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POINT-COUNTABLE COVERS
 

AND k-NETWORKS
 

Yoshio Tanaka 

Introduction 

Let X be a space, and let ~ be a cover (not necessarily 

open or closed) of X. Recall that ~ is a k-network if when

ever K c U with K compact and U open in X, then K c U~/ C U 

for some finite ~/ c~. Such covers have played a role in 

~ -spaces [23] (i.e., spaces with a countable k-network)o 

and ~-spaces [26] (i.e., spaces with a a-locally finite 

k-network) . 

A cover ~ of X is called a cs-network [17], if when

ever {x } is a sequence converging to a point x E X and U n 

is a nbd of x, then {x} U {x ; m > n} c P c U for some 
m -

n E N and some P E~. Spaces with a countable cs-network, 

or cs-a-spaces [18] (i.e., spaces with a a-locally finite 

cs-network) were studied in [9], [12], [17], and [18], etc. 

For a cover ~ of X, we shall consider the following 

modifications of k-networks or cs-networks. 

(e ) If {x } is a sequence converging to a pointl n 

x E X and U is a nbd of x, then P c U, P 3 x, and P contains 

a subsequence of {x } for some P E ~. 
n 

(C ) Same as (C ) , but without requiring P 3 x.2 l 

(C ) If K c X - {x} with K compact and x E X, then3

K c U~/ C X - {x} for some finite ~/ c ~. 
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Every closed k-network ? (i.e., k-network consisting 

of closed sets) satisfies (C ), (C ) implies (C ), andl l 2

every k-network ? satisfies (C ) and (C ).2 3

A cover satisfies (C ) is called a cs*-network inl
 

[14]. Let? be a point-countable (i.e., every point is in
 

at most countably many P E ?) cover. Then? satisfies 

(C ) if and only if ? is a wcs-network in the sense of2 

[25] (equivalently, Fcs-network in the sense of [12]). 

Spaces with a point-countable k-network, and spaces with a 

point-countable cover satisfying (C ) were studied in [15],3

where the latter condition was labeled (1.4) .
P 

In Section 1, we show that each of the following con

ditions implies that X has a point-countable k-network. 

(1) X has a point-countable weak base. 

(2) X is the closed image of an ~-space. 

(3) X is the quotient, Lindelof (i.e., each fiber is 

Lindelof) image of a k-and-~-space. 

(4) X is dominated by ~-spaces. 

In Section 2, we show that a sequential (resp. 

Frechet; first countable; Lasnev) space with a point-counta

ble cover satisfying (C ) is precisely the quotient (resp.l 

pseudo-open; open; closed) s-image of a metric space. 

In Section 3, we prove that a space (resp. completely 

regular space) is a Moore space if and only if it is a 

e-refinable w~-space (resp. a strict p-space) with a 

point-countable cover satisfies (C ). In particular, a3

strict p-space with a point-countable k-network is a Moore 

space. 
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The definitions of the spaces, maps etc. appearing in 

the above results will be respectively given in Sections 

dealing with these results. 

We assume that all spaces are regular, T and alll , 

maps are continuous and onto. 

1.	 Point-Countable k-Networks 

In view of [4; Theorem 3.5], we have 

Lemma 1.1. Every compact space with a point-countable 

cover satisfying (C ) is metrizable.3 

A collection {A ; a E A} of subsets of X is called a
 

hereditariZy closure-preserving, if U{B ; a E AI}

a
 

U{B; a E AI} for any AI c A and B c A~ for each a E AI.
 
a	 a ~ 

Proposition 1.2. (1) Let P be a point-countable cover 

of X. Then ~ is a k-network if and only if P satisfies 

(C ), and each compact subset of X is sequentially compact.2

(2) Let P be a a-hereditarily cZosure-preserving cover 

of X. Then ~ is a k-network if and only if ~ satisfies 

Proof. (1) By Lemma 1.1, every compact space with a 

point-countable k-network is metrizable, hence sequentially 

compact. Thus the "only if" part holds. To prove the 

"if" part, let K be compact and U be open in X with K c U. 

For each x E X, let {P E Pi x E P c U} = {Pn(x); n EN}. 

