TOPOLOGY PROCEEDINGS

Volume 12, 1987 Pages 299–308

http://topology.auburn.edu/tp/

A NOTE ON RIM-LINDELOF LOCALLY CONNECTED NORMAL MOORE SPACES

by

Nobuyuki Kemoto

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A NOTE ON RIM-LINDELÖF LOCALLY CONNECTED NORMAL MOORE SPACES

Nobuyuki Kemoto

Dedicated to Professor Yukihiro Kodama on his 60th birthday

1. Introduction

It is known that locally connected, rim-compact, normal Moore spaces are metrizable (in fact it was proved that locally connected, rim-compact, normal submetacompact spaces are paracompact), see [B1]. In this paper, we shall prove that under $2^{\omega} < 2^{\omega_1} < 2^{\omega_2}$ locally connected, rim-Lindelöf, normal, submetaLindelöf spaces of character $\leq 2^{\omega}$ are paracompact and that under $2^{\omega} < 2^{\omega_1}$ locally connected, rim-Lindelöf, normal, submetaLindelöf spaces of character $\leq 2^{\omega}$ and tightness $\leq \omega$ are paracompact (thus locally connected, rim-Lindelöf, normal Moore spaces are metrizable if $2^{\omega} < 2^{\omega_1}$ is assumed).

First we review topological and set theoretical notations. All topological spaces are assumed to be regular T_1 . A subset S of a topological space is said to be *normalized* if for every S' \subset S, S' and S - S' can be separated by disjoint open sets. A subset S of a topological space is said to be *separated* if for every x of S there is a neighborhood U_x of x such that {U_x: x \in S} is disjoint. For a point x of a space X, $\chi(x,X)$ denotes the least infinite cardinality κ such that x has a neighborhood base of cardinality $\leq \kappa$. For a cardinal κ , a space is κ -*Lindelöf* if every open cover has a subcover of cardinality $\leq \kappa$. Note that ω -Lindelöf is Lindelöf in the usual sense.

A space is submetaLindelöf if for every open cover, there is a countable family $\{\mathcal{U}_n: n \in \omega\}$ of open covers refining it such that for every x in X there is an n in ω such that $|(\mathcal{U}_n)_X| \leq \omega$, where $(\mathcal{U}_n)_X = \{U \in \mathcal{U}_n: x \in U\}$ and |A| denotes the cardinality of A for every set A.

A space is *rim-K-Lindelöf* if every point has a neighborhood base consisting of open sets with K-Lindelöf boundaries.

A space is κ -compact if there is no closed discrete subspace of cardinality κ .

For an ordinal α and a set X, α X denotes the set of all functions from α to X and X^{α} denotes the cardinality of α X. Furthermore ${}^{<\alpha}$ X denotes the set $\cup_{\beta<\alpha}{}^{\beta}$ X and X ${}^{<\alpha}$ denotes the cardinality of ${}^{<\alpha}$ X. For a cardinal κ , $[X] {}^{\leq \kappa}([X] {}^{<\kappa})$ denotes the set $\{Y \subset X: |Y| \leq \kappa\}$ ($\{Y \subset X: |Y| < \kappa\}$, respectively). A subset of an ordinal is said to be *club* if it is closed in the ordinal with the order topology and unbounded in it. For a function f, f|A denotes the restriction of f to A. For other set theoretical or topological notions or notations, see [E], [J] and [K].

2. Results

To prove our results, first we introduce Φ and N, and present basic facts without proof. Here Φ was introduced in [DS]. For further reference, see Ch. 14 of [Sh]. 1. Definitions. Let κ be an uncountable regular cardinal, λ be a cardinal, and S be a subset of κ .

 $\Phi(\kappa,\lambda,S)$ denotes the following assertion:

For every F: ${}^{<\kappa}\lambda \rightarrow 2$, there exists a g in ${}^{\kappa}2$ such that for every f in ${}^{\kappa}\lambda$, { $\alpha \in S: F(f|\alpha) = g(\alpha)$ } is stationary in κ . Incidentally such S must be stationary in κ , if $\phi(\kappa,\lambda,S)$ Furthermore when λ is an infinite cardinal, we define

N(κ , λ ,S) as follows:

For every topological space X and every normalized sequence $\{x_{\alpha}: \alpha \in S\}$ of distinct points, if for every α in S, $\chi(x_{\alpha}, X) \leq \lambda$, then there is a stationary subset S' of S such that $\{x_{\alpha}: \alpha \in S'\}$ is separated.

