TOPOLOGY PROCEEDINGS

Volume 12, 1987
Pages 287-294
http://topology.auburn.edu/tp/

DISPERSION POINTS AND FIXED POINTS OF SUBSETS OF THE PLANE

by
Andrzej Gutek

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

DISPERSION POINTS AND FIXED POINTS OF SUBSETS OF THE PLANE

Andrzej Gutek

During the Spring Topology Conference in 1986 Hiaefumi Katsuura asked whether there is a connected subset X of the plane with the dispersion point p such that for some non-constant function from X into itself the point p is not the fixed point of f. He also asked whether the function f can be onto. We answer both of these questions in affirmative.

Definition. A point p in a connected topological space X is said to be a dispersion point of X if each component of $\mathrm{X} \backslash\{\mathrm{p}\}$ consists of a single element, i.e. if $\mathrm{X} \backslash\{\mathrm{p}\}$ is totally disconnected.

Definition. If f is a continuous function from a space X into itself then a point x of X is said to be a fixed point of f if $\mathrm{f}(\mathrm{x})=\mathrm{x}$.

Connected spaces with dispersion points were first defined by Knaster and Kuratowski in [K.K], and were extensively studied by Duda in [D]. In [C.V.] Cobb and Voxman asked whether the dispersion point was a fixed point of any non-constant function f defined on a connected space with a dispersion point. In [K] Katsuura described a space X with a dispersion point p and a continuous nonconstant mapping f on X such that p is not a fixed point.

We modify Katsuura's construction to obtain such an example in the plane. We show that function f may be onto. In the construction we use the following theorem by Katsuura:

Theorem [K]. Suppose X is a totally disconnected space, and $\{Y(i): i \in I\}$ the collection of all quasicomponents of X . Let F be a proper closed subset of X that has a point in common with every quasi-component. Let q be the quotient map from X onto X / F. Then X / F is a connected space with the dispersion point $q(F)$.

Example 1. Let Q denote the set of rational numbers, let R denote the set of real numbers. Let C be the Cantor ternary set in the interval $[0,1]$, i.e. $C=\left\{\sum_{n=1}^{\infty} \frac{a_{n}}{3^{n}}\right.$: $a_{n}=0,2$ and $\left.n=1,2,3, \ldots\right\}$. If A is a subset of R and b is a real number, then $b+A=\{b+a: a \in A\}$ and $b * A=\{b \cdot a: a \in A\}$. If A is a subset of the plane and (x, y) is a pair of numbers then $(x, y)+A=\{(x+a, y+b):$ $(a, b) \in A\}$ and $(x, y) * A=\{(x a, y b):(a, b) \in A\}$.

Let d be a real number and let $D=\{(c, d): c \in C\}$. For any point (u, d) in the plane and (c, d) in D let $s^{+}((u, d) ;(c, d))=\{(c+|c-u| \cos t, d+|c-u| \sin t):$
$0 \leq t \leq \pi$ and $t=c+q$ for some q in $Q\}$ and $S^{-}((u, d) ;(c, d))=\{(c+|c-u| \cos t, d+|c-u| \sin t):$
$-\pi \leq t \leq 0$ and $t=c+q$ for some q in $Q\}$.
We put $\left.S^{+}((u, d) ; D)=U\left\{S^{+}(u, d) ;(c, d)\right):(c, d) \in D\right\}$ and

$$
\left.S^{-}((u, d) ; D)=u\left\{S^{-}(u, d) ;(c, d)\right):(c, d) \in D\right\}
$$

For any real number d let $[a, b](d)$ denote the set $[a, b] \cap Q$ if d is a rational number, and $[a, b] \backslash$ if d is an irrational
number. Put $S(0)=U\{\{c\} \times[0,1](c): c \in C\} U C \times\{0\} u$ $C \times\{1\}$. Let $C(1, i)=\frac{8+2 i}{27}+\frac{1}{27} * C$ and let $S(1, i)=$ $u\left\{\{c\} \times\left[\frac{1}{2}, 3\right](c): c \in C(1, i)\right\}$, where $i=1,2,3,4$.
Let $S(1)=S(1,1) \cup S(1,2) \cup S(1,3) \cup S(1,4) \cup S^{+}\left(\left(\frac{15}{54}, 3\right)\right.$;
$C(1,1) \times\{3\}) \cup S^{-}\left(\left(\frac{23}{54}, \frac{1}{2}\right) ; C(1,1) \times\left\{\frac{1}{2}\right\}\right) u$ $S^{-}\left(\left(\frac{31}{54}, \frac{1}{2}\right) ; C(1,4) \times\left\{\frac{1}{2}\right\}\right) \cup S^{+}\left(\left(\frac{39}{54}, 3\right) ; C(1,4) \times\{3\}\right)$, (see figure 1).
For convenience we write $u(1, i)=\frac{7+8 i}{54}, i=1,2,3,4$. In order to obtain $S(2)$ we repeat the construction of $S(1)$ for the sets $C \cap\left[0,3^{-n}\right]$ and $C \cap\left[\frac{2}{3}, 1\right]$ and replace in that construction the segments $\left[2^{-1}, 3\right]$ by the segments $\left[2^{-2}, 3\right]$. The figure 2 shows the set $S(0) U S(1) U S(2)$.

