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SPACES HAVING SUBREGULAR BASES 

Gary Grabner 

A collection of subsets of a set X is saiq to have 

subinfinite rank provided that every infinite subco1lec­

tion with nonempty intersection contains members related 

by set inclusion. Requiring open covers to have open 

refinements with subinfinite rank generalizes metacompact­

ness and a base with subinfinite rank generalizes a point 

regular (uniform) base. This concept of a base of sub­

infinite rank was introduced in [GN]. In this paper we 

modify the concept of subinfinite rank to give a generaliza­

tion of paracompactness (locally subinfinite refinable) 

and of a regular base (subregular base). The locally 

finite analogs of the following theorems hold. 

Theorem [GN]. A topological space is metacompact if 

and only if every open cover has a Noetherian open refine­

ment with subinfinite rank. 

Theorem [FG]. A T space is metacompact if and only
3 

if every open cover has an w-Noetherian open refinement 

with subinfinite rank. 

Theorem [FG]. A Tl space having a base with sub­

infinite rank is hereditarily metacompact. 

We will present properties of these generalizations 

of paracompactness and regular base which do not have sub­

infinite rank analogs and which are not shared by some of 
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the more standard generalizations of these concepts. For 

example, if X is a T first countable locally subinfinite2 

refinable space then X is T • A T space is metrizable if3 2 

and only if it has a Noether subregular base. 

Let us now introduce some definitions, terminology and 

results which will be used in this paper. We will use Z to 

denote the integers, N or Z+ the natural numbers and w the 

first countable ordinal. A collection W of subsets of a 

set X is said to be well ordered by set inclusion provided 

there is an ordinal A and a function W: A ~ W such that W 

is onto and if a < S < A then W(a) c W(S). We say a col­

lection of subsets of a set X is Noetherian (w-Noetherian) 

provided every well ordered subcollection is finite 

(countable) [LN]. If V is a Noetherian (w-Noetherian) 

collection with subinfinite rank and nonempty intersection 

then V contains a finite (countable) subcollection W with 

uW = uV [FG]. A collection U of subsets of a set X is 

said to be directed provided if H,K E U then there is a 

W E U such that H U K c W. If V is a collection of sub­

sets of a set X with subinfinite rank and nonempty inter­

sections then V can be expressed as the union of finitely 

many directed subcollections [FG]. 

If U is a collection of subsets of a set X and x E X 

then st(x,U) {U E U: x E U} and St(x,U) = Ust(x,U). If 

W is a collection of subsets of a set X, then M ~ uW is 

maximally distinguished with respect to W if every member 

of W contains at most one element of M and uW U{St(x,W): 

x EM}. Fer every collection U of subsets of a set X 
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there is a maximally distinguished set with respect to U 

[Au] • A collection V of subsets of a set X is said to 

refine another collection U of subsets of X (V < U) pro­

vided that for every W E V there is a U E U with W S U 

and UU = uV. 

1. Locally Subinfinite Refinable Spaces 

A collection V of subsets of a topological space X 

is said to be locally subinfinite provided for each x E X 

there is a neighborhood W of x such that every infinite 

subset of {V E V: V n W ~ ~} contains members related by 

set inclusion. For brevity we will call such spaces 

locally subinfinite refinable. Clearly, locally finite 

collections are locally subinfinite and locally subinfinite 

collections have subinfinite rank. All GO-spaces are 

locally subinfinite refinable (the open refinement con­

structed for LOTS in Lemma 3.1 in [Sc] is locally sub­

infinite and the same sort of construction works for 

GO-spaces) while the Moore plane and Bing's Example G are 

good examples of spaces which are not. The following 

lemmas provide a link between locally subinfinite collec­

tions and collections with subinfinite rank. 

Lemma 1.1. A collection of subsets of a set X with 

nonempty intersection is locally subinfinite if and only if 

it has subinfinite rank. 