Then K is covered by some finite ~I c {Pn(x); x E X, n EN}. 

Indeed, suppose not. Then there exists a sequence {x } in 
n 

K such that x ~ Pl(x ) for i,j < n. Since K is sequentiallyn j 
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compact, there exists a subsequence S of {x } converging to 
n 

a point in K. Since? satisfies (C ), there exists P E ? 2

such that P c U and P contains a subsequence of S. Then 

P = P. (x.)
1. J 

for some i,j, and there exists n > i,j such 

that P. (x.)
1. J 

3 x n • This is a contradiction. Hence? is a 

k-network. 

(2) The "only if" part is obvious, so we prove the nif" 

part. Let? = {? ; n E N} is a a-hereditarily closure
n 

preserving cover satisfying (C 2 ) with ?n C ?n+l. Let K 

be compact and U be open with K c U. Let P' = {P E P · n n' 

P c U} and Un = uP~ for each n E N. Since each point of K 

is a Go in X (hence in K), the compact set K is first 

countable. Thus K is sequentially compact. Then, since 

P satisfies (C ), it follows that K c Ui for some i E N. 2

But, p~ is hereditarily closure-preserving. Then the 
1. 

compact set K is covered by some finite P' c p .• Thus 
1. 

K cUP' c U. Then P is a k-network. 

Remark 1.3. As a modification of (C3~' we define the 

following (C3 ) I weaker than (C 2). 

(C )' Same as (C ) with U = X - {y} for a point3 2

y E X - {x}. 

In view of the proof of Proposition 1.2(1), a point

countable cover P of X satisfies (C ) if and only if ?3

satisfies (C 3)', and each compact subset of X is sequentially 

compact. 

Definition 1.4. Let X be a space, and let? be a 

cover of X. Then X is determined by ? [15], or X has the 



TOPOLOGY PROCEEDINGS Volume 12 1987 331 

weak topology with respect to P, if A c X is closed in X 

if and only if A n p is closed in P for every P E P. Here, 

we can replace "closed" by "open." Recall that a space X 

is sequential, if A eX is closed in X if and only if no 

sequence in A converges to a point not in A. Then X is 

sequential if and only if it is determined by the cover of 

all compact metric subsets. If we replace "compact metric" 

by "compact," then such a space is called a k-space. First 

countable spaces are sequential, and sequential spaces are 

k-spaces. Let P be a closed cover of a space X. Then 

X is dominated by P [21], if the union of any P' c P is 

closed in X, and the union is determined by p'. As is 

well-known, every CW-complex is dominated by the cover of 

all finite subcomplexes (hence, compact metric subsets). 

Corollary 1.5. Let X be a sequential space~ or a 

space in which every point is a Go. Then a point countable 

cover ~ of X is a k-network (resp. satisfies (C )) if and3 

only if ~ satisfies (C
2 

) (resp. (C
3

) I). 

Proof. It is easy to show that every compact subset 

of a sequential space is sequentially compact. Also, as is 

seen in the proof of Proposition 1.2(2), every compact sub

set of a space in which every point is a Go is sequentially 

compact. Thus the result follows from Proposition 1.2(1) 

and Remark 1.3. 

Lemma 1.6. Suppose that f: X ~ Y satisfies (1) or 

(2) below. Then for every sequence {Yn} converging to y 

in Y with y t Yn~ there exists a convergent sequence {x }n 

in X such that {f(x )} is a subsequence of {Yn}.n
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(1) f is a quotient map such that X is a sequential 

space. 

(2) f is a closed map such that each point of X is a 

Proof. (1) Let A = {Y ; n EN}. Since A is not n 

closed in Y, B = f-l(A) is not closed in X. Thus, since 

X is sequential, there exists a sequence {x } convergingn 

to a point not in B, hence {f(x )} is a subsequence of 
n 

{y }. 
n 

(2) Our proof is due to the proof of [14; Lemma 1]. 

Indeed, there exists a point x E f-l(y) such that 

x E U{f-l(y ); n > i} for any i E N. Since {x} is a G~ in 
n - u 

X, there exists a sequence {G ; n E N} of nbds of x such n 

that {Gn; n E N} = {x} and G c G.• Let U. = G. n n+l n l. l.
 

