 1) - f(a) ~ k for all a E Z!. 
J 

Proof. Since f is open there exists an integer q 

such	 that Z! Now,
_J.+q 

Z!
J.+q mi+q-lzi· 

Then for a E Z! f(a + 1) 
J 

f(a)	 < k since f is order preserving. 

Now, suppose f: Z! + Z! is a one to one, order pre-
J J. 

serving, continuous, open function. Since Zi is homogen

eous	 we may suppose f(O) = o. We denote by 1 a generator 

of Z ~ • Let g: Co + Co be the linear extension of f, i.e. 
J 

g(x) f (k) + (f (k + 1) f (k) ) (x - k) if k < x < k + 1 

for k E Z!. Clearly, g is one to one, preserves order and 
J 

carries Co onto CO. We must prove g is continuous and 

open. 

Define r: Z~ + Z! by r(a) = f(a + 1) - f(a). By
J 1. 

Proposition 3.1 r(Z!) is a finite discrete set. Since 
J 

r is continuous r is a locally constant function. Also, 

g(x)	 = f(k) + r(k) (x - k) where k < x < k + 1, k E Z~. 
] 

Let x E Co'Zj. Then k < x < k + 1 for some k E Zj. 

Let U be a basic open neighbourhood of g(x) in CO. Then 

U = (-E,E) + g(x) + Z!+ for some E > 0 and some positive
J. ql 

integer ql. Since f is continuous and f(O) = 0 there 

exists a positive integer q2 such that the neighbourhood 

k +	 Z!+ of k in Z~ maps into the neighbourhood
] q2 J 
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f(k) + Z! of f(k) in CO. We may also suppose r is
:1+ql 

constant on k + Z' E E 
+ x +Then V = (- r(k) , r(k»j+q2 

is a neighbourhood of x in CO. We have 

g(V) = f(k + Z~+ ) + [(- ~ t x - k ~ + x - k)]r(k)
] q2 r(k 'r(k) 

c f(k) + Z! + (-E,E) + (x - k)r(k)
:1+ql 

(-E,E) + g(x) + Z!
l.+ql 

and g(V) is open. 

If x E Z! let U = (-E,E) + f(x) + Z! ,U = (-E,O] +
] :1+ql 

f(x) + Z! and U = [O,E) + f(x) + Z! . One can then
:1+ql + :1+ql 

carry through the above argument for each of U and U+ to 

get an open neighbourhood V of x such that g(V) is open 

and contained in U. 

This completes the proof that g is both open and con

tinuous. So g is the required homeomorphism of Z~ into 
] 

Z ! •:1 

Theorem 3.2. If h, g: Co ~ Co are homeomorphisms and 

h - g is bounded then h is homotopic to g. 

Proof. Suppose -a < h(x) - g(x) ~ a for all x E CO. 

Let H: Co x I ~ Co be the linear homotopy 

H(x,t) = Ht(X) = (1 - t)h(x) + tg(x) h (x) + 

t (g - h) (x) • 

To prove H is an homotopy from h to g it clearly suffices to show 

that the function H is a continuous function for each tEl.t 

Since g - h is bounded and tEl t(g - h) is bounded. 

Since the topology on each bounded interval of Co is the 

usual topology it follows that t(g - h) is continuous 
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since g - h is continuous. It follows that H is cont 

tinuous since it is the sum of two continuous functions. 

If x < y in Co then h(x) < h(y) and g(x) < g(y) in 

Co since hand g are one to one and order preserving. 

Hence, 

(1 - t) h (x) + tg (x) < (1 - t) h (y) 

+ tg(y) = Ht(y). 

We have proved that H is one to one and order preserving.t 

The theorem is proved. 

Proposition 3.3. If h~ g: Co ~ Co are homeomorphisms 

and H: Co x I ~ Co is a homotopy from h to g then h - g is 

bounded. 

Proof. The set H({O} x I) is an arc of some length a. 

Let V be a neighbourhood of H({O} x I) in Co whose components 

have length less than 2a. Since {oJ is compact there exists 

a neighbourhood U of 0 in Co such that H(U x I) c V. 