The proofs 1) and 2) of the following lemma are easy by the definition of Φ . The proofs of 3) and 4) are similar to [DS], and the proofs of 5) and 6) are also similar to [Ta].

From now on we always assume that $\boldsymbol{\kappa}$ is an infinite cardinal.

2. Lemma. The following results hold:

1) If $S \subset S' \subset \kappa^+$ and $\Phi(\kappa^+, 2, S)$ hold, then so does $\Phi(\kappa^+, 2, S')$.

2) If S is a stationary subset of κ^+ , then $\Phi(\kappa^+, 2, S)$ holds iff $\Phi(\kappa^+, 2, S \cap C)$ holds for every club C of κ^+ iff $\Phi(\kappa^+, 2, S \cap C)$ holds for some club C of κ^+ .

3) If $2^{\kappa} < 2^{\kappa^{+}}$ holds, then so does $\phi(\kappa^{+}, 2, \kappa^{+})$. 4) Let $\{S_{\alpha}: \alpha < \kappa\}$ be a family of subsets of κ^{+} . If $\phi(\kappa^{+}, 2, U_{\alpha < \kappa}S_{\alpha})$ holds, then there is an $\alpha < \kappa$ such that $\phi(\kappa^{+}, 2, S_{\alpha})$ holds. 5) For every subset S of κ^+ , $\varphi(\kappa^+, 2, S)$ holds iff so does $\varphi(\kappa^+, 2^{\kappa}, S)$.

6) For every subset S of κ^+ , if $\varphi(\kappa^+,2^K,S)$ holds, then so does $N(\kappa^+,2^K,S)$.

Next, applying the techniques of [B1], [B2] and the previous lemma, we shall prove our theorems. The next lemma is proved in [A].

3. Lemma ([A]). Let X be a submetaLindelöf, κ^+ -compact space. Then X is κ -Lindelöf.

4. Lemma. $[2^{\kappa} < 2^{\kappa^+}]$ Let X be a locally connected normal space of character $\leq 2^{\kappa}$, and let U be a family of $\leq \kappa$ -many open subsets with κ -Lindelöf boundaries. Then $\partial(UU)$ is κ^+ -compact.

Proof. Assume indirectly that there is a closed discrete subset $\{x_{\alpha} : \alpha \in \kappa^{+}\}$ of $\partial(U/I)$. By $2^{\kappa} < 2^{\kappa^{+}}$ and 3), 5) and 6) of 2, there is a stationary subset S of κ^{+} such that $\{x_{\alpha} : \alpha \in S\}$ is separated. Since X is normal and locally connected, there is a discrete family $\{B_{\alpha} : \alpha \in S\}$ of connected open sets such that $x_{\alpha} \in B_{\alpha}$ for each $\alpha \in S$. Since the cardinality of I/I does not exceed κ , there are a stationary subset S' of S and a U in I/I such that $B_{\alpha} \cap U \neq 0$ for every α in S'. Thus $B_{\alpha} \cap \partial U \neq 0$ for α in S', by the connectedness of B_{α} 's. This contradicts to the κ -Lindelöfness of ∂U .

5. Lemma ([B2]). Let X be a submetalindelöf space and E be a subset of X such that each x in X has a neighborhood U_x such that the cardinality of U_y \cap E is of $\leq <$. Then E is a union of at most κ -many closed discrete subsets of X.

6. Lemma. $[2^{\kappa} < 2^{\kappa^+}]$ Let X be a locally connected, submetaLindelöf, normal space of character $\leq 2^{\kappa}$, and K be a connected closed subspace of X. If U is an open cover of K of cardinality κ^+ such that the boundary of each member of U is κ -Lindelöf, then there is a subfamily of U which covers K and is of cardinality $\leq \kappa$.