-1
U{f (y) ; n > i} for each i E N. Since f is closed, any
n -

sequence {an} with a E U accumulates to x. Hence, let n n 

x E U (+~) for each n E N. Then the sequence {x } conn n n 

verges to x, and {f(x )} is a subsequence of {Y }.n n 

Definition 1.7. Let X be a space. For each x E X, 

let T be a finite multiplicative family of subsets of x 

X containingx. The collection {T ; x E X} is a weak base x 

[1] for X, if F c X is closed in X if and only if for each 

x ¢ F, there exists Q(x) E T with Q(x) n F = ~. x 

Proposition 1.8. Each of the following conditions 

implies that y has a point-countable k-network. (The 

result for (3) (resp. (4») with X metric is due to [10] 

(resp. [15]).) 
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(1) Y has a point-countable weak base. 

(2) Y has a a-hereditarily closure-preserving k-network. 

(3) Y is the closed image of an ~-space X. 

(4) Y is the quotient~ Lindelof image of a k-and-X

space X. 

(5) Y is dominated by X-spaces X (a < y).
a. 

Proof. (1 ) Le t 'P = {T ; Y E y}, whereT {Q (y) ;y y n 

n EN}, be a point-countable weak base for Y. Then it 

follows that for any y E Y, any sequence {Yn} with 

Yn E Qn(Y) converges to y. Conversely any sequence {Yn} 

converging to y is eventually in Qn(y) for any n E N. 

Indeed, suppose that A = {Yn; n E N} - Qn(Y) is infinite. 

Since A U {y} is closed in Y, for each p ¢ A with P f Y, 

Q (p.) n A = fJ for some m E N. Since Qn(y) n A = ~, A m

is closed in Y. This is a contradiction. Therefore Y is 

a sequential space, and Y has a point-countable k-network 

'P by Corollary 1.5. 

(2) Let 'P = U{'Pn'· n E N} be a a-hereditarily closure-

preserving k-network for Y. For each n E N, let D n 
rp{y E Y; is not point-finite at y} and let rp = {p - Dn;n n
 

E rp Let rpl
P n} U {{y}; Y E Dn } • = U{rp n; n E N} . Then
 

'P' is a point-countable cover satisfying (C 2 ) · While, each
 

point of Y is a G6 • Then, by Corollary 1.5, 'P' is a point


countable k-network for Y.
 

(3) Let f: X ~ Y be a closed map. Let 'P be a a-locally 

finite k-network for X. Since each point of X is G6 , by 

Proposition 1.2(2) and Lemma 1.6, f('P) is a a-hereditarily 

closure-preserving k-network for Y. Hence Y has a point-

countable k-network by the result for (2). 
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(4) Let f: X ~ Y be a quotient, Lindelof map. Let? 

be a a-locally finite k-network for X. Since each point 

of X is a Go' a k-space X is sequential by [24; Theorem 

7.3]. Thus, by Lemma 1.6, f(?) is a point-countable cover 

satisfying (C2 ). But, Y is sequential, for every quotient 

image of a sequential space is sequential. Thus, by 

Corollary 1.5, f(~) is a point-countable k-network for Y. 

(5) For each a, let Y = X - u{x S; S < a}. Let a a 

~a be a a-locally finite k-network for Va' and let ?~ 

?a n Y • Then? = U{?~; a} is point-countable. To show a 

that? is a k-network, let K be compact and U be open with 

K c U. Then K meets only finitely many Yaws. Indeed, if 

there exists· 0 = {x ; n E N} such that x E K n Y with n n a 
n 

an < a + then each 0 n X is finite. Hence 0 is closed 
n l , a 

n 
discrete in X. This is a contradiction. Let {a; Y n a 

K ~~} {a l ,a2 ,···,a }. For each i = 1,2,···,n, there n 

exists a finite J . C ~a. such that Va. n K C UJ . c u.a a 
1 1 1 1 

Hence, K c U{J n Y ; i 1,2, ••• ,n} c U. Then 
ai ai 

K c U?' c U for some finite pI c P. 

