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MAXIMAL RIMCOMPACT IMAGES 

Beverly Diamond 

1. Introduction and Known Results 

All spaces considered are completely regular and 

Hausdorff. Recall that a space X is rimcompact if X has 

a base of open sets with compact boundaries ([Is]). A 

space X is almost rimcompact if X possesses a compactifica­

tion KX in which each point of KX,X has a base of open 

sets of KX whose boundaries lie in X. Each rimcompact 

space is almost ri~compact ([Mol]); the converse is not 

true ([Is]) (see [Oil] and [Di ] for the internal characteri­
4 

zation and a discussion of almost rimcompactness). A 

space X is a a-space if X possesses a compactification with 

zero-dimensional remainder; there are a-spaces which are 

not almost rimcompact ([Oil]). 

A map is a continuous surjection. A function f: X + Y 

is closed if whenever F is closed in X, then f[F] is 

closed in Y. If a map f is closed, and f+ (y) (bdxf+ (y) 

respectively) is compact for y E Y, then f is perfect 

(rimperfect respectively). A map f: X + Y is monotone if 

f+(y) is connected for each y E Y. 

In the following~ L(X) will denote the locally compact 

part of X. 

In an investigation of maps from almost rimcompact 

spaces onto rimcompact spaces, the following was proved 

(2 .5 of [Oi 2] ) • 
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1.1 Theorem. Suppose that X is the perfect preimage
 

of a rimcompact space. Then there is a rimcompact space
 

z and a perfect monotone map g: X ~ Z such that
 

a) g+[g[L(X)]] = L(X)~ and g!L(X) is a homeomorphism. 

b) if Y is any rimcompact space~ and f: X + Y is per­


fect~ then there is a perfect map h: Z + Y such that
 

hog = f.
 

Rimcompactness is not generally preserved in perfect 

images and preimages without the addition of other conditions; 

in the presence of these other conditions; rimperfect maps 

usually suffice. 

1.1 is proved with "rimcompact" replaced by "almost
 

rimcompact" or "a-space." Slightly weaker conclusions hold
 

when "perfect" is replaced by "rimperfect"; the map g: X ~ Z
 

need not be rimperfect or monotone.
 

The following will be used without mention: if F is 

closed in X, then bdSxclSxF = clSxbdxF. This is true in 

any perfect compactification (see [Sk] or [Is] for the 

definition); the inclusion clKXbdxF ~ bdKXclKXF holds in 

any compactification KX of X. If X is a a-space, then 

FoX denotes the maximal compactification of X having zero­

dimensional remainder. 

2.	 The Main Results 

The main theorem is based on the following two results. 

2.1 Lemma. Suppose that f: X + Z is rimperfect~ and
 

that maps g: X ~ Y and h: Y + Z exist so that hog = f.
 

Then h is ri~perfect. In fact~ if KY, KZ are any
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cQmpactifications of Y~ Z respectively such that h extends 

to H: KY ~ KZ~ then bdKyH~(z) ~ Y for z E z. 

Proof. The map h is clearly closed. Let F: SX ~ KZ 

and G: SX ~ KY denote the natural maps extending f and g 

respectively. Then F = HoG. Since H~(z) G(F~(z)], it 

suffices to show that bdKyG[F~(Z)] ~ Y. As f is closed, 
~ ~ ~ 

F (z) = clsxf (z) (1.1, 1.2 of [Iw]). Hence bdSXF (z) 
~ ~ ~ 

bdsxclsxf (z) = clsxbdxf (z) bdxf (z) ~ X, so that 

G[bdSXF~(Z)] ~ Y. The map G is closed, thus bdKyG[F~(Z)] c 

G[F+iz)]. Suppose that p E G[F+(Z)]'G[bdSXF+(Z)]. Now 

G+G[F+(Z)] = F+(Z;, so that G+(p) :: F+(Z)'bdSXF+(Z). 

That is, G~(p) c intsxF~(Z); since G is closed, p E 

intsxG[F~(Z)]. This proves that bdKyG[F~(Z)] ~ G[bdSXF~(Z)]. 

rrhe fact that h is rimperfect follo\AJS from the obser"ation 

that h has an extension H: SY ~ SZ. 

A corollary of the above is the following: if h extends 

to H: KY ~ KZ, then clKyh 
~ 

(z) n clKy(Y'h 
~ 

(z)) ~ Y. The 

extension of h to H is necessary; the statement can be made 

in general only for a perfect compactification KY of Y, 

even if Y =.X and g is the identity map. 

