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DISPERSION POINTS AND FIXED POINTS 

OF SUBSETS OF THE PLANE 

Andrzej Gutek 

During the Spring Topology Conference in 1986 Hiaefumi 

Katsuura asked whether there is a connected subset X of 

the plane with the dispersion point p such that for some 

non-constant function f from X into itself the point p is 

not the fixed point of f. He also asked whether the func­

tion f can be onto. We answer both of these questions in 

affirmative. 

Definition. A point p in a connected topological space 

X is said to be a dispersion point of X if each comp~nent 

of X'{p} consists of a single element, i.e. if X'{p} is 

totally disconnected. 

Definition. If f is a continuous function from a 

space X into itself then a point x of X is said to be a 

fixed point of f if f(x) x. 

Connected spaces with dispersion points were first 

defined by Knaster and Kuratowski in [K.K], and were 

extensively studied by Duda in [D]. In [C.V.] Cobb and 

Voxman asked whether the dispersion point was a fixed point 

of any non-constant function f defined on a connected 

space with a dispersion point. In [K] Katsuura described 

a space X with a dispersion point p and a continuous non­

constant mapping f on X such that p is not a fixed point. 
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We modify Katsuura's construction to obtain such an 

example in the plane. We show that function f may be onto. 

In the construction we use the following theorem by 

Katsuura: 

Theorem [K). Suppose X is a totalLy disconnected 

space, and {Y(i): i E I} the collection of all quasi­

components of x. Let F be a proper cLosed subset of X that 

has a point in common with every quasi-component. Let q 

be the quotient map from X onto X/F. Then X/F is a con­

nected space with the dispersion point q(F). 

Example 1. Let Q denote the set of rational numbers, 

let R denote the set of real numbers. Let C be the Cantor 

00 an. 
ternary set in the interval [0,1), i.e. C = {\

L.n=l 3n · 
a 0,2 and n = 1,2,3,···}. If A is a subset of Rand b 

n 

is a real number, then b + A = {b + a: a E A} and 

b * A = {b • a: a E A}. If A is a subset of the plane and 

(x,y) is a pair of numbers then (x,y) + A = {(x + a,y + b): 

(a,b) E A} and (x,y) * A = {(xa,yb): (a,b) E A}. 

Let d be a real number and let D = {(c,d): c E C}. 

For any point (u,d) in the plane and (c,d) in D let 

+ 
s «U,d)i(C,d» = {(c + Ic - ulcost, d + Ic - ulsint): 

a < t < TI and t = c + q for some q in Q} and 

S-«u,d)i(C,d» = {(c + Ic - ulcost, d + Ic - ujsint): 

- TI < t < a and t = c + q for some q in Q}. 

We put S~«u,d)iD) u{S+ (u,d) i (c,d»: (c,d) E D} and 

S-( (u,d) iD) U{S- (u,d) i (c,d»: (c ,d) E D}. 

For any real number d let [a,b] (d) denote the set [a,b] n Q 

if d is a rational number, and [a,b]'Q if d is an irrational 
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nurnber. Pu t S (0) = U{ {c} x [0, 1] (c): c E C} U C x {O} U 

. 8+2 i 1{ }C xl. Let C(1,1) = ~ + 27 * C and let S(l,i)
 

U { {c} x [}, 3] (c): c E C (1 , i)}, where i 1 ,2 ,3 ,4.
 

Let S (1) = S (1 ,1) U S (1 ,2) U S (1 , 3) U S (1 , 4) U S+ ( (~~, 3) ;
 

- 23 1 1
C(l,l) x {3}) U S ((5"4'2) ;C(l,l) x {2"}) u 

- 31 1 1 + 39
S ((-s4''2)iC(1,4) x {2}) US ((54,3);C(1,4) x {3}), 

(see figure 1). 

For convenience we write u(l,i) = 7;:i, i = 1,2,3,4. 

In order to obtain S(2) we repeat the construction of S(l) 

-n 2for the sets C n [0,3 ] and C n [3,1] and replace in that 

construction the segments [2-1 ,3] by the segments [2-2,3]. 