We shall give Remark to the previous proposition. 

Remark 1.9. (i) In (2), we can not replace ua-heredi

tarily closure preserving" with "a-closure preserving." 

Indeed, there exists a non-metrizable, separable, first-

countable space X with a a-closure preserving base ([6; 

Example 9.2]). X has a a-closure preserving k-network. 

But X does not have any point-countable k-network by [15; 

Theorem 5.2] and [22; Proposition 3.1] for X is separable, 

first-countable, but not rnetrizable. 
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(ii) In (4), we can not omit the k-ness of X; see [15; 

Example 9.6]. 

(iii) (3) implies (2) by the proof of (3). Unlike this, 

(5) (or (4)) need not imply (2). We shall give a counter

example. First, we need Lemmas. 

Lemma A. Let X be a sequential space with a a-heredi

tarily closure-preserving k-network P = U{p ; n EN}.
n 

Then X = X U XI~ where X is an ~-space and Xl is ao o 
countable union of closed~ discrete subsets of x. 

Proof. Each? is hereditarily closure-preserving
n 

(for, if not, there exist {A ; a E A'} and x E X such that 
a 

{p • a E A}, A' c A, and x E U{A ;a' a 

a E A' } - U{A · a E A '}. Let U :::> A be open with IT x,a' a ~ 

and Ba = U n A for a E A' • Then x E U{B ; a E A' } a a 

U{B" · a E A'} , a contradiction) . Then we can assume P isa' 

a closed cover of X. For each n E N, let D {x E X;n 

P is not point-finite at x}. Then each D is closed,n n 

discrete in X. Indeed, suppose D is not closed discrete n 

in X. Since X is sequential, there exists a sequence {x }n 

in D
n 

converging to x E X with x 
n f X. But there exists 

{P ; n E N} c P such that x E P and P f P if m f n. n n n n m n 

Thus x = x for some n E N. This is a contradiction. Let 
n 

X = X - U{D ; n EN}. Then X is an ~-space.o n o 

Lemma B. Let X be dominated by metric subsets X 
a 

(a < y)~ and let Y c X be an ~-space. Then Y = U{Y ;n 

n E N}~ where each Y is a metrizable~ closed subset of 
n 

Y~ and each compact subset of Y is contained in some Y • n 
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Proof. Let P = U{P ; n E N} be a a-locally finite 
n 

closed k-network for Y, where P c P +l and P is closed n n n 

under finite intersections. Let KeY be compact, and let 

{Q ; n E N} be the collection of finite unions of elements 
n 

of {p E P; p n K +~} with Q ~ K. Let K n{Q.; i < n} 
n n ~-

for each n E N. Since P is a k-network, any open subset of 

Y con"caining K contains some K • Thus any sequence {Yn}n 

with Yn E K has an accumulation point in Y. Hence some n 

K is contained in a finite union of Xa's. Indeed, supposen 

not. Then there exists a sequence {a } in Y such that 
n 

an E Kn n Xa(n) - U{Xa(i); i < n} for some {Xa(n); n E N} c 

{Xa ; a}. Since each {an; n E N} n Xa(n) is finite, 

{a · n E N} is closed, discrete in Y. This is a contran' 

diction. Then some K is metrizable, so is any K (m ~ n).n m 

But any K can be expressed as a finite union of elements rn 

of P. This implies that U{P'; n EN}, where P' = {p E P · n n n' 

P is metrizable}, is a k-network for Y. Thus Y UP' n n 

(n E N) are the desired subsets of Y. 

ExampZe. Let I be the closed unit interval [0,1]. 

For each a E I, let Sa be a 2-sphere. Let S be the topo

logical sum of {I,Sa; a E I}. Let X be the quotient space 

obtained from S by identifying each a E I with a point Pa 

of Sa. Then X is a CW-complex with cells {{O}, {l}, (0,1), 

Sa - {Pa}; a E I}, which is the quotient, finite-to-one 

image of a locally compact, metric space. But X does not 

have any a-hereditarily closure-preserving k-network. 