Proof. Assume indirectly that l' has no subcover of K of cardinality $\leq \kappa$. Then by using induction on κ^+ , we may assume that U is $\{U_{\alpha}: \alpha < \kappa^{+}\}$ such that $K \cap (U_{\alpha} - U_{\beta < \alpha}U_{\beta})$ ≠ 0 for each α < κ^+ . Since K is connected, fix $x_{\alpha} \in cl(K \cap M)$ $U_{\beta \leq \alpha} U_{\beta}$) - $U_{\beta \leq \alpha} U_{\beta}$ for each $\alpha \in \kappa^+$. Let $f(\alpha) = \min\{\beta < \kappa^+:$ $\mathbf{x}_{\alpha} \in \mathbf{U}_{\beta}$ for each $\alpha < \kappa^{+}$, then $\mathbf{C} = \{\alpha < \kappa : \forall \beta < \alpha(\mathbf{f}(\beta) < \alpha))\}$ is club in κ^+ . Then points of E = {x_a: $\alpha \in C$ } are all distinct. Then $U' = U \cup \{X - K\}$ is an open cover of X and each member of U' meets E at most \leq_{K} -many points. Hence by 5, E is a union of at most k-many closed discrete subsets, say $E = U_{\beta < \kappa} E_{\beta}$, where E_{β} 's are closed discrete. Let $C_{\beta} = \{ \alpha \in C : \mathbf{x}_{\alpha} \in E_{\beta} \}$. Since $2^{\kappa} < 2^{\kappa^{+}}$ holds, so does $\Phi(\kappa^+,2,\kappa^+)$ by 3) of 2. Then by 2) of 2, $\Phi(\kappa^+,2,C)$ holds. Again by 4) of 2, $\Phi(\kappa^+, 2, C_{\rho})$ holds for some $\beta < \kappa$. Finally by 5) and 6) of 2, $N(\kappa^+, 2^{\kappa}, C_{\beta})$ holds. Hence there is a stationary subset S of C_R such that $\{x_{\alpha}: \alpha \in S\}$ is separated. Since X is normal and locally connected, take a discrete family {B $_{\alpha}$: $\alpha \in S$ } of connected open sets such that $\mathbf{x}_{\alpha} \in \mathbf{B}_{\alpha}$ for every $\alpha \in \mathbf{S}$. Since for every $\alpha \in \mathbf{S}$, $\mathbf{x}_{\alpha} \in \mathbf{S}$ cl(U $_{\beta < \alpha}$ U $_{\beta}$), we can define a regressive function g on S

(i.e. $g(\alpha) < \alpha$ for each $\alpha \in S$) such that $U_{g(\alpha)} \cap B_{\alpha} \neq 0$. Hence by the pressing down lemma, there are a stationary subset S' and S and a $\gamma < \kappa^+$ such that $g(\alpha) = \gamma$ for every $\alpha \in S'$. By the connectedness of B_{α} 's, $B_{\alpha} \cap \partial U_{\gamma} \neq 0$ for $\alpha \in S$ and $\alpha > \gamma$. But this contradicts to the κ -Lindelöfness of ∂U_{γ} .

7. Theorem. $[2^{\kappa} < 2^{\kappa^+} < 2^{\kappa^{++}}]$ Let X be a connected, locally connected, rim- κ -Lindelöf, submetaLindelof, normal space of character $\leq 2^{\kappa}$. Then X is κ -Lindelöf.