Lemma 1.2. Suppose V is a collection of subsets of a 

topological space X and M c uV is maximally distinguished 

with respect to V. If V is locally subinfinite (has 
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subinfinite rank) then {St{x,V): x E M} is locally finite 

(point finite). 

Not surprisingly, many properties of paracompact 

spaces do not have locally.subinfinite analogs. The 

countable ordinals wI with the order topology is a 

countably compact locally subinfinite refinable space which 

is not compact. The product of a locally subinfinite 

refinable space and a compact space need not be locally 

subinfinite refinable. For example, wI x (wI + 1) is 

not locally subinfinite refinable. However some properties 

do remain. If V is a locally subinfinite open cover of a 

topological space X then {cl{V): V E V} and {int{cl{V»: 

V E V} are locally subinfinite covers. 

Theorem 1.3. If X is a T first countable locally2 

subinfinite refinable space then X is T3 . 

Proof. Let x € X and F be a closed subset of X,{x}. 

Suppose if U is a neighborhood of x then cl(U) n F ~ ~. 

Let {B(n): n E N} be a neighborhood base for x where if 

m < n then B{m) ~ B(n) (if x is isolated then the result 

is obvious). 

Choose nCO) E N such that B(n{O» ~ X'F and a 

z(l) E cl(B{n{O») n F. Choose an open neighborhood W(l) 

of z(l) and an n(l) E N with n(l) > nCO) such that 

B(n(l» n W(l) =~. Choose z(2) E cl(B(n(l») n F (note 

that z(2) f W{l», W(2) an open neighborhood of z(2) and 

n(2) E N with n(2) > n(l) such that B{n(2» n W(2) = ~ and 

z(l) ~ W(2). Continue to choose points z(I),z(2),.·· E F, 
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neighborhoods W(1),W(2) , ••• of z(1),z(2) , ••• respectively 

and integers n(l) < n(2) < ••• such that 

(1) if i,j E Nand i ~ j then z(i) ~ W(j) 

(2) if i E N then W(i) n B(n(i» = ~. 

Let A = {z(i): i EN}. Since A c F, it is easy to 

show that A is closed. Let V be an open locally subin­

finite refinement of {X'A} U {W(i): i EN}. For each i E N 

let V(i) E V such that z(i) E V(i). Notice that if i,j E N 

and i ~ j then z(i) ~ V(j). Let U be an open neighborhood 

of x. There is an mEN such that B(m) c U. Let S 

{i E N: n(i) ~ m} and note, for every i E S, V(i) n U ~ ~. 

Therefore {V(i): i E S} is an infinite incomparable subcol­

lection of {W E V: W n U ~ ~}. However V is locally sub­

infinite. ~hus there is a neighborhood U of x such 

that cl(U) n F = ~ and so X is T3 • 

Notice that in Theorem 1.3 we only needed countably 

locally subinfinite refinable. We do need first counta­

bility as is demonstrated by the following example, based 

on Example 100 of [SS]. 

Example 1.4. Let X = (WI x Z) x {O,l}. We topologize 

X as follows. Points of the form (a,k) where a < wl and 

k E Z'{O} are isolated. If a < w then basic open setsl 

~or (a,O) are given by B(a,y,m) [ (y, a] x {k E Z: 

Ik[ > m}] U [(y,a] x {a}] where y < a and m E z+. Basic 

neighborhoods of a and 1 are given by 

B (0, (3) {a} U [ «(3,wl ) x Z+] for 0, 

B (1, (3) {l} U [ «(3, wI) x Z-] for 1 
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where S < WI. This space is T but 0 and 1 cannot be2 

separated by open sets whose closures miss (not T • ).2 S

The points 0 and 1 do not have countable neighborhood 

bases. 