We need the following straightforward generalization 

of Lemma 3 of [M0 2 ] , which states that if f: Y ~ Z is rim­

perfect, and an open set U of Z has compact boundary, then 

bdyf 
~ 

[U] is compact. 

2.2 Lemma. Suppose that h: Y ~ Z is rimperfect and 

=
extends to H: KY ~ KZ. If U is open in KZ with bdKZU Z~ 

then bdKyH 
~ 

[U] ~ Y. 
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+- +­
Proof. Since bdKZU ~ Z, bdKyH [U] S H [bdKZU] = 

H+-[ (bdKZU) n Z] = U{H+-(z): z E (bdKZU) n Z}. According to 

+- +- +-. +­
2.1, bdKyH (z) ~ Y. Then bdKyH [U] S U{H (z),lntKyH (z): 

z E (bdKZU) n Z} c Y. 

Thus if h extends to H: KY + KZ, and bdzU is compact, 

+­
then bdKyclKyh [U] ~ Y. Once again the extension of h to 

H is necessary unless KY is a perfect compactification of 

Y. 

2.3 Theorem. Suppose that for a E A, fa: X + X is a 

rimperfect, where X is rimcompact (aZmost rimcompact, a a 

O-space respectively). Let g: X + ITaEAX be the diagonala 

map. Then g[X] is rimcompact (almost rimcompact, has a 

compactification with totally disconnected remainder 

respective ly). 

Proof. Let Fa: Sx + FoX denote the extension of fa'a 

for a E A, and G: SX + ITaEAFoXa the diagonal map. Then 

clITg[X] = G[SX] and Gl = g.x 

For a E A, let h and H denote the restriction ofa a 

ITa to g[X] and G[SX] respectively, where ITa: ITaEAFoXa + 

FoX is the projection map. Clearly h g = fa and0 a a 

H G = Fa. Since fa is rimperfect, by 2.1 h is rim­a a 

perfect. 

Suppose that X is rimcompact for each a E Ai we wish a 

to show that g[X] is rimcompact. Choose < x ) E U, where a 

U is open in g [X] • There is an open set U· of IT such''J.EAXa 

that U· n g[X] = U, and a finite subset F of A such that 
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a E F, choose an open set W of X with compact boundary
a a 

such that x E W ~ cl W ~ U • As h is rimperfect,a a x a a a a 

according to Lemma 3 of [M0 ] (as mentioned preceding 2.2),
2 

bdg[X]h:[Wa ] is compact. In addition, h:[W
a 

] E 

[Ua x IISfaX S] n g[X], thus a~Fh:[\va] =- [IIaEFU x IIa~FXa] na 

g[X]. Since the set E0Fh+[W] has compact boundary,a a a 

(x ) has a base of such sets in 9 [X] . a 

Suppose that X is almost rirncompact for a E A. We a 

show that points of G[SX]'g[X] have a base of open sets 

of G[SX] whose boundaries are contained in g[X]. Choose 

(p ) E U'g[X], where U is open in G[SX]. There is a finite a 

subset F of A and a set of the form ITaEFU x ITa~FFoXaa 

(where U is open ~n FoX ) such that (Pa) E [ITaEFU xa a a 

ITaEFFoXa] n G[SX] c U. Suppose that for a E F, Pa E X •a 
+ 

According to 2.1, bdG[Sx]Ha(Pa) =- g[X], so that (Pa) E 

intG[SX]H:(Pal (which equals intG[SX] [({Pa } x IISfaFoXSl n 
I _ • +

G[SX]]). Let W - 1ntG[SX]H (Pa). Note that sincea a 

Pa E U , W~ ~ [U x ITS~aFoXS] n G[SX]. On the other hand,a a 

if for a E F, Pa E FoXa'Xa , there is an open set Wa of 

FoX with bdF XWa ~ X and P E W ~ clF XWa c U . Ita a a a a 
o 0 

follows from 2.2 that bdG[SX]H:[W ] ~ g[X], whilea 

(P ) E H:[W ] =. [U x IISfaFoXS] n G[SX]. In this case, let 

a 

a a a 

W~ 
+ = Ha[Wa ]. Finally, if WI a~FW~' then bdG[SX]W I ~ g[X], 

and WI c 
-

[IT FU
aE a 

x IT ~FF X ] 
a~ 0 a 

n G[SX]. Thus g[X] is almost 

rimcompact. 

Suppose that for a E A, X is a a-space. We wish to 

show that the connected component C in G[SX],g[X] of p 

p = (p ) E G[SX]'g[X] equals {p}. It suffices to show that 
a 
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H [C ] =	 {p } for each a E A. Suppose that go. E X • a p a o.
 