Proof. To prove this theorem, we shall show that such a space is κ^+ -compact. Then by 3, it is κ -Lindelöf. Assume that such X is not κ^+ -compact. Then there is a closed discrete subspace $\{x_{\alpha}: \alpha < \kappa^{+}\}$. By $2^{\kappa} < 2^{\kappa^{+}}$ and the fact that X is normal and of character $\leq 2^{\kappa}$, there is a stationary subset S of κ^+ such that E = {x_{$\alpha}: <math>\alpha \in S$ } is separated. Apply-</sub> ing normality, local connectedness and rim-K-Lindelöfness, take a discrete family $\mathcal{U} = \{ U_{\alpha} : \alpha \in S \}$ of connected open sets such that ∂U_{α} is K-Lindelöf and $\mathbf{x}_{\alpha} \in \mathbf{U}_{\alpha}$ for each $\alpha \in S$. Since X is locally connected and rim-K-Lindelöf, take a family β of connected open sets with κ -Lindelöf boundaries such that $X - E = \bigcup \beta$. By the connectedness of X, for α and α' of S, fix $\beta(\alpha, \alpha') \in [\beta]^{<\omega}$, say $\{B_{0}, \dots, B_{n}\}, \{B_{1}, \dots, B_{n}\}, \{B_{1}, \dots, B_{n}\}, \{B_{n}, \dots,$ such that $B_{0} \cap U_{\alpha} \neq 0$, $B_{n} \cap U_{\alpha}$, $\neq 0$ and $B_{i} \cap B_{i+1} \neq 0$ for i \in n. Let U_0 be the family $U \cup \{\beta(\alpha, \alpha'): \alpha, \alpha' \in S\}$ of $\leq \kappa^+$ -many connected open sets with κ -Lindelöf boundaries. Then UU_0 is connected. Then applying 4 to $2^{\kappa^+} < 2^{\kappa^{++}}$, $\partial (U_0)$ is κ^{++} -compact. By submetaLindelöfness and 3, $\partial (U U_0)$ is κ^+ -Lindelöf. Hence there is a family U_1 of

 κ^+ -many connected open (in X) sets with κ -Lindelöf boundaries such that $UU_1 \supset \partial(UU_0)$ and $UU_1 \cap E = 0$. Define $K = cl(UU_0)$, then K is connected closed. Then $U_2 = U_0 \cup U_1$ covers K and $|U_2| \leq \kappa^+$, but $U(U_2 - U) \cap E = 0$. Thus by 6, there is a subfamily of U_2 which covers K and is of cardinality $\leq \kappa$. Hence there is a subfamily of U which covers E and is of cardinality $\leq \kappa$. But this contradicts to $|E| = \kappa^+$. The theorem is proved.

8. Corollary. $[2^{\omega} < 2^{\omega_1} < 2^{\omega_2}]$ Let X be a connected, locally connected, rim-Lindelöf, submetaLindelöf, normal space of character $\leq 2^{\omega}$. Then X is Lindelöf.

9. Corollary. $[2^{\kappa} < 2^{\kappa^+} < 2^{\kappa^{++}}]$ Let X be a locally connected, rim- κ -Lindelöf, submetaLindelöf, normal space of character $\leq 2^{\kappa}$. Then X is a free union of κ -Lindelöf subspaces.

Proof. Apply 7 in each component.

10. Corollary. $[2^{\omega} < 2^{\omega_1} < 2^{\omega_2}]$ Let X be a locally connected, rim-Lindelöf, submetaLindelöf, normal space of character $\leq 2^{\omega}$. Then X is a free union of Lindelöf subspaces. Hence X is strongly paracompact.

11. Theorem. $[2^{\kappa} < 2^{\kappa^+}]$ Let X be a connected, locally connected, rim- κ -Lindelöf, submetaLindelöf, normal space of character $\leq 2^{\kappa}$ and tightness $\leq \kappa$ (especially, of character $\leq \kappa$). Then X is κ -Lindelöf.

Proof. Let l' be a cover of X by connected open sets with κ -Lindelöf boundaries. By induction on $\alpha < \kappa^+$, we