Proof. Suppose that X has a a-hereditarily closure

preserving k-network. Let L = {a} x I, and for each a E I, 
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let La = I x {a}. Let L = {L} U {L ; a E I} and Y = uL. 
a
 

Let L and the L be subspaces of Euclidean 2-space E2 , and
 
a 

let us consider Y as a subspace of X. Then Y is determined 

by L consisting of compact metric subsets. Since Y is a 

sequential space with a a-hereditarily closure-preserving 

k-network, by Lemma A, Y = YO u Y where YO is an ~-space,l ,
 

and Y is a countable union of closed discrete subsets of
l 

Y. By Lemma B, YO = U{X ; n EN}, where each X is metrizn n 

able and closed in YO' and each compact subset of YO is con

tained in some X • We note that L n Y and La n Y are n l l
 

at most countable sets. For each a E I, let {an} be a
 

sequence in La - Y converging to (O,a) (t an). For each
l 

n E N, let An = {a E I; (O,a) t Y
l 

and X
n 

::::> {an; n EN}}. 

Then, by R. Baire's Category theorem, there exists A A. n 
~ 

(a,S) such that A is dense in (a,S) n I for some i E Nand 

some open interval (a,S). Then there exists a sequence 

{x } in A converging to a point x E (a,S) with x t x and 
n n
 

(O,x) ~ Y n L. For each n E N, there exists a sequence
l
 

{x j E N} in Xi converging to (O,x ) (t x ), where
nj ; n nj 

x . E L - Yl • Let T = {(O,X ); n E N} U {(O,x)} U
nJ x n n
 

{x .; n,j EN}. Then T C X;, hence T is metrizable. But,

nJ ~ 

since T is closed in Y, T is determined by {T n L; L E L}. 

Thus T is not first countable (at x), hence T is not 

metrizable. This is a contradiction. 

2. s-Images of Metric Spaces 

In terms of various kinds of point-countable covers, 

some characterizations for the quotient (resp. open; 

closed) s-images of metric spaces are obtained by [15] or 
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[20] (resp. [27]; [13]). By means of point-countable covers 

satisfying (C ) (i.e., point-countable cs*-networks), wel 

will unify these characterizations. 

Lemma 2.1. Let X be a sequential space. Then the 

following (1) and (2) are equivalent. 

(1) X has a point-countable cover ~ satisfying (C ).l 

(2) X has a point-countable cover ~ such that each 

open U c X is determined by {p E ~; P c u}. (This condi

tion is labeled (1.1) in [15].) 

Proof· (1) + (2). Let U be open in X. Suppose A c U 

is not open in U. Then X - A is not closed in X. Since 

X is sequential, there exists a sequence {x } in X - A n 

converging to a point x E A. Since ~ satisfies (C ),l 

there exist P E ~ and a subsequence S of {x } such that n 

K S U {x} c P c U. Then K n A is~not open in K. Thus 

p n A is not open in P. Hence U is determined by {P E ~; 

P c U}. 

(2) + (1). Let {x } be a sequence converging to x,n 

and U be a nbd of x. We assume that x t x and x E U n n 

for each n E N. Since {x ; n E N} is not closed in u,
n 

there exists P E ~ such that P c U and P n {x ; n E N}n 

is not closed in P. Then P contains x and a subsequence of 

A map f: X + Y is called pseudo-open if for any y E y 

-1and any open set U containing f (y), y E int f (U). 

Every open map, or closed map is pseudo-open. 

Recall that a space X is Frechet if whenever x E A, 

then there exist~ a sequence in A converging to x. 
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Lemma 2.2. (1) [15]. X is the quotient (resp. 

pseudo-open) s-image of a metric space if and only if X is 

a sequential (resp. Frechet) space satisfying (2) in 

Lemma 2.1. 

(2) [27]. X is the open s-image of a metric space 

if and only if X has a point-countable base. 

(3) [13]. X is the closed s-image of a metric space 

if and only if X is a Frechet space with a a-closure 

preserving point-countable closed k-network (equivalently~ 

Frechet ~O-space). 

