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TOPOLOGICAL STRUCTURE OF 

SEMICRYSTALLINE POLYMERS· 

J. L. Bryant and R. C. Lacher 

Introduction 

Semicrystalline polymers are among the largest volume 

products of the chemical industry today. Long-chained 

polymers (~104 -10 6 monomers), such as polyethylene or 

polystyrene, are cooled from a melt, forming lamellar 

crystals that are separated by a non-crystalline or 

amorphous region. The crystals are usually in the range 

of 50-500 A thick and the region between two lamellae 

ranges from 50 to 200 A [14]. The size of the chains is 

such that a single chain may enter many of the crystals 

as well as reenter the same crystal many times. In addi­

tion there is a small interphase at the faces of the 

crystals in the amorphous region, about 10-12 A thick for 

polyethylene, in which the chains proceed from the. totally 

ordered state of the crystal to apparent random disorder 

[5]. ~gain for polyethylene it has been estimated that 

about 70% of the chain segments that emerge from a crystal 

face reenter the crystal without ever leaving the inter­

phase [5]. 

A significant fraction of the semicryst~lline poly­

mers produced consists of linear low-density polyethylenes. 

A typical chain has a polyethylene backbone with a small 

*This research was supported by ONR Grant NOOOl4-84­


K-l76l.
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percentage of branches (0.5 - 4.5 mol %) of a I-alkene 

copolymer X that has nb carbon atoms. An ethyl group of 

X enters the backbone of the chain forming a side chain of 

nb-2 carbons. An important consequence of the presence of 

the side chains is that when they are long enough they 

have a strong preference no~ to enter a crystal [lJ. Many 
 

properties of these short-branched copoiymers seem to 

depend more on the number of branches than on the specific 

chemistry or size of the branch,. as long as the branch is 

excluded from crystallization [3][15J[19]. 

In this paper we discuss models with which we may in­

vestigate the topological connections between the crystal 

lamellae in a semicrystalline polymer and the extent to 

which they contribute to physical properties of the 

polymer. 

The Model 

Under the broad context of opposing pZanes modeZs 

the region between two crystals is represented as the 

region in m 3 between the planes (crystal faces) y = 0 and 

y = n (See, e. g., [5], [6 J, [7], [8], [9 J, [10 J, [11], 

[12], [13], [16], and [17]). A chain, which is confined 

to lie within the slab defined by the planes, is classi­

fied as a Zoop or a tie according to whether it has its 

endpoints on the same .plane or opposite planes. Free 

chains, although important in other contexts, will not be 

considered here. In one form of this model a chain 

emerging from a crystal face is modeled as a random walk 
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on the integer cubic lattice between the two planes 

starting at y = 1 or y = n - 1. (See Figure 1.) (Here 

we assume that n is an integer. Random walks that we 

shall consider have probability 1 of being absorbed at 

y = 0 or y = n [4].) The unit for the lattice corres­

ponds. to the statistical unit for the polymer [5][8]; e.g., 

for polyethylene "this is about 3.5 monomers [5]. The 

statistical unit is the minimal length of a polymer chain 

that exhibits near total flexibility. Typically, amorphous 

thickness is found in ranges corresponding to values of n 

between 15 and 40, although it may range anywhere from 10 

to 80. 

Figure 1. 
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The purely isotropic version of this model, wherein 

each of the transitional probabilities is set equal to 

1/6, was introduced by Guttman, DiMarzio, and Hoffman in 

[7]. Other versions of the latticebound walk model in­

clude the environment for Mansfield's Monte Carlo simula­

tions [16], and the interphase-sensitive models of Flory, 

Yoon, and Dill [5], and Marqusee and Dil~ [17]. 

Applying so-called "gambler's ruin" statistics, 

Guttman, et aZ., [7] compute the distribution of loops 

and ties for the pure isotropic model; namely, 

PL = (n - l)/n and PT = lin, 

where P and PT denote the probability that an individualL 
walk will become a loop or tie, respectively. (If a 

gambler starts with $k, bets $1 on each bet that has a 

probability 1/6 of winning, 1/6 of losing, and 2/3 of a 

standoff, and sets a goal of winning $n, then the proba­

bilities of success and failure are kin and (n - k)/n, 

respectively.) 

These parameters are derived from recurrence rela­

tions obtained from the principle: "Take a step. and see 

what happened." That is, if Qk is a parameter associated 

with a walk that starts with y = k, 0 < k < n, and if Pk' 

qk' and r k are the probabilities of taking a step +1, -1, 

and 0, respectively, in the y-direction, then, in general, 

Qk will satisfy a (possibly) nonhomogeneous recurrence 

relation of the form 

(*) 
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with specified boundary values for a O and aM and
 

nonhomogeneous term f k • For pure isotropy, Pk = qk = 1/6
 

and = 2/3. Other parameters of interest, such as the
r k
 
expected value of the length of a chain, of a loop, or of
 

a tie, are easily computed from these equations. In the
 

isotropic case they are, respectively,
 

( C.) 3n. - 2,
 

( L) 2n,
 

2
(T) n

(See [7].) For example, the value (C) = 3n - 2 indicates 

that, of the chain segments emanting from a crystal, only 

about one-sixth are expected to pass through the interphase 

into the isotropic region because of density considerations. 