306

shall define $\mathcal{U}_{\alpha} \in [\mathcal{U}]^{\leq \kappa}$ such that $\cup \mathcal{U}_{\alpha}$ is connected and $\operatorname{cl}(\cup \mathcal{U}_{\alpha}) \subset \cup \mathcal{U}_{\alpha+1}$. Assume that for every $\beta < \alpha$, \mathcal{U}_{β} has been defined. If α is limit, put $\mathcal{U}_{\alpha} = \cup \{\mathcal{U}_{\beta}: \beta < \alpha\}$. Then it is easy to show that $\cup \mathcal{U}_{\alpha}$ is connected using the connectedness of $\cup \mathcal{U}_{\beta}$ for every $\beta < \alpha$. Assume $\alpha = \beta + 1$. Since \mathcal{U}_{β} 's are of cardinality $\leq \kappa$, $\partial (\cup \mathcal{U}_{\beta})$ is κ -Lindelöf by 3 and 4. Thus there is a \mathcal{U}' in $[\mathcal{U}]^{\leq \kappa}$ such that \mathcal{U}' covers $\partial (\cup \mathcal{U}_{\beta})$ and for every \cup in \mathcal{U}' , $\cup \cap \partial (\cup \mathcal{U}_{\beta}) \neq 0$ holds. Put $\mathcal{U}_{\alpha} = \mathcal{U}_{\beta} \cup \mathcal{U}'$. Then it is easy to show that $\cup \mathcal{U}_{\alpha}$ is connected. Thus we have defined \mathcal{U}_{α} for every $\alpha < \kappa^{+}$.

Since X is of tightness $\leq \kappa$, cl(U(U{ $\{U_{\alpha}: \alpha < \kappa^{+}\})$) = U{ $\{U|U_{\alpha}: \alpha < \kappa^{+}\}$. Therefore it is clopen in X. Thus by the connectedness of X, U{ $\{U_{\alpha}: \alpha < \kappa^{+}\}$ is a cover of X and of cardinality $\leq \kappa^{+}$. Then by 6, it has a subcover of cardinality $\leq \kappa$. Thus the theorem is proved.

Using 11, we can prove similar results of 8, 9, and 10 under the assumption $2^{\kappa} < 2^{\kappa^{+}}$ (or $2^{\omega} < 2^{\omega_{-}1}$). In particular as a corollary, we can prove:

12. Corollary. $[2^{\omega} < 2^{\omega_1}]$ Locally connected, rim-Lindelöf, normal Moore spaces are strongly paracompact (thus metrizable).

Remark. Assume $\omega_1 < 2^{\omega}$ and the Martin's axiom. Then the bubble space derived from a Q-set of reals (see [T]) is locally connected, rim-Lindelöf, normal, non-metrizable Moore space. But $2^{\omega} = 2^{\omega_1}$ holds.

Acknowledgement

I am grateful to the referee of the present paper whose critical remarks have led me to an improvement of the original version.

References

- [A] C. E. Aull, A generalization of a theorem of Aquaro, Bull. Austral. Math. Soc. 9 (1973), 105-108.
- [B1] Z. Balogh, Paracompactness in normal, locally connected, rim-compact spaces, Top. and its Appl. 22 (1986), 1-6.
- [B2] ____, Paracompactness in locally Lindelöf spaces, Canad. J. Math. 38 (1986), 719-727.
- [CZ] F. Chaber and P. Zenor, On perfect subparacompactness and a metrization theorem for Moore spaces, Topology Proc. 2 (1977), 401-407.
- [DS] K. J. Devlin and S. Shelah, A weak version of \diamond which follows 2 $^{\circ}$ $^{\circ}$ $^{\circ}$ $^{\circ}$ 1, Israel J. Math. 29 (1978), 239-247.
- [E] R. Engelking, General topology, Polish Scientific Publishers, Warsawa, (1977).
- [G] G. Gruenhage, Paracompactness in normal, locally connected, locally compact spaces, Topology Proc. 4 (1979), 393-405.
- [J] T. Jech, Set theory, Academic Press (1978).
- [K] K. Kunen, Set theory, North-Holland (1980).
- [Sh] S. Shelah, Proper forcing, Lecture Notes in Mathematics No. 940, Springer Verlag (1982).
- [S] R. M. Stephenson, Initially K-compact and related spaces, Handbook of Set Theoretic Topology, North-Holland (1984), 603-632.
- [T] F. D. Tall, Set-theoretic consistency results and topological theorems concerning the normal Moore space conjecture and related problems, Diss. Math. 148 (1977).

[Ta] A. D. Taylor, Diamond principles, ideals and the normal Moore problem, Canad. J. Math. 33 (1981), 282-293.

Ryukyu University

Nishihara-cho, Okinawa, Japan