Theorem 2.3. X is the quotient (resp. pseudo-open; 

open) s-image of a metric space if and only if X is a 

sequential (resp. Frechet; first countable) space with a 

point-countable cover satisfying (C l ). 

Proof. This follows from Lemmas 2.1 and 2.2 (1) and 

(2) and the result that every first countable space which 

is the quotient s-image of a metric space has a point-

countable base ([8]). 

Lemma 2.4. Let S be the quotient space obtained 
wl 

from the disjoint union of WI convergent sequences 

La (a < WI) by identifying all the limit points to a 

single point Then any point-countable cover of S00. 
wl 

does not satisfy (C ).
l 

Proof. Suppose that X has a point-countable cover 

7' satisfies (Cl ). Let 7" {P E 7'; P :3 oo}, and 7'1 = {P E 7'; 

P - {oo} meets infinitely many L ~s}. Let 7'1 = {P ; n EN}.a n 

We can choose a sequence {x } such that x E P - {oo}, and n n n 



340 Tanaka 

X ¢ La for any La containing x 1 ,x2 ,···,x _ l . Let n n

?2 ?' - ?1' and S = U{P E ?2}. Then S - {oo} meets at 

most countably many L ' s. Hence, there exists L such 
a S 

that L n S = { oo} , L x (n E N) • Since L c: X ~S S n S 
{ x ; n E N} , there exists P E ? with P n (L

S 
- {oo} ) t ~.n 2 

This is a contradiction. 

The following proposition shows that, among point-

countable covers, there exist essential gaps between 

"k-network" and "closed k-network," and also between "(C )"
1 

and "(C )" by Proposition 1.8.
2 

Proposition 2.5. Let f: X ~ Y be a closed map such 

that X is a paracompact k-and-~-space. Then the following 

are equivalent. (The equivalence (1) and (2)~ where X is 

metric~ is due to [30].) 

(1) Every af-l(y) is Lindelof. 

(2) Y has a point-countable closed k-network. 

(3) Y has a point-countable cover satisfying (C ).1 

Proof. (1) ~ (2). As in the proof of [22; Corollary 

1.2], we can assume that every f-l(y) is Lindelof. Thus, 

the Proof of Proposition 1.8(3) implies that (1) ~ (2) 

holds. 

(2) ~ (3). This is trivial. 

(3) ~ (1). By Lemma 2.4, Y does not contain a copy 

-1
Thus, by [31; Lemma 1.5], each af (y) is WI-compact 

(i.e., every subset of af-1 (y) of cardinality w has an
l 

accumulation point). But, af-1(y) is an ~-space (or para

compact space). Hence each af-l(y) is Lindelof. 
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A space is called Lasnev if it is the closed image of
 

a metric space.
 

L. Foged [10] proved that a space is La~nev if and
 

only if it is a Frechet space with a a-hereditarily
 

closure-preserving k-network.
 

Theorem 2.6. The foZZowing are equivalent. 

(1) X is the closed s-image of a metric space. 

(2) X is a Lasnev space with a point-countable cover
 

satisfying (C ).
l 

(3) X is a Frechet space with a a-closure-preserving
 

point-countable closed cover satisfying (C ).
l 

Proof. (1) -+ (3). This follows from Lerruna 2.2 (3). 

(3) -+ (2). Since X is sequential, by ~oro11ary 1.5, 

every point-countable cover of X satisfying (C ) is al
 

k-network. Then (3) -+ (2) follows from Lemma 2.2 (3).
 

(2) -+ (1). This follows from Proposition 2.5. 

Remark 2.7. In (3) of the previous theorem, we can 

not omit the closedness of the cover, because any Lasnev 

space has a a-hereditarily closure-preserving point-countable 

k-network by the proof of Proposition 1.8. We can replace 

"a-closure-preserving point-countable closed cover" by 

no-locally countable closure-preserving cover n in (3). 

3. Moore Spaces 

By means of point-countable covers satisfying (C ),3 

we will obtain general conditions under which a w~-space 

(or a strict p-space) is a Moore space. 
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A cover P of X is said to be separating if for any 

points x, y E X with x t y, there exists PEP with 

x E P c X - {y}. Recall that a space X is subparacompact 

if every open cover of X has a a-locally finite closed 

refinement. 

