TOPOLOGY PROCEEDINGS Volume 12, 1987

Pages 295–298

http://topology.auburn.edu/tp/

ANOTHER ALTERNATIVE PROOF OF EFFROS' THEOREM

by

Aarno Hohti

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ANOTHER ALTERNATIVE PROOF OF EFFROS' THEOREM

Aarno Hohti¹

1. Introduction

After its discovery by Ungar [8] in 1975, the so-called *Effros theorem* has become a central tool in the study of homogenous continua. (See e.g. [2], [7].) This important result (actually a corollary to the original result in Effros [4]) states that if a Polish transformation group G acts transitively on a Polish space X, then the evaluation map $T_x: G + X$, given by $T_x(g) = g(x)$, is open for every $x \in X$. Stated in other terms, close points can be mapped to each other by homeomorphisms close to the identity map.

Effros' original proof used a Borel selection argument. An elementary straightforward proof was given by F. D. Ancel in [1]. The author presented a similar (independent) proof in Prague in January 1984; afterwards Jiří Vilímovský noted that it had similarity with the argument used by I. M. Dektjarev [3] for his result on almost open maps. In this note we present a proof of Effros' theorem based on Dektjarev's result. The most important case of this theorem stating that for a compact homogeneous metrizable space X, the evaluation map $T_x: H(X) \rightarrow X$ is open for every $x \in X$, would follow almost immediately, while in the general case one needs a simple additional argument.

¹This paper was written during the author's stay at the University of Wroclaw in May-June 1987, supported by an exchange scholarship between the Polish Academy of Science and the Academy of Finland.

2. Preliminaries

In this note, X denotes a Polish space, and G denotes a Polish group acting transitively on X. We use on G the natural uniformity induced by the neighbourhoods of the identity. If μX , νY are uniform spaces, then a map f: $\mu X + \nu Y$ is called *uniformly almost open* if for every $\mathcal{U} \in \mu$ there is a $\mathcal{V} \in \nu$ such that

 $\overline{f[St(x, l)]} \supset St(f(x), l)$

for all $x \in X$. Likewise, such an f is called *uniformly* open if the above condition without closure bar is satisfied. A uniform space μX is called *supercomplete* (see [5]), if the uniform hyperspace $H(\mu X)$ of all closed subsets of X, with the Hausdorff uniformity, is complete. A complete metric space is supercomplete.

Let us now state Dektjarev's theorem.

Theorem 2.1 ([3]). A uniformly almost open (multivalued) mapping of a supercomplete uniform space into a uniform space, with closed graph, is uniformly open.

3. The Result

In this section we give a short proof of Effros' theorem. With the help of Dektjarev's theorem, the arguments needed reduce to mere observations. In this way, Effros' theorem becomes a variant of the open mapping theorem for topological groups (see [6], p. 213), where one of the groups is replaced by a homogeneous space.

Theorem 3.1. Let X be a Polish space, and let G be a Polish transformation group acting transitively on X.

Then the evaluation map $T_x: G \rightarrow X$ is open for every $x \in X$.

Proof. First we shall prove that given any nonempty open set $B \subset G$, then $int\overline{T_x[B]} \neq \emptyset$. As G is separable, there exist g_1, g_2, \cdots such that $G = \bigcup\{g_n B: n \in N\}$. Hence,

 $X = T_{X}[G] = \bigcup \{ \overline{T_{X}[g_{n}B]} : n \in N \}.$ Since X is Polish, it follows from Baire's Category Theorem that for some k \in N the set $\overline{T_{X}[g_{k}B]}$ has a nonempty interior. Since g_{k} is a homeomorphism, we get $\operatorname{int}_{X}\overline{T_{X}[B]} \neq \emptyset.$