To show that X is locally subinfinite refinable let 

U be an open cover of X. Let YO'YI < WI such that 

B(O,yO) c U and B(1,y
1 

) c U' some U,U' E U. For each 

S < WI let a(S) < Sand k(S) E N be chosen such that 

B(S,a(S) ,k(S)) c V some V E U. By the pressing-down lemma 

there is a ~ < WI and an uncountable set A ~ WI such that 

for all SEA, a(S) =~. Let ~* = max{~'YO'Yl}. Since 

[O,~*] is compact, there is a finite set {ol,02,···,on} c 

[ 0 , ~ *] such tha t [0, ~ * ] = U{ (a (a 1) ,a1]: i = 1, 2 , • • • , n} . 

Since A is uncountable, there is an uncountable set A' c A 

and a k* E N such that for all SEA', k(S) = k*. The 

open cover {B ( S , ~ * , k *): SEA'} U {B (a 1 ' a (a I) ,k (a 1) ) : 

i = 1,2,· •• ,n} U {B(O,yO) ,B(I'Yl)} U {{ (e,k) (e,k) E X 

and is not in a previously defined member of the cover} 

is a locally subinfinite open refinement of U. 

If we let Y = X,{l} then Y with the subspace topology 

is T2 • S but not T locally subinfinite refinable space.3 

Along the same lines as Example 1.4 we can construct a T3 

space which is not T4 having this covering property. I 

do not know if every T2 first countable locally subinfinite 

refinable space needs to be T but this appears unlikely.4 

A space X is called discretely expandable if every 

discrete collection of subsets of X is expandable to a 

locally finite open collection [SK]. 
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Theorem 1.5. A locally subinfinite refinable space 

X is discretely expandable. 

Proof. Suppose] = {F(a): a E A} is a discrete col­

lection of subsets of X where if a,b E A and a ~ b then 

F(a) ~ F(b). For every x E X let U(x) be a neighborhood of 

x which meets at most one member of]. Let V be a locally 

subinfinite open refinement of {U(x): x E X} and for each 

a E A let G(a) U{V E V: V n F(a) ~ ~}. Note that since 

each member of V meets at most one member of ], if a,b E A 

and a ~ b then G(a) n F(b) = ~. 

Let x E X and W an open neighborhood of x such that 

incomparable subsets of {V E V: V n W ~ ~} are finite. 

Let S = {a E A: G(a) n W ~ ~} and for each a E S let 

V(a) E V such that V(a) n F(a) ~ ~ and V(a) n W ~ ~. 

Note that if a,b E S and a ~ b then V(a) and V(b) are 

incomparable. Since {V(a): a E S} is an incomparable 

subset of {V E V: V n W ~ ~}, S is finite and therefore 

{G(a): a E A} is locally finite. 

Theorem 1.3 can be thought of as a corollary to 

Theorem 1.5, since every discretely expandable T space2 

is collectionwise Hausdorff, and every collectionwise 

Hausforff, first countable space is regular. The latter 

is an unpublished result of Z. Nagy and S. Purisch, proven 

similarly to Theorem 1.3. 

Corollary 1.6. A normal locally subinfinite refinable 

space is collectionwise normal. [SKi Corollary 2.3] 
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Corollary 1.7. A T locally subinfinite refinable
2 

developable space is metrizable. [SK; Theorem 8.3] 

A T space is paracompact if and only if every open
2 

cover well ordered by set inclusion has a locally finite 

open refinement [Ma]. A collection of subsets of a topo­

logical space well ordered by set inclusion is locally 

sUbinfinite. In fact, it is such collections which stop 

locally subinfinite collections from being locally finite. 

Lemma 1.8. A Noetherian locally subinfinite cover of 

a topological space contains a locally finite subcover. 

Proof. If V is a Noetherian locally subinfinite cover 

of a topological space X then the collection of all maximal 

elements of V is a locally finite cover of X. 

Theorem 1.9. The following are equivalent for a T
2 

space x: 

(1) X is paracompact~ 

(2) every open cover of X has a point finite locally 

subinfinite open refinement~ 

(3) every open cover of X has a Noetherian locally 

subinfinite open refinement. 

In the case of T spaces we need only find a-locally3 

finite open refinements. We are, in this situation, able 

to have larger (countable) subcollections well ordered 

by set inclusion in the locally subinfinite refinements. 