Proposition 3.1. Each of the fo~~owing conditions 

imp~ies that X has a point-cou~tab~e cover satisfying 

(1) X	 has a point-countab~e separating open cover. 

(2) X	 has a point-countab~e k-network. 

(3) X	 is a subparacompact (or metacompactJ space 

having	 a Go-diagona~. In particuZar, X is a a-space. 

Proof. The result for (1) and (2) is obvious. 

(3) Since X has a Go-diagonal, by [6; Lemma 5.4] 

there exists a sequence {U ; n E N} of open covers of X n 

such that for any points x, y E X with x t y, y ¢ St(x,U )n 

for some n E N. If X is subparacompact (resp. metacompact), 

each Un has a a-locally finite closed refinement (resp. 

a point-finite open refinement). Thus if X is metacompact, 

X has a point-countable cover satisfying (C ). If X is3 

subparacompact, X has also a point-countable cover satisfy

ing (C ) by the same way as in the proof of [4; Theorem3

5.2], where X is a a-space. 

Definition 3.2. A space X is called a w~-space if 

there exists a sequence {U} of open covers of X such that 
n 

if x	 E X and x E St(x,U ) for each n E N, then the n n 

sequence {x } has an accumulation point y in X. When n 



343 TOPOLOGY PROCEEDINGS Volume 12 1987 

y = x, such a space is called a Moore space, or a 

developable space. 

A completely regular space X is called a p-space if, 

in the Stone-Cech compactification S(X), there exists a 

sequence {U } of families of open subsets of S(X) such n 

that each Un covers X, and n{St(x,U ); n E N} c X for each n 

x E X. If we also have an additional property that for 

any x E X and any i E N, St(x,U ) c St(x,U,) for some n E N, 
n 1 

then X is called a strict p-space. Every locally compact 

space, more generally every Cech complete space (i.e., 

space which is a Go-set in its Stone-Cech compactification) 

is a p-space. It is well-known that every completely 

regular, Moore space is a strict p-space, and every strict 

p-space is a w~-space (e.g., see [16; p. 443]). 

A space X is called e-refinable (= submetacompact) 

if for every open cover lj of X, there exists a sequence 

{lj } of open refinements of lj such that each point of X n 

is in at most finite number of elements of some Un. Such 

a sequence is called a e-refinement of U. As is well-

known, metacompact spaces, and a-spaces, more generally 

subparacompact spaces are e-refinable (e.g., see [5; 

p. 360]). We note that, among completely regular e-refinable 

spaces, w~-spaces, p-spaces, and strict p-spaces are 

equivalent ([2]). 

R. E. Hodel [19; Theorem 3.6] proved that every 

e-refinable, w~-space with a point-countable separating 

open cover is a Moore space. 
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We will use the techniques in the proof of the Hodel's 

result to obtain a more general result. 

Lemmas 3.3 and 3.4 below are respectively due to [15; 

Corollary 3.5] and [3; Lemma 3.2]. 

Lemma 3.3. Let X be first countable. Then every 

point-countable cover ~ satisfying (C ) satisfies the3 

following (*). 

(*) If Y E X - {x}~ then there exists a finite ~, c ~ 

such that y E int u~' c u~' c X - {x}. 

Lemma 3.4. Let X be first countable~ and A c x. If 

~ is a point-countable collection of subsets of X~ then 

there exists at most countably many minimal finite J c ~ 

such that A c int uJ~ where minimal means that A ~ int uJ' 

'/;·f J' c+.J 

Theorem 3.5. A space X is a Moore space if and only 

if X is a 8-refinable w~-space with a point-countable 

cover satisfying (C 3 ). 