Hence, for x E U h(x) and g(x) lie in an arc in V. So 

(h - g) Iu is bounded. Let i be an integer with Zi c u. 

Then (h - g) 1Zi is bounded. 

Since h is a homeomorphism {h (i + 1) - h (i) liE Z!}
1. 

I 

is bounded by Proposition 3.1. Let 1 be a generator of Zi. If 

z E Co then j < x < j + 1 for some j E Zi. So h(j) < h(x) < 

h(j + 1) and g(j) < g(x) < g(j + 1). Thus, h - g is 

bounded. 

CoroZlary 3.4. If h, g: Co ~ Co are homeomorphisms 

and h is homotopic to g then h- l is homotopic to g-l. 
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Proof. We may suppose h is order preserving. By 

Proposition 3.1 there exists an integer k such that 

h-l(j + 1) - h- l (j) < k for j E 21. 
Let a E 21 such that 

-a ~ h(x) - g(x) < a 

for x E Co by Proposition 3.3. 

For y E Co 

-1 -1h-l(h(g-l(a))) h- l (g(g-l(a))) 9 (a) - h (a) • 

So -ak < g-l(a) - h- l (a) < ak. 

Theorem 3.5. If h~ g: Co ~ Co are homeomorphisms such 

that h - 9 is bounded then h is isotopic to g. 

Proof. By 3.3 and 3.4 there exists a number a such 

that 

-a < h(x) - g(x) < a for x E Co 

and 

-1 -1 
-a ~ h (y) - 9 (y) ~ a for y E CO. 

Let H: Co x I ~ Co be the linear homotopy from h to 9 

defined in 3.2. It was proved in 3.2 that each H : Co ~ Cot 

is continuous, one to one and order preserving. It remains 

to prove that H is open.t
 

Let X E CO.
 o 

Let W be a basic open neighbourhood of 0 in Co such 

that components of CO'W have length greater than lOa. Let 

U be a basic open neighbourhood of 0 in Co such that com

ponents of CO'U have length greater than lOa and since h 

and 9 are continuous h(U + x ) c W + h(x ) and g(U + x )O O O

W + g(x ). Since hand g are open there exists V c W a 
O

basic open neighbourhood of 0 in Co such that 

c 
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v + h(x ) c h(U + x and V + g(xO) c g(U + x ). We proveO O) o

Ht(U + x O) ~ V + Ht(XO). 

Define homeomorphisms 

hi: and g I:Co ~ Co Co + Co 

by hi (x) = h(x + x ) - h(x ) E W and gl (x) = g (x + x ) O O O

g(xO) E W for x E CO. Then -2a < h I (x) - g' (x) < 2a for 

x E CO. Hence, if x E U then h' (x) and g' (x) lie in the 

same component of Wand h(x + x O) and g(x + x ) lie in theO

same component of W + h(xO). Let y E V then y + h(x )o
h(x + x O) and y + g(xO) = g(x l + x O) for some x, Xl E U. 

Hence, x + X and Xl + X lie in the same component ofo o 
U + x • Thus, x and Xl lie in the same component of U.O

We may suppose x < Xl and h(x + x O) < g(x l + x O). Then, 

h(xO) < g(xO). It follows that g(x' + x ) < g(x + x O) andO

h(x l + x O) < h(x + x O) since g and h are order preserving. 

Now, 

Ht(X + x O) = (1 - t)h(x + x O) + t g(x + x O) 

(1 - t) (y + h(xO)) + t(g(x l + x O) - t(g(x' + x O) 

- g(x + x O))) 

(1 - t) (y + h(x )) + t(y + g(xO)) - t(g(x' + x )O O

-g(x+x ))O

y + Ht(xO) - t(g(x l + x O) - g(x + x O)) < y 

+ Ht(XO)· 

Similarly, Ht(x' + x O) > y + Ht(XO). 