This is consistent with the results of Flory, et aZ. [5]. 

The question now arises as to what extent loops based 

on opposite planes are linked (homologically). Unfortu­

nately, recurrence schemes that apply so well to single-

chain statistics do not seem to be directly applicable to 

computing homological linking between opposing loops. The 

first attempts at computing the incidence of homological 

linking between unbranched polymers were reported in [9J 

and [10], and we shall review briefly some of the results 

of those papers. 

Homological Linking of Unbranched Polymers 

We shall call a walk based on the plane y = 0 

(respectively y = n) an L(left)-walk (respectively, an 

R-walk). Similarly, we may speak of an L-loop or an 
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R-loop. Given an L-walk L and an R-walk R, define the 

offset Zinking numbep olk(L,R) as follows: If each of L 

and R is a loop, complete it to a closed curve by joining 

its endpoints with an arbitrary path in its base plane, 

offset the lattice for R by the vector (-~, ~, -~), and 

define olk(L,R) to be the homological linking number of 

the resulting (disjoint) closed curves. (Use the natural 

orientation determined by the direction of the walk.) 

Otherwise, set olk(L,R) = o. We say that Land R Zink if 

olk(L,R) ~ O. 

In [9], [10], and [11] results of the following com­

puter simulations were described. For each n - 2 ~ n ~ 24, 

using a random exit pattern, or n = 6, 12, ••• 54, using 

a uniform exit pattern--perform a number of trials, each 

of which consists of generating one L-walk from (0,1,0) 

and a family of R-walks from a square of side 2n in the 

plane y = n - 1, symmetric about (0, n-l,O), with starting 

density d. The value of d is usually set at 1/6 for 

reasons discussed above. From these trials estimate the 

parameters: 

Plink = Link Probability	 the probability that an 

L-walk has nonzero off­

set linking number with 

some R-looPi 

Link Density the expected number of 

R-walks an L-walk linksi 

Total Winding the expected sum of the 

absolute values of the  
offset linking 
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numbers of an L-walk 

with all R-walks. 

Square Link Density	 the expected sum of 

squares of the offset 

linking numbers of an 

L-walk with all R-walks. 

In [lOJ a simple geometric model is proposed to esti ­

mate link density. In this model a loop is represented 

as an isosceles triangle parallel to the y axis that has 

its base on a boundary plane and a fixed breadth to reach 

ratio b. (See Figure 2.) Computer simulations yield an 

estimate of 1.19 for b for the planar separations observed 

(but there is some evidence that b behaves as a concave 

function of reach). One obtains a fairly nice expression 

for the link density in the simplified model: 

D(n) 

1where d k(k+l) is the	 probability that a loop will havek 

reach k, a < k < n. The double sum in this expression has 

the limit (TI 2/3) - 3 as n + [lOJ. Substituting the00 

values b = 1.19 and d = 1/6 yields 

lim D(n) ~ .1368. 
n+oo 

Estimates of the link density from the random walk trials 

indicate that it is approaching 90% of D(n) for n = 54 

[llJ. (See Figure 3.) Some of this loss can be accounted 

for from the truncation of the plane of starts for R-walks 

in the simulation. Thus, the simulation statistics and 

D(n) seem to be in rather close agreement. 
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Figure 2. Simplified model of linking. 
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A formula for the link probability may also be ob­

tained from the simplified model. The derivation from 

[llJ yields: 

Pen) = 1 - l/n - rnJ..__-lldJ.. rr~-l . [l-2b2d{i+j+l/2-n)2d . J .
J=n-J. . J 

As indicated in Figure 4, agreement with simulation sta­

tistics is quite good. 

0.15 

~ 0.10 

-~ 

~

== < 
== 
~ 0.05 
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0.00 -++.......r"'I"""'I'''''''I'"T'''T'T'''''I"''T''T'T''''''I""'Il''''''T''"T''''I'''''I'''"T'T'''''I..,-T''~I'''''TT~I'""T""I ....T'T'''''I-TTT''''''I""'II''"'t"TT''r'",...,....,-rr----1~
 

~ 0 6 12 18 24 30 36 42 48 54 

DISTANCE BETWEEN PLANES 

Figure 4. Comparison of link probability from the simpli­

fied model (P(n» with computer simulations (Plink(n». 

The results of these simulations seem to indicate 

that each of the linking parameters is most certainly 

non-negligible in the physically significant ranges of n. 

For example, Dlink overtakes the density of ties (=l/n) 

around n = 13 and Plink> .04 for n < 36. Thus, the 

evidence indicates that homological linking is quite 
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prevalent, at least in the models, and that for larger 

values of n it may contribute significantly more to the 

strength of a polymer than the ties between crystals. The 

next problem then is to try to discover experimental evi­

dence that such linking occurs. Recent results with 

branched~-cepolymersmay provide some answers. 