Proof· "Only if." Every Moore space is a w~-space, 

and a a-space (e.g., [16; p. 447]). Hence, X is a 

8-refinable space with a point-countable cover satisfying 

(C ) by [4; Theorem 5.2] (or Proposition 3.1).3
 

"If." Since X is a e-refinable w~-space, by [2;
 

Remark 1.9] there exists a sequence {~n} of open covers of 

X such that for each x E X, C = n{St(x,~ ); n E N} is x n 

compact, and {St(x,~); n E N} is a base for that is,Cx; 

any open set U with U ::> C contains some St (x,,q ). We 

n 

x n 



TOPOLOGY PROCEEDINGS Volume 12 1987 345 

note that each C is metrizable by Lemma 1.1. Hence X is x 

first countable. Then, ~ satisfies (*) in Lemma 3.3. 

2
Hence x is a first countable ,space with a point-countable 

cover ~2 satisfying (*). 

Let §(i,j) = §. x §. for each i,j E N. Then, for any 
~ ] 

2 
p = (x,y) E x , {St(p,Y(i,j»i i,j E N} is a base for a 

compact set C. For each i E N, let {H(i,k); kEN} be a p 

e-refinement of Yi' and let H(i,j,k,l) = H(i,k) x H(j,l). 

2We show that every closed subset of x is a Go. Let 

2F be a closed subset of x • For each H E H(i,j,k,l), by
 

Lemma 3.4, the collection H of all finite minimal subcol


lections ] c ~2 with H n Feint U] is at most countable,
 

so let H {H(i,j,k,L,m); mEN}. Let H*(i,j,k,L,m) =
 

int(UH(i,j,k,j,m» and W(i,j,k,L,m) = U{H n (n{H*(i,j,k,l,n)i
 

n ~ m}); H E H(i,j,k,L)}. Then F = n{W(i,j,k,L,m);
 

i,j,k,L,m E N}. Indeed, let p = (x,y) F. Since C n F
~ p 

is compact, there exists a finite ] c ~2 such that Cp n F c 

int U] c U] c x2 - {p}. Hence C c St(p,§(i,j» c int uJ U p 
2

(X - F) for some i,j E N. While, for some k, LEN, 

{H E H(k,j,k,L)i H 3 p} {H ,H ,··.,H }. For eachl 2 t 

n = 1,2,···,t, since H n Feint uJ, select from J a n 

minimal subcollection which covers H n F, and label it n 

Hn(i,j,k,L,m ). Let rnO = Max{ml ,m2 ,···,m }. Then,n t 
2 p ~ W(i,j,k,l,mo). This implies that F is a Go-set in x .
 

Thus X has a Go-diagonal. Then, since X is e-refinable,
 

X is a Moore space by [19; Corollary 2.6] (or [28]).
 

By Theorem 3.5 and Propositions 1.8 and 3.1, we have 
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Corottary 3.6. (1) [19]. A 8 -refinab Ze w6-space wi th 

a point-countabte separating open cover is a Moore space. 

(2) [28]. A 8-refinabte w6-space with a point-countabte 

weak base is a Moore space. 

Corottary 3.7. [15]. A paracompact p-space (~ para

compact M-space) with a point-countabZe cover satisfying 

(C ) is metrizabZe.
3 

Proof. We recall that every paracompact p-space is 

strict p-space, and every paracompact Moore space is 

metrizable. Thus the result follows from Theorem 3.5. 

Quite recently, s. Jiang [29] proved the following 

interesting result. 

Lemma 3.8. Every strict p-space is 8-refinabZe. 

Recall that every completely regular Moore space is a 

strict p-space. Thus, combining Theorem 3.5 with Lemma 

3.8, we have 

Theorem 3.9. A compZetely regular space is a Moore 

space if and only if it is a strict p-space with a point

countabte cover satisfying (C 3 ). 

Corottary 3.10. A strict p-space (or a e-refinabte 

w~-space) with a point-countabte k-network is a Moore space. 

Remark 3.11. In the previous corollary, we can not 

replace "strict p-space" with "p-space" or "w6-space" by 

(i) and (ii) below. Also, by (ii) we can not omit the 

8-refinability in the parenthetic part. 
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(i) S. W. Davis [7] constructed a non-developable, 

Cech-complete space (hence, p-space) with a point-countable 

base. 

(ii)	 Z. Frolik [11] constructed an infinite, completely 

regular, countably compact space, each of whose compact set 

is finite. This space is a non-developable, w~-space with 

a point-finite k-network. 
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