The figure 2 shows the set 8(0) U 8(1) U 8(2). 

Formal description of 8(n), n > 1, is as follows. Put 

C (n, i) 3-n * C(n-l,i) if i = 1,2, ••• ,2n , and 

2 n n n n+1
c(n,i) -

3 
+ 3- * C(n-l,i-2 ) if i = 2 +1,···,2 . 

Le t S (n , i ) = U{ {c} x [ 2 - n , 3] (c): c E C (n , i) }, where 

1. = 1 , 2 , ••• , 2n +l . 

Let u(n,i) = 3-n • u(n-l,i) if i = 1,2, •• ·,2
n

, and 

u(n,i)	 = f + 3-n u(n-1,i) if i = 2n+1, ••• ,2n+1 • 

. n+l +
Le t S (n) = U{8 (n , i): 1 = 1, 2 , • • • , 2 } U s (( u (n , 1) I 3) ; 

C (n , l) x {3}) U S- ( (u (n , 2) , 2 -n) ; C (n I 1) x {2 -n }) U 

8 + ( (u (n , 3) , 2 -n) ; C (n I 4 ) x {3}) U ••• U S+ ( (u (n , 2n +1 ) , 3) ; 

C(n,2n + l ) x {3}). 

Let X = U{S(n): n = 0,1,2,···}. Observe that any 

quasi-component K(c) of X is the union of a segment-like 

set {c} x I(c) and sin(!)-like curve emerging from x 

(94 
+ 91 

c,3), where c E C. By the theorem of Katsuura the 

quotient Y = X/C x {OJ is a connected space and q(C x {OJ) 
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FIGURE 2
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is the dispersion point. By q we denote the quotient map 

from X onto Y. 

Let g be a linear and order-preserving mapping from 

C(n,i) onto [0,3-n ] n C if i = 2 (mod4) , and onto 

[~,~] n C if i = 3 (mod4) , and let g be a linear and order­
3

n 
3

n 

reversing mapping from C(n,i) onto [0,3-n ] n C if i _ 1 (mod4") , 

and onto [2,2-] 
3

n 
3

n 
n C if i = o(mod4) • Let the map f from X 

into itself be defined as follows: 

f(x) (0,1) if x E 8(0), 

5
f(a,b) (0,0) if b > 2' 

f(a"b) (g(a),~ - b) if ~ < b < ~, 
3

f (a, b) (g (a) , 1) if (a, b) E 8 (n , i) and b .::. 2' 

f(x) = (g(c),l) if x E 8-((u(n,i),2-n )i(C,2-n » 

for some c in C(n,i). 

Let f denote a map from Y into itself induced by f. q 

The map f is a continuous and non-constant function, and 
q 

the dispersion point is not a fixed point of the map. 

The proof of continuity is straightforward but tedious. 

Example 2. We modify the example 1 to obtain a mapping 

onto. Let f and X have the same meaning as in the example 

1. For any point c in the Cantor set C let D(c) denote 

the set of all the points on the segment joining (~+ ~ c,4) 

and (c,S) the second coordinate of which is rational if c 

is rational, and irrational if c is likewise. Let 

X(O) = X U U{D(c): c E C} U U{{c} x [3,4] (c): 

c E C(1,2) U C(1,3)} (see figure 3). 

Let X(n) = (0,5) + X(n-l) for n = 1,2,3,···. Put X(oo) 

U{X(n): n = 0,1,2,···}. Let F be a mapping from X(oo) 
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into itself defined by 

Fix = f 

F (x) (0,0) if x E X (O )'X 

F(x) x - (0,5) if x E X(n), n = 1,2,3,··· 

It is easy to see that F is onto. 

Let Z be the quotient space X{oo)/C x {O}, let q be the 

quotient map from X(oo) onto Z and let F be the function on 
q 

Z induced by F. Observe that Z is a connected subset of 

the plane with the dispersion point q{C x {O}), F is a q 

continuous function from Z onto itself, and the dispersion 

point	 is not a fixed point of F • q 
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