Next we shall prove that in fact $x \in \operatorname{int}_{X} \overline{T_{x}[B]}$ for any nonempty open $B \subset G$. Let V be a symmetric neighbourhood of the identity e in G such that $V^{2} \subset B$. (We can assume that B is a neighbourhood of e.) Let $y \in \operatorname{int}_{X} \overline{T_{x}[V]}$. Then there exists a sequence (h_{n}) of elements of V with $h_{n}(x) \neq y$. But then $h_{k}(x) \in \operatorname{int}_{X} \overline{T_{x}[V]}$ already for some k and consequently

 $x \in h_k^{-1}[int_X \overline{T_X[V]}] = int_X \overline{T_X[h_k^{-1}V]} \subset int_X \overline{T_X[B]},$ as required. It follows that for any $g \in G$, we have $g(x) \in int_X \overline{T_X[gB]}$. Choose a complete compatible metric ρ for G, and define a new map $T'_x: G \neq G \times X$ by setting $T'_x(g) = (g,g(x))$. Let l' be a uniform cover of (G,ρ) . Then there is $\varepsilon > 0$ such that the balls $B_\rho(g,\varepsilon)$ refine l'. For each $g \in G$, let $W_g = B_\rho(g,\varepsilon/2)$, and note that by the above there is an open set $V_g \subset X$ such that $g(x) \in V_g \subset \overline{T_X[W_g]}$. Consider the cover l' of $T'_x[G]$ formed by the sets $(W_g \times V_g)$ $\cap T'_x[G]$. As $T'_x[G]$ is metrizable and thus paracompact, l'is a uniform cover in the fine uniformity $\mathcal{J}(T'_x[G])$. To show that T'_x is uniformly almost open, it is enough to show that $\operatorname{St}(\operatorname{T}'_{\mathbf{X}}(g), V) \subset \operatorname{\overline{T}'_{\mathbf{X}}(\operatorname{B}_{\rho}(g, \varepsilon)]}$ for all $g \in G$. To see this, suppose that $(\operatorname{W}_{g} \times \operatorname{V}_{g}) \cap (\operatorname{W}_{h} \times \operatorname{V}_{h}) \neq \emptyset$. Then clearly $\operatorname{W}_{h} \subset \operatorname{B}_{\rho}(g, \varepsilon)$, and thus $\operatorname{V}_{h} \subset \operatorname{\overline{T}_{\mathbf{X}}(\operatorname{W}_{h})} \subset \operatorname{\overline{T}_{\mathbf{X}}(\operatorname{B}_{\rho}(g, \varepsilon))}$, from which the claim follows. On the other hand, (G, ρ) is supercomplete, and it is obvious that (by continuity of the action of G on X) $\operatorname{T}'_{\mathbf{X}}$ has closed graph. Therefore, $\operatorname{T}'_{\mathbf{X}}$ is (uniformly) open by Dektjarev's theorem. But then $\operatorname{T}_{\mathbf{X}}$ is open, too.

Acknowledgement. The author is grateful to K. Omilianowski for a useful discussion.

References

- F. D. Ancel, An alternative proof and applications of a theorem of E. G. Effros, Michigan J. Math. 34:1 (1987), 39-55.
- J. J. Charatonik and T. Maćkowiak, Around Effros' theorem, Trans. Amer. Math. Soc. 298:2 (1986), 579-602.
- [3] I. M. Dektjarev, A closed graph theorem for ultracomplete spaces, Dokl. Akad. Nauk. Sov. 154 (1964), 771-773 (Russian).
- [4] E. G. Effros, Transformation groups and C*-algebras, Ann. of Math. 81:2 (1965), 38-55.
- [5] J. R. Isbell, Uniform spaces, American Mathematical Society, Rhode Island, 1964.
- [6] J. L. Kelley, General topology, Van Nostrand, 1955.
- [7] J. T. Rogers, Jr., Homogeneous continua, Topology Proc. 8 (1983), 213-233.
- [8] G. S. Ungar, On all kinds of homogeneous spaces, Trans. Amer. Math. Soc. 212 (1975), 393-400.

University of Helsinki

SF-00100 Helsinki, Finland