Formal description of $S(n), n>1$, is as follows. Put

$$
\begin{aligned}
& C(n, i)=3^{-n} * C(n-1, i) \text { if } i=1,2, \cdots, 2^{n} \text {, and } \\
& C(n, i)=\frac{2}{3}+3^{-n} * C\left(n-1, i-2^{n}\right) \text { if } i=2^{n}+1, \cdots, 2^{n+1} .
\end{aligned}
$$

Let $S(n, i)=U\left\{\{c\} \times\left[2^{-n}, 3\right](c): c \in C(n, i)\right\}$, where

$$
i=1,2, \cdots, 2^{n+1}
$$

Let $u(n, i)=3^{-n} \cdot u(n-1, i)$ if $i=1,2, \cdots, 2^{n}$, and

$$
u(n, i)=\frac{2}{3}+3^{-n} u(n-1, i) \text { if } i=2^{n}+1, \cdots, 2^{n+1} .
$$

Let $S(n)=U\left\{S(n, i): i=1,2, \cdots, 2^{n+1}\right\} \cup S^{+}((u(n, 1), 3)$;

$$
\begin{aligned}
& C(n, 1) \times\{3\}) \cup S^{-}\left(\left(u(n, 2), 2^{-n}\right) ; C(n, 1) \times\left\{2^{-n}\right\}\right) u \\
& s^{+}\left(\left(u(n, 3), 2^{-n}\right) ; C(n, 4) \times\{3\}\right) \cup \cdots \cup s^{+}\left(\left(u\left(n, 2^{n+1}\right), 3\right) ;\right. \\
& \left.C\left(n, 2^{n+1}\right) \times\{3\}\right) .
\end{aligned}
$$

Let $X=U\{S(n): n=0,1,2, \cdots\}$. Observe that any quasi-component $K(c)$ of X is the union of a segment-like set $\{c\} \times I(c)$ and $\sin \left(\frac{1}{x}\right)$-like curve emerging from $\left(\frac{4}{9}+\frac{1}{9} c, 3\right)$, where $c \in C$. By the theorem of Katsuura the quotient $Y=X / C \times\{0\}$ is a connected space and $q(C \times\{0\})$

FIGURE 2
is the dispersion point. By q we denote the quotient map from X onto Y.

Let g be a linear and order-preserving mapping from $C(n, i)$ onto $\left[0,3^{-n}\right] \cap C$ if $i \equiv 2(\bmod 4)$, and onto $\left[\frac{2}{3^{n}}, \frac{3}{3^{n}}\right] \cap$ if $i \equiv 3(\bmod 4)$, and let g be a linear and orderreversing mapping from $C(n, i)$ onto $\left[0,3^{-n}\right] \cap C$ if $i \equiv 1(\bmod 4)$, and onto $\left[\frac{2}{3^{n}}, \frac{3}{3^{n}}\right] \cap C$ if $i \equiv 0(\bmod 4)$. Let the map from x into itself be defined as follows:

$$
\begin{aligned}
& f(x)=(0,1) \text { if } x \in S(0), \\
& f(a, b)=(0,0) \text { if } b \geq \frac{5}{2}, \\
& f(a \cdot b)=\left(g(a), \frac{5}{2}-b\right) \text { if } \frac{3}{2}<b<\frac{5}{2}, \\
& f(a, b)=(g(a), 1) \text { if }(a, b) \in S(n, i) \text { and } b \leq \frac{3}{2}, \\
& f(x)=(g(c), 1) \text { if } x \in S^{-}\left(\left(u(n, i), 2^{-n}\right) ;\left(c, 2^{-n}\right)\right) \\
& \text { for some } c \text { in } C(n, i) .
\end{aligned}
$$

Let f_{q} denote a map from Y into itself induced by f. The map f_{q} is a continuous and non-constant function, and the dispersion point is not a fixed point of the map. The proof of continuity is straightforward but tedious.

Example 2. We modify the example 1 to obtain a mapping onto. Let f and X have the same meaning as in the example 1. For any point c in the Cantor set C let $D(c)$ denote the set of all the points on the segment joining $\left(\frac{4}{9}+\frac{1}{9} c, 4\right)$ and $(c, 5)$ the second coordinate of which is rational if c is rational, and irrational if c is likewise. Let

$$
\begin{aligned}
X(0)= & x \cup \cup\{D(c): c \in C\} \cup \cup\{\{c\} \times[3,4](c): \\
& c \in C(1,2) \cup C(1,3)\} \text { (see figure } 3) .
\end{aligned}
$$

Let $X(n)=(0,5)+X(n-1)$ for $n=1,2,3, \cdots$. Put $X(\infty)=$ $U\{X(n): n=0,1,2, \cdots\}$. Let F be a mapping from $X(\infty)$

FIGURE 3
into itself defined by

$$
\begin{aligned}
& F \mid X=f \\
& F(x)=(0,0) \text { if } x \in X(0) \backslash X \\
& F(x)=x-(0,5) \text { if } X \in X(n), n=1,2,3, \ldots
\end{aligned}
$$

It is easy to see that F is onto.
Let Z be the quotient space $X(\infty) / C \times\{0\}$, let q be the quotient map from $X(\infty)$ onto Z and let F_{q} be the function on Z induced by F. Observe that Z is a connected subset of the plane with the dispersion point $q(C \times\{0\}), F_{q}$ is a continuous function from Z onto itself, and the dispersion point is not a fixed point of F_{q}.

References

[C.V.] J. Cobb and W. Voxman, Dispersion points and fixed points, Amer. Math. Monthly 87 (1980), 278-281.
[D] R. Duda, On biconnected sets with dispersion points, Rozprawy Mat. (Dissertationes Math.) 37 (1964).
[K] H. Katsuura, Dispersion points and continuous functions, Topology and its Applications (to appear).
[K.K.] B. Knaster and K. Kuratowski, Sur les ensembles connexes, Fund. Math. 2 (1921), 206-255.

Tennessee Technological University
Cookeville, Tennessee 38505