Theorem 1.10. The following are equivaZent for a T3 

space x: 



TOPOLOGY PROCEEDINGS Volume 12 1987	 277 

(1) X	 is paracompact~ 

(2) every open cover of X has a point countable 

a-locally subinfinite open refinement~ 

(3) every open cover of X has an w-Noetherian a-locally 

subinfinite	 open refinement. 

Proof. Clearly, (1) ~ (2) ~ (3). Let's show that 

(3) ~ (1). Let 0 be an open cover of X and V = {V : n E N}n 

be an w-Noetherian open refinement of 0 such that V is n 

locally subinfinite for each n E N. Let n E Nand M be 
n 

a maximally distinguished subset of V • Let x E M • n n 

Since {V E V : x E V} is w-Noetherian and has subinfinite 
n 

rank, it has a countable subset W such that uW = U{V E V : n 

x E V}, say W= {W(x,n,i): i EN}. By Lemma 1.2 we know 

that {W(x,n,i): x E M } is locally finite for each i E N. n 

Thus {W(x,n,i): n E N, x E M and i E N} is a a-locally
n 

finite open refinement of 0. 

For a topological space X, c(X) = w*sup{I~I: ~ is a 

pairwise disjoint collection of open subsets of X}. The 

following lemma is readily verified. Theorem 1.12 follows 

from the lemma. 

Lemma 1.11. Let X be a topological space. 

(i) The collection {cl(U): U is open in X} is 

c(X)-Noetherian. 

(ii) If 0 is a collection of open subsets of X having 

subinfinite rank and nonempty intersections then 

{int(cl(U»: U E O} also has subinfinite rank. 
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(iii) If V is a collection of r~gular open subsets of 

X having subinfinite rank and nonempty intersection then 

there is aWe V with IWI < c(X) and uW = uV. 

Theorem 1.12. A T3 space having the Souslin property 

(c(X) = w) is Lindelof if and only if every open cover of 

X has an open a-locally subinfinite open refinement. {The 

metacompact version of this theorem is in [Grl].J 

2. Subregular Bases 

A base B for a topological space X is regular if for 

every x E X and every neighborhood U of x there is a neigh­

borhood V of x with V c U such that {B E B: B n V ~ 9 and 

B ¢ U} is finite [E]. 

Arhangel'skii Metrization Theorem. A topologieal space 

is metrizable if and only if it is a T1A space witn a regular 

base. 

A regular base for a topological space need not be
 

locally sUbinfinite. In fact, if a T space has a locally
2 

subinfinite base then it has the discrete topology. We 

need T2 since a countably infinite set with the cofinite 

topology is a Tl space having a locally subinfinite base. 

A collection ~ of subsets of a topological space X is 

said to be subregular provided for each G E ~ and x E G 

there is an open neighborhood U of x with U c G such that 

every incomparable subset of {G' E y: G' n U ~ ~ and 

G' ¢ G} is finite. Clearly, locally subinfinite collec­

tions are subregular and a regular base is subregular. 

Although subregular collections need not be locally 
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subinfinite, subregular covers do contain locally sub-

infinite subcovers. To see this let U be a subregular 

cover of a space X and M S X be maximally distinguished 

with respect to U. Then U{st(x,U): x E M} is a locally 

subinfinite subcover of U. 

Any discretization of a metric space such as the 

Michael line has a Noetherian subregular base but need not 

have a regular base. A subregular base appears to be the 

generalization of a regular base that corresponas to a 

base of subinfinite rank as a generalization of uniform 

base (point regular base). The next two theorems give a 

good indication of this. 

Theorem 2.1. Let X be a T space having a subreguZar
2 

base B. Then X is hereditarily paracompact. 

Proof. Since having a subregular base is hereditary, 

we need only show that X is paracompact. Let W be an open 

cover of X. [The following construction of a locally 

finite open refinement of W is exactly the same as Forster's 

construction of the point finite open refinement in Theorem 

3.3	 of [FG].] 