Topological Connections in Branched Copolymers 

The difference equations (see page 4 (*» together 

with computations from the simplified linking model, 

similar to those above, can be used to estimate the 

probabilities Ptie and Plink of a tie and link, respec­

tively, for the ethylene-I-alkene copolymers. (See [11].) 

These quantities vary as functions of amorphous thickness, 

Wa , crystal thickness, Wc ' and branching density p. The 

values of Wand W in turn depend on p [20]: measureda c .
 

in angstroms, they satisfy, approximately, the equations
 

(**)
 

W 100 + SOOOp
a
 

W 150 - 2500p,
c 

o ~ P ~ 0.06. Crystal width W appears to have a minimum,c
 

however, at around SOA [1]; the crystals begin to break
 

down as p varies from 0.04 to 0.05. The associated
 

lattice units n~ and n are obtained from the equations
c
 

W
 a 
~pcoR, 

R,cosa· 
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The quantity 2 (~ 1.27A) is the effective bond length of 

an extended polyethylene chain, a(~300) is its orienta­

tion angle in a crystal, cP ~ cO x (1-0.7p) is an approxi­
00 ~ 

mation of the characteristic ratio of amorphous ethylene-

I-alkene based on calculated estimates of Mathur-Mattice 

[18J, and C~(~6.8) is the typical value of the character­

istic ratio of amorphous linear polyethylene at room 

temperature. The characteristic ratio of a polymer is 

defined to be the ratio 

{expected end-to-end length of a chain of length 

n}/2~ 

For a tightly packed polymer this ratio is (essentially) 

constant. 

Initial calculations reported in [12] determined Ptie 

and Plink as functions of branch density p for an 

idealized polymer whose amorphous and crystal thickness 

are held constant at 150 A and 90 A, respectively. An 

"isotropic" setting is assumed: transitional probabilities 

are set at 1/6 when 1 < y < n-l; the probability of taking 

a step ;into the plane y 0 or y = n, respectively, is 

defined to be ~(l-p)nC and the remaining five probabili­

ties are set equal to each other. In this model Ptie 

approaches 1/2 asymptotically and Plink has a sharp maxi­

mum at p ~ .0375. Figure 5 shows the graph of Pt. I 
~e 

Pl· k and Pt· + Pl· k. The sharp maximum at p ~ .04 
~n ~e ~n' 

occurs where changes in mechanical properties [19], [15] 

and substantial morphological changes have been observed 
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experimentally [20J. Thus, we may have the first sub­

stantial evidence of linking of amorphous chains.
 

0.8 

0.00 0.02 0.04 0.06 0.10 
0.08 

BRANCHING DENSITY 

Figure 5. Probabilities for an idealized copolymer, hav­

ing varying branching density, but amorphous and crystal 

thickness held'constant at 150 A and 90 A, respectively. 

Somewhat more chemically realistic calculations are 

reported in [13] in which Ptie and Plink are computed 

allowing crystal and amorphous thickness to vary with 

p as in (**). In this case both Ptie and Plink exhibit 

P + P
link tie 

0.0 .......------- ­ .................----.,............;............---....--........- .......-~~-.. 

0.6 

>­
E: 0.4 
~ .... 
==< 
== o 
=~ 0.2 
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maxima in the p-range of .025 to .030, and Plink exceeds 

P for p > .012. The graphs are found in Figure 6.tie 

0.5 

0.4 

>­
E­... 0.3..J... 
== < 
== 0.2 
0 
~ 

=­
0.1 

0.0 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 

BRANCHING DENSITY 

Figure 6. Probabilities for copolymers having amorphous 

and crystal thickness varying with branching density as 

in (**). 

Questions and Conjectures 

Although the asymptotics for link density as computed 

in the simplified model were worked out in [lOJ, the 

asymptotics for link probability have not been determined. 

That is, one would like to know lim P(n), given 
n-+-oo 

n-l n-l 2 2Pen) 1 - l/n - Ll.. __ ldl.. IT. . [l-2b d(i+j+l/2-n) d.].J+n-l. J 
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Conjecture: lim P(n) o. Specifically, 
n-+oo 

n.P(n) tV O(log(n». 

What are the asyrnptotics for the random walk models? 

Evidence presented above would indicate that link density 

and	 link probability exhibit the same asymptotic behavior 

as their apalogs, D(n) and P(n), in the simplified model, 

and	 one is led to conjecture that they are the same. The 

asymptotics for total winding WI and square l~nk density 

W are unknown.- Of these two parameters, W is perhaps
2	 2 

the	 easier to pursue. In [2], for example, a heuristic 

argument is given that W approaches a nonzero constant
2
 

as n -+ 00. Because of the inequalities Dlink ~ WI ~ W2 ,
 

we would conjecture that each of these linking densities 

approaches a nonzero constant as n -+ 00 
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