+­

According to 2.1, Ho.(go.) n (G[SX]'g[X]) is clopen in 

G[SX]'g[X], hence C c H+-(g ) or C n H+-(g ) = ¢. Then for 
p - a a p a a 

any go. E X ' Ho.[C ] = {go.} or go. t Ho.[C ]. In particular,o. p p 

if p EX, then H [C ] = {p }, and if Po. E FoXo.'X ,a a a p a o. 

H [C ] n X ¢. In the latter case, H [C ] is a connected a p a a p 

subset of the zero-dimensional space FoXo.'Xo.i once again 

Ho.[C ] =	 {Po.}. Thus G[SX]'g[X] is totally disconnected. p 

Since the product of rimcompact spaces is rarely a 

a-space (see [Di ]), some argument of the sort above is3 

needed in the proof of 2.3. The map g in 2.3 need not be 

closed, even if g is l~l (see example 3.1). 

The hypothesis iti ~.3 that X is a a-space is strongera 

than is necessary in order to conclude that g[X] has a 

compactification with totally disconnected remainder; the 

conclusion holds if X has a compactification with totallyo. 

disconnected remainder. The space g[X] is constructed as 

in 2.3, with TIo.EAX =TIo.EASX , where SX is the maximalo. o. o. 

compactification of X having totally disconnected remainder. o. 

Then SXa'X is totally disconnected rather than zero­o. 

dimensional, sufficient for the proof. We do not know if 

2.3 holds with "a-space" throughout. 

2.4 Corollary. For any completely regular space X~ 

there exists a rimcompact space Z and a continuous map 

g:	 X + Z such that 

+­
1) g [g[L(X)]] L(X) and gIL(X) is a homeomorphism, 
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2) If Y is any rimcompact space and f: X -+ Y is rim­

perfect~ then there exists a rimperfect map h: Z -+ Y such 

that f = hog. 

Proof. The map collapsing X to a single point is rim­

perfect. Let 5 be the collection of all rimcompact spaces 

which are the image of X under a rimperfect map. Define two 

such images (Xl,f ) and (X ,f ) to be equivalent if therel 2 2 

is a homeomorphism h: Xl -+ x such that h f = f • Since2 0 l 2 

all maps are onto, the collection 5 is a set, up to equiva­

lence. The existence of Z then follows from 2.3. 

Suppose that x E U S clxU S L (X), and that clxU is com­

pact. There is a continuous function j: X -+ [0,1] such 

that j (x) = a and j[X,clxU] = 1. Such a map is clearly 

rimperfect, thus the family of rimperfect maps on X with 

rimcompact range separates points of L(X) from closed 

sets of X. The theorem follows. 

2.5 Corollary. 2.4 holds if "rimcompact" is replaced 

everywhere by "almost rimcompact" or by "has a compactifica­

tion with totally disconnected remainder." 

The following is essentially 2.6 of [Di 2 ]. 

2.6 Lemma. Suppose that f: X -+ Y is perfect~ where 

Y is rimcompact (almost rimcompact~ a a-space respectively). 

Then there are a rimcompact (almost rimcompact~ O-space 

respectively) Z and perfect maps g: X -+ z~ h: Z -+ Y such 

that hog = f and g is monotone. 

2.7 Theorem. Suppose that X is the perfect preimage 

of a rimcompact space. Then there exists a rimcompact 
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space Z and a perfect monotone map g: X ~ Z such that 

1) g~[g[L(X)]] L(X), and gIL(X) is a homeomorphism~ 

2) if Y is any rimcompact space and f: X ~ Y is 

perfect~ then there is a perfect map h: Z ~ Y such that 

hog = f. 

The pair (Z,g) is unique up to homeomorphism of Z. The 

resuZt hoZds if "rimcompact" is replaced everywhere by 

Ita lmos t rimcompact" or "O-space." 

Proof. Suppose that f , . X ~ X is perfect. Then 
a a' 

the diagonal map f: X ~ g[X] (as in 2.3) and h , : g[X] ~ X ,
a a 

are perfect (see 3.7.10 of [En]) · The result in the rim-

compact or almost rimcompact case then follows from 2.3, 

2.4	 and 2.6. 

In the case in which (for a E A) X is a a-space, for 
a 

p E F X ,X " H~, (p) is a compact subset of the totally
o a a a 

disconnected set G[SX],g[X], hence H~, (p) is zero-dimensional. 
a 

Since h , is perfect, H~, [F X "X ,] = G[SX],g[X]. It is 
a a 0 a a 

easy to show that if f: X ~ Y is perfect, f~(y) is zero-

dimensional for y E Y, and Y is zero-dimensional, then X 

is zero-dimensional (see, for example, [Ny]). The above, 

combined with the fact that H , IG[Sx),g[X] is closed, suf­a 

fice to show that G[SX],g[X] is zero-dimensional. Thus 

g[X] is a a-space. 