By induction choose a family {B : n < w} of subsets n 

of B and a family {M : n < w} of subsets of X such that 
n 

for all n < w: 

(1) B < W,
O 

(2) M is maximally distinguished with respect to B ,
n	 n 

(3) U{M j : j ~ n} is closed in X, 

(4) Bn+1 < {W'U {Mj : j < n}: W E W}. 
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For all n < wand x EM, we can decompose st(x,B ) into 
n n 

a finite family of directed subsets {~(x,i): i < k}. If 
- x 

i < k and ~(x,i) c W for some W E W then let V(x,i) = - x :t 

U~(x,i); otherwise choose V(x,i) E ~(x,i). 

Let V = {V(x,i): x E M and i ~ k }. Assume thato O x 

Vo,···,V have been defined and define V + {V(x,i):n n l 

x E M +l , i < k and V(x,i) ¢ {UV.: j _< n}}. Let n x - J 

V U{V: n < w}. The collection V is an open refinement 
n 

of W (see [FG]). To show that V is locally finite we make 

two observations. 

(1) The collections {UVk : k < w} is locally finite. 

(2) If k < wand x E X then there is an open neighbor­

hood of x meeting only finitely many members of V
k

• 

Clearly, these observations show that V is locally 

finite. The proof of observation 1 is similar to the proof 

that this collection is point finite in Theorem 3.3 of [FG]. 

To prove observation 2, let x E X and k = min{n < w: 

x E Vn}. 

Let y E 1'-1 and i < k such that x E V(y,i). If
k Y 

V(y,i) E B then let W V (y, i) • Otherwise let ~v E ~ (y,i) 

such that x E W. Choose an open neighborhood G of x with 

G C W such that incomparable subcollections of {B E B: 

B n G ~ ~ and B ~ W} are finite. It is straightforward to 

verify that G meets only finitely many members of V m 

where m > k. 

Suppose 0 < k. The set U{Ml : i ~ k - l} is closed, 

U{Ml : i ~ k} C U{UV l : i ~ k} and x ~ U{UV l : i < k - l}. 

Choose aWE B such that x EWe X'U{Ml : i ~ k - l} and an 
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open neighborhood G of x with G ~ W such that incomparable 

subsets of {B E B: B n G ~ ~ and B E W} are finite. Once 

again it is straightforward to verify that G meets only 

finitely many members of V. for each i < k - 1. 
1 

The Sorgenfrey line, lexicographically ordered unit 

square and the Michael line are the standard examples of 

spaces having bases of subinfinite rank. All three are 

hereditarily paracompact GO-spaces. 

Theorem 2.2. A GO-space having a base with subinfinite 

rank has a subregular base consisting of intervals. 

B

Proof. Let X be a GO-space having a base with sub-

infinite rank B. For each B E B and x E B let I(B,x) = 

U{V ~ B: V is an interval, open in X}. For each B E B let 

~(B) = {I(B,x): x E B} and note that ~(B) is a disjoint 

collection of intervals open in X with B = Uj(B). Let 

f = U{j(B): B E B}. For each G E B' let B(G) E B such that 

G E j(B). Note that for each G E S' and x E G, G = I(B(G) ,x). 

Clearly, Sf is a base for X. To see that B' has subinfinite 

rank we need only observe that if H,H' E B', H n H' ~ ~ and 

H ~ H' then B(H) ~ B(H') and note that if B,B' E Sand 

B c B' then I(B,x) ~ I(B',x) for every x E B. We will now 

show that S' is subregular. 

Let x E X and B E S' with x E B. There are points 

a,b E B such that x E int[a,b] n [a,b] c B. Suppose y is 

an infinite subset of S' such that for all G E §, 

G n int[a,b] ~ ~ and G ~ B. Since § consists of intervals, 

for each G E § either a E G or bEG. Hence there is an 
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infinite ~' ~ ~ with n~' ~~. Thus, since ~' has subinfinite 

rank, there is a G,G' E~' such that G c G'. Hence B' is 

subregular. 