Since x and x' are contained in an arc in U it follows 

that Ht(X") = y + Ht(X ) for some x" E U. Hence,O

V + Ht(X ) C Ht(U + x O) and the theorem is proved.O
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Theorem 3.6. Let h: Co ~ Co be a homeomorphism, 

f: Z~ ~ Z! is a continuous, one to one, order preserving,
J 1. . 

open mapping induced by hand g: Co ~ Co is the ~omeomorphism 

of Co onto Co induced by f as in the paragraph following 

Proposition 3.1. Then h is isotopic to g. 

Proof. We proved that hlZ~ - f is bounded. Let 1 be 
J
 

a generator of Zj. If x E Co then k < x < k + 1 for
 

some k E Z~. Now,
J 

h(k) < h(x) < h(k + 1) and f(k) < g(k) < f(k + 1). 

Hence, h - g is bounded. The theorem now follows by 

Theorem 3.5. 

A homeomorphism h: Co ~ Co is said to be regular if 

there exists a linear homeomorphism g: Co ~ Co such that 

h is homotopic to g. 

Remark 3.7. If g, h: Co ~ Co are homotopic linear 

homeomorphisms then f - g is constant. 

Remark 3.8. If g: Co ~ Co is a linear map then g is
 

uniformly continuous and, hence, g extends to a linear map
 

1 -1
Similarly, g- extends to a linear map g 

-1S ~ S . Then g g is the identity on By continuity0 CO·
 

it is the identity on S So g is one to one. Hence,
 

m n 

n 
-since S is compact g is a homeomorphism.n 

4. Lifting Homeomorphisms of Composants of Kn 
Let S be a solenoid. Let N m: s ~ K be the 

n n n n 

quotient map onto the quotient space K where point inverses n 

under N are the pairs {x,-x} for x E Sn. The decompositionn 

of Sn into {{x,-x}: x E Sn} is upper semi-continuous so K n 
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is a continuum. We call K a simpiest Knaster indecomposable
n 

continuum. The map N folds the composant Co of 0 in S so 
n n 

N (CO) is the one to one continuous image of [0,00) and
n' 

N (0) is an end point of K. If all but finitely many of n n 

the integers {n.}~ I are odd then N also folds the compo
1 1= n 

sant of the point (al,···,a ,TI,TI,TI,···) = a so that N (a)r n 

is also an endpoint of K • All other composants of Sn are n 

mapped one to one onto composants of K • 
n 

Let 0 be a composant of K which is the one to one n 

continuous image of a line. Give 0 some orientation. 

Let {xi}~=l be a sequence in D which converges to a 

point XED. Let V + Zk be a basic neighbourhood of 0 such 

that the closure of V + Z~ + x does not contain an endpoint 

of K • We may suppose each xi E V + Zk + x. We decomposen 

the sequence {xi}~=l into three disjoint subsequences 

00 00 00 I 00 
{Xl '}'-l' {x 2 '}'-2 and {x 3 ·}·-l· The sequence LXI '}'-l,J J- ,J J- ,J J- ,J J

is a sequence inoa compact interval of D. We call such a 

sequence a type I sequence. The orientation of the compo

nent of V + Zk + x containing X2 ,j is the same as that of 

the component of V + x for large j. Such a sequence is 

called a type II sequence. The orientation of the component 

of V + Zk + x containing X3 ,j is opposite to that of the 

component of V + x for large j. Such a sequence will be 

called a type III sequence. Such a decomposition is called 

a decomposition of type (t). Any two such divisions of 

{x.}~ I differ in at most finitely many elements. If ~ is 
1 1= 't' 

a homeomorphism of 0 onto a composant 0 of K then m 

{<p (xl .)}, {<p (x .)} and {<p (x .)} is a decomposition of
,J 2 ,J 3 ,J 

{<p(x.)} of type (t). Hence, this division is topological.
] 
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Let C be a composant of Sn such that Nn(c) = D. Let 

-C denote the inverse component to C. Let {Yi}:=l be a 

sequence in C U (-C) which converges to Y E C. Then the 

sequence {Yi}:=l may be decomposed into three disjoint 

sequences {Y1,j};=1' {Y2 ,j};=1 and {Y3,j};=1 such that the 

sequence {Y .} is contained in a compact interval of C.I , J 

We call {Y ,} a type I sequence. Each subsequence of theI , J 

sequence {Y2 .} is an unbounded sequence of C. We call
, J 

{Y2 .} a type II sequence. Each subsequence of {Y .} is
, J 3 , J 

an unbounded sequence in -C. We call {Y ,j} a type III3

sequence. Two such divisions of {Y } differ in at most n 

a finite number of elements. 