It remains to show the uniqueness of (Z,g). Suppose 

that there exist Z' and g': X ~ Z' having the properties of 

Z and g. Then there exist perfect maps hi: Z' ~ Z and 

h: Z	 ~ Z' so that h' 0 g' 9 and hog = g'. It follows 

0 0that h' hog h' g' g, thus h' 0 h: Z ~ Z is the 

identi ty map on Z, ald h is a homeomorphism. • 
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As mentioned in the introduction, the above result for 

the rimcompact case appears in [Di ]. The proof in that2

paper made use of decompositions; a necessary inductive 

step was omitted in that proof. 

In light of the uniqueness of Z in 2.7, it would be 

interesting to determine if the Z of 2.4 is unique. 

Suppose that a space X maps perfectly onto at least 

one rimcompact space Y. A rimcompact perfect image Z of X 

can be constructed as in 2.3 by considering the family of 

rimperfect maps on X with rimcompact range; a second rim­

compact perfect image Z' of X can be constructed, again as 

in 2.3, by considering the family of perfect maps on X 

with rimcompact range. According to the following, Z and 

Z' are equivalent. (Note that in the above discussion and 

the next result, "rimcompact" can be replaced by "almost 

rimcompact" or "O-space.") 

2.8 Theorem. Let Z and z' be as above. Then Z ~ Z'. 

Proof. This follows from the uniqueness of Z in 2.7, 

and the fact that all perfect maps with rimcompact image 

factor through Z' as constructed. 

2.9 Corollary. Suppose that the family of rimperfect 

maps on X with rimcompact (almost rimcompact) range 

separates points and closed sets of X. Then X is rimcom­

pact (almost rimcompact respectively). 

Proof. This follows directly from 2.3. 

According to the comments following the proof of 2.3, 

2.9 holds if "rimcompact range" is replaced by "ranges 
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having compactifications with totally disconnected remainder." 

There is a straightforward direct proof of 2.9 for the rim­

compact case; a direct proof using the internal characteri ­

zation of almost rimcompactness is possible but more dif ­

ficult than 2.3. The approach of 2.3 appears to be the 

only reasonable one in the totally disconnected case. 

Example 3.1 will indicate that separating points of X 

is not sufficient in 2.9. 

3.	 Examples 

The first two examples indicate that the weaker con­

clusions drawn about the properties of the map g: X ~ Z 

when constructing Z as in 2.4 with rimperfect maps rather 

than with perfect maps are necessarily weaker. The third 

example indicates that although the space Z constructed 

in the former way exists for every space X, it may be in 

some sense trivial. 

3.1 Example. There is a nonrimcompact space X for 

which the family of rimperfect maps with rimcompact range 

separates points on X, so that g: X + Z is 1-1, where Z is 

as in 2.4. The map g is not closed. 

Let ~ denote a maximal almost disjoint collection of 

infinite subsets of the natural numbers N. The space 

N U ~ has the topology described in 5I of [GJ]i each point 

of N is isolated and A E ~ has as an open base {{A} U (A'F): 

F is a finite subset of N}. The space N U ~ is locally 

compact and zero-dimensional. According to 2.1 of [Te], 

there is a family ~ so that S(N U ~),N U ~ is homeomorphic 
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to the unit interval I. Let X = N U R u {oJ. The point a 

has no base of open sets with boundaries contained in X, 

so that X is not rimcompact. Points of X are separated by 

the rimperfect characteristic functions of clopen sets of 

X. The space Z of 2.4 is homeomorphic to the one-point 

compactification of N U ~; each of the above rimperfect 

functions collapses [0,1] to a point. Thus the map g: X + Z 

is 1-1 but not closed. 

3.2 Example. Let X' = N U ~ U {O,l} where R is as in 

3.1. The space Z of 2.4 is again the one-point compacti ­

fication of N U ~i the map g: X + Z is not monotone. 

3.3 Example. There exists a space X for which the Z 

described in 2.4 has cardinality 1. Choose X to be any 

completely regular space having no nontrivial open set 

with compact boundarYithat is, any open set with compact 

boundary must have closure equal to X. The only rimper~ect 

map on X is that collapsing X to a point. Since X has 

nonconstant continuous functions into [0,1], the space Z 

described in 2.4 is not a "largest" rimcompact continuous 

image of Xi Z merely lies above every rimcompact rimperfect 

image of X. 
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