Note that if the base B is a Noetherian base with sub-

infinite rank then B' is also Noetherian. 

Corottary 2.3. A GO-spaoe having a Noetherian base 

with subinfinite rank has a Noetherian subregutar base oon-

sisting of intervats. 

I do not know of an hereditarily paracompact GO-space 

which has been shown to not have a subregular base. In 

particular, does (can) a Souslin line have a subregular 

base? It is not known if every hereditarily paracompact 

space with a base of subinfinite rank must have a sub-

regular base. 

A collection ~ of subsets of a set X is said to be 

Noether provided for each P E ~, {P' E ?: PcP'} is finite 

[Ar]. Noether collections are Noetherian but Noetherian 

collections need not be Noether. Unlike the case for 

spaces with Noetherian bases, many well known spaces "do 

not have Noether bases. For example, any first countable 

T space which does not have a point countable base can notl 

have a Noether base (see Theorem 2.5 [Gr ]). Some 0= the2

more surprising properties of spaces having Noether bases 

(Noether Spaces) can be found in [M]. 

Theorem 2.4. If B is a Noether subregutar base for a 

Tl spaoe X then is a-tooatty finite. 
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Proof. Let 8 be the set of all maximal members of0 

8. Since 8 is Noetherian and subregular, 80 is locally 

finite and if B E 8'8 then there is a B' E 8 such that0 0 

B c B'. The collection 8'80 is Noetherian and subregular, 

so let 8 be the collection of all maximal members of1 

8'80 • Note that if there is an x E X'81 
then {x} is open. 

Again B is locally finite and U then
l 

if B E B'(BO 81 ) 

there is a B' E B such that B c B'. Continue in this man-
l 

ner to choose a locally finite collection B ~ B'U{Bk : n 

k < n} for each n < w such that if B E B'U{8k : k ~ n} then 

there is a B' E 8 such that B c B'. n 

Suppose that B E B'U{B : n < w}. Then for each n < w 
n 

there is aBE 8 such that B c B. Note that if n,m < w n n m 

and n ~ m then B ~ B • However, since B is Noether the n m 

collection {B' E 8: B c B'} is finite. Hence 8 = {8 : 
n 

n < w} where for each n < w, 8 is locally finite. 
n 

If a T space has a a-locally finite base then it hasl 

a a-locally finite Noether base [Gr 2]. However, Example 

1.57 of [E] is a T space with a a-locally finite base (in2 

fact countable base) which is not even paracompact. On the 

other hand, the Michael line has a Noetherian point countable 

subregular base but not a a-locally finite base. The follow­

ing corollary to Theorem 2.4 follows from Theorem 2.1 and 

the Nagata-Smirnov Metrization Theorem. 

CoroZZary 2.5. A T space is metrizabZe if and onZy2 

if it has a Noether subreguZar base. 
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Although a Noether subregular base need not be a 

regular base, does it contain one? 

Some interesting restuls concerning subinfinite rank 

do not have subregular analogs. The finite product of 

spaces having Noetherian bases with subinfinite rank has a 

Noetherian base of subinfinite rank and is therefore meta­

compact [GN]. However the Michel line ana the irrationals 

with the usual subspace topology both have Noetherian sub-

regular bases but their product is not even normal (see 

Example 5.1.31 of [E]). A base for a T space is a uniforml
 

base if and only if it is a Noetherian base of countable
 

order with subinfinite rank (see [Gr ]). Although a
2

Noetherian subregular base of countable order need not be 

a regular base it is a a-locally finite uniform base and 

if the space is T2 it is metrizable. 

It is not known if a subregular base or a base with 

subinfinite rank is preserved by a perfect mapping. Is the 

image of a locally subinfinite refinable space by a closed 

mapping locally subinfinite refinable? I am not aware of 

any significant results concerning these questions. 
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