The composant C is the one to one image of a line so 

we can assign to it an orientation. This orientation is 

continuous on C since C projects by small open maps to a 

circle. Note that the orientation on C can be extended 

continuously to each composant of Sn. 

Next we show that {N (Y ,)}, {N (Y .)} and
!:!. I , J !:!.,2 J 

{N (Y3 .)} is a decomposition of the sequence {N (y)}!:!. ,J n i 

of the type (t). That {N (Yl ,)} lies in a compact 
~ ,J 

interval in D is clear. Clearly, also, no subsequence of 

{N (Y2 .)} or {N (Y .)} is contained in a bounded interval3!:!.,J !:!.,J 
of D. That each small interval about a point N (Y .) for

!:!. 2 ,J 
large j has the same orientation in D as a small interval 

in D containing Nn(y) follows from the fact that intervals 

close to each other in C have the same orientation in C 

and N is continuous. 
n 



252 Debski and Tyrnchatyn 

Note that the orientation of D = N (-C) = N (C)
n n 

introduced from C by N is opposite to the orientation 
n 

introduced from -C by N. It follows that for large j an 
n 

interval in D containing N (Y3 .) has opposite orientation
!! ,J 

to that of an interval in 0 containing Nn(y). Hence, 

{N (Y3 .)} is a type III sequence.
!! , J 

Theorem 4.1. Suppose K and K are simplest Knaster n m 

indecomposable continua and h: 0 ~ 0 is a homeomorphism of 

a composant D of K without an endpoint onto a composant
n 

D of K • Let C and -C be the composants of Sn which projectm
by N onta D and let C and -C be the composants of Sm which 

n 

project by N onto D. Then h can be lifted uniquely to a m 

homeomorphism h: C U (-C) ~ C U (-C) such that h(C) = C. 

Proof. The existence of a unique one to one function 

h: C U (-C) ~ C U (-C) such that h(C) = C and N 0 h = h N0 m n 

is clear. Note that he-x) = -hex) for x E C U (-C). 

We must prove that h is a homeomorph~sm. It suffices 

to prove h is continuous. 

Let y € C U (-C) and let {Yi} be a sequence in C U (-C) 

which converges to x. Without loss of generality y E C. 

Note that the sequence {h(y.)} has at most two limit points
]. 

in Sm namely hey) and h(-y) since {N 0 h(Yi)} convergesm 

to h N (y) by commutativity. We shall prove lim h(y.)0 n ]. 

hey) • 

Let {Yl .}, {Y2 .} and {Y3 .} be a decomposition of
,J ,] ,J 

the sequence {y.} into type I, type II and type III sequences 
~ 

respectively. Then {h(Yl , ]
.)} converges to hey) since h 

carries a bounded sequence in C to a bounded sequence in C. 
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The type II sequence {Y2 .} goes to the sequence
, J 

"'If 

{h N (Y2 .)} which is a type II sequence in D since both
!l , J 

N and h preserve type II sequences. If {h(Y2,j)} were ton 

converge to h(-y) E -C then it would be a type III sequence 

converging to h(-y). But N preserves type III sequences.m 

Hence, {h(Y2 .)} converges to h(y). Similarly, {h(Y3 .)}
, J , J 

converges to h(y). The theorem is proved. 

5. Regular Homeomorphisms of Compasants of Knaster Continua 

Let K and K be simplest Knaster indecomposable conn m 

tinua. Let D c K and D c K be composants without end
n m 

points. Let h: D ~ D be a homeomorphism~ In section 4 we 

proved that h lifts to a homeomorphism 

h: C U (-C) ~ C U (-C) 

where C is a composant of Sn and C is a composant of Sm 

and h(c) C. 

Let Co be the composant of the identity 0 in Sn and 

let Co be the composant of the identity in Sm. Let a E C. 

For x E Co define 

g(x) = h(x + a) - h(a). 

Then g(O) = O. Clearly, g: Co ~ Co is a homeomorphism. We 

say h: D ~ D is reguZar if g: Co ~ Co is regular. Notice 

that this definition is independent of the choice of a and 

of the lifting h. 

Theorem 5.1. If h: D ~ D is a reguZar homeomorphism 

then K and K are homeomorphic and D and D are in the n m 
same position. 
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Proof. Let C (resp. C) be a composant of Sn (resp. 

"'" 
Sm) such that Nn(C) = D (resp. Nm(C) D). Let h: C U (-C) 

+ C U (-C) be a lifting of h so h(C) C. Let a E C and 

define g: Co + Co by g(x) = h(x + a) - h(a) for x E CO. 

Since 9 is a regular homeomorphism there exists a 

linear homeomorphism f: S + S such that fico is homotopicn m 
-:v 

to g. Note that f (CO) = CO· We may suppose f(O) = O. 

Define f' = S + S byn m
 

f' (y) = f(y - a) + h(a).
 

Then f' is a linear homeomorphism (but f' (0) f (-a) + h(a) 

is not necessarily zero). 

Since f'(a) = f(O) + h(a) o + h(a) E C we have 

f' (C) = C. 

We prove next th'at f' (-C) = -C. For x E C 

h(x) - f'(x) h(x) - f(x a) - h(a) 

g(x - a) - f(x - a) E CO. 

Since x - a E Co and fico and g are homotopic we have 

fico - g is bounded. Hence, (fico - g) (CO) is contained in 

a compact interval J of CO. By continuity (h - f') (C U (-C) 

is contained in J since C is dense in C U (-C). So 

f' (-C) C -C. 

Since f' is linear f' (x) = p(x) + f' (0) for each 

x E Sn where p: Sn + Sm is linear and p(O) = O. 

For x E C 

f' (x) + f' (-x) p(x) + f' (0) + p(-x) + fl (0) 

2f~ (0) E Co since f~ (x) E C and f' (-x) E -C. 

Hence, 2f' (0) 2a. where a. E cO. 
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Define f: Sn ~ Sm by 

f(x) = f' (x) - ex.
 

Then f(-x) = f' (-x) - ex but f' (-x) = 2ex - f' (x) so
 

f(-x) = ex - f' (x) = -(f' (x) - ex) = -f(x)~ Hence, f is a
 

linear homeomorphism of Sn onto Sm' f(C) = c, f(-C)- = -C
 

and f(-x) = -f(x).
 

Define a homeomorphism 

f*: K ~ K 
n m 
-- -1

by f*(x) = N m f(Nn (x)). Then f*(D) D since f(C) C.0 

Remark 5.2. The converse to Theorem 5.1 is true. If
 

D and D are in the same position in K then Debski [5] has
 n
 

shown that there exists a regular homeomorphism of K which
 
n
 

takes D onto D.
 

Remark 5.3. If D is a composant of K without an 
n 

endpoint then there exist by [5] at most countably many com

posants of Kn which are homeomorphic to D under a regular homeo

morphism. Hence, there exists a family of cardinality c of 

composants of K such that no two members of the familyn
 

are homeomorphic under a regular homeomorphism.
 

6. Questions 

We list a few open questions about composants of
 

Knaster continua and solenoids.
 

(1) (Bellamy) Do there exist in K two composants without2
 

endpoints which are not homeomorphic?
 

(2) Are two homeomorphic composants of K in the same n
 

position?
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(3)	 If C c Sn and C c Sm are homeomorphic composants is Sn 

homeomorphic to Sm? 

(4)	 Is each homeomorphism h: C ~ C of composants of sole

noids homotopic to a linear homeomorphism h: C ~ C (i.e. 

h(x) = ax + b for each x)? 

A position solution to Question 4 would imply a posi

tive solutions to Questions 1, 2 and 3. 
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