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AN INTRODUCTION TO APPLICATIONS OF 

ELEMENTARY SUBMODELS TO TOPOLOGY 

Alan Dow 

Introduction 

This paper is an expanded version of the author's 

talk given at the Spring Topology Conference in Gainesville. 

The main purpose of both the talk and the paper is to give 

examples to demonstrate the usefulness of elementary sub

models to set-theoretically oriented topologists. The 

author is not alone in believing that elementary sub~ 

models should become as familiar a part of the language of 

set-theoretic topology as is the pressing-down lemma for 

example. I believe that, for set-theoretic topologists, 

elementary submodels provide: 

(1)	 a convenient shorthand encompassing all standard 

closing-off arguments; 

(2)	 a powerful technical tool which can be avoided 

but often at great cost in both elegance and 

clarity; and 

(3)	 a powerful conceptual tool providing greater 

insight into the structure of the set-theoretic 

universe. 

I hope to convince some readers of the validity of 

these points simply by (over-)using elementary submodels 

in proving some new and old familiar results. This paper 
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is not a survey of their use nor an adequate (or even 

rigorous) introduction to the concept--it is intended 

solely as a demonstration of how useful they can be even 

in some rather unexpected applications. The author's 

primary reference is Kunen's text [K] and the reader is 

directed there for both an introduction and to discover 

what I probably should really have said in many of the 

proofs and discussions. 

There are two new results worth mentioning in the 

paper. The first is that it follows from the consistency 

of large cardinals that it is consistent that non

metrizability reflects in the class of locally-K spaces.l 

This result is similar to Fleissner's results in [F] about  
left-separated spaces with point-countable bases. The 

second is that it follows from PFA that each compact space 

of countable tightness necessarily contains points of 

countable character. The second result is related to a 

question of Arhangel'skii [A2] and is just something that 

Fremlin, Nyik6s and Balogh "missed" in the papers [FrJ, 

[FrN] ~nd [B]. 

In the first section we will introduce elementary~ 

submodels and establish some of the non-standard assump

tions we will make in the remainder of the paper. In the 

three sections following we apply elementary submodels in 

increasingly difficult arguments. Most of the results 

in these sections concern metric spaces and the remainder 

are concerned with spaces of countable tightness. None 

of the results in these sections involve forcing or large 
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cardinals (although their existence is acknowledged). 

Section five concerns applications of elementary submodels 

to forcing arguments. Not surprisingly this is an area in 

which	 elementary submodels are particularly useful-

especially when proper forcing is involved. The last two 

sections discuss large cardinals and iterated forcing 

respectively. 

I.	 Preliminaries 

For a set or class M and a formula, ~, in the language 

of,set theory, the formula ~M is defined recursively (see 

IV of [K]). ~M is just the formula you get when you 

"restrict all the quantifiers to M". However note that 

(x C y)M is really «Va E M) (a Ex. a E y», since 

(x C y) is not in the language of set theory. However it 

does not take long for one to become accustomed to the 

meaning of ~M especially when M is a "model" of most of 

ZF. We·say that M is a model of ~ (denoted Ml=~) if ~M 

holds. 

Definition. If {al ,··· ,an} C MeN then ~(al'··· ,an) 

is absolute for M, N if 

iff 

Definition. M is an elementary submodel of N, denoted 

M ~ N, if MeN and for all n < wand formulas ~ with at 

most	 n free variables and all {a ,··· ,an} C M the formula
l
 

~(al,···,an) is absolute for M, N.
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For a cardinal K, the set H(K) is the set of all 

"hereditarily < K sized s~ts". That is, H(K) is the set 

of all sets whose transitive closure has size less than K. 

These sets are useful because if K is regular then 

H(K) 1= ZF - P (see IV in [K]). 

In practice, when one is investigating a property of 

some objects, say <x,r,c ~ one usually knows the largest 

possible size of any set at all relevant to the validity 

of the property. Therefore there is a cardinal a large 

enough and a formula of set theory ~ so that ~(X,T,C) 

expresses the property and such that ~(X,T,C) is absolute 

for V,H(e). (For example~ see the Levy Reflection 

Theorem, IV in [K]). 

Throughout this paper we shall often choose such 

"large enough" a or H(a) with little or no discussion as 

to how large it needs to be.  
Once we have shrunk our model to.a set (namely H(a», 

we then .have the downward Lowenheim-Skolem theorem. The 

proof of this theorem makes very transparent the concept  
of elementary submodels. 

Theorem 1.1. For any set H and X C H, there is an 

elementary submodel M of H, such that X C M and  

Another very useful notion and resulting basic 

fact concerns elementary chains. Mis called an 
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elementary chain if it is a chain when ordered by~. It 

is worth noting that ~ is a transitive order. 

Theorem 1.2. If M is an elementary chain then 

M ~ U Mfor all M E M. 

CoroZlary 1.3. If M is a chain under inclu~ion of

elementary submodels of H, then Mis an elementary chain 

and U M ~ H. 

Corollary 1.4. For uncountable regular cardinals 

K < a and X E H(a) with IXI < K, 

{A < K: 3M ~ H(a) (X C M, IMI < K and M n K A)} 

is a closed and unbounded set (cub) in K. 

Proof. Inductively build an elementary chain of 

length K, {M : a < K}, so that for a a limit ordinal,a 

Ma U{Ma: a < a}. 

Note that, for regular cardinals a, if M C H(a) has 

cardinality less than a then M E H(a). Therefore we 

could have built the elementary chain so that M E M~+l a 
this will be called an elementary E-chain. A continuous 

elementary chain or elementary E-chain is one in which, 

for each limit a, we have that Ma = US<aMS. 

Another corollary to theorems 1.1 and 1.2 which we 

shall use frequently is the following. 

2wTheorem 1.5. For any regular a > £ and any 

x C H(a) with Ixi ~ £, there is an M ~ H(6) 80 that 

WX C M, 1M' = £ AND M C M. 
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A remark often made for its shock value is to suppose 

that M is a countable elementary submodel of H{{2£)+) such 

that the reals' ]R are in M. Then M F (lR is uncountable) 

and yet lR n M is only countable. There's no paradox 

here: M thinks lR is uncountable not lR n M. Indeed the 

set lR n M is not even in M so M can't think anything 

about it. The lesson here is that if M ~ H, then ~M{m) * 

~H{m) holds for eZements of M, and that, in general, 

neither of the implications X E M ~ X C M, X C M ~ X E M 

hold. However in some case X E M does imply X C M. 

Theoraem 1.6. If M ~ H{e)" e raeguZara" and K E M is 

a aaradinaZ suqh that K C M" then fora aZZ X EM with 

Ixi -< K" X is a subset of M. In paratiauZara" eaah aount

ab.le eZement of M.is a subset of M.  
Praoof. If Ixi ~ K, then H{e) F (3f: K o~to X). 

Since K, X are both in M, M F (3f: K o~to X). That is, 

{3f: K o~to X)M holds, hence there is an f E M such 

that (f maps K onto X)M. Now we are down to what is 

known as a 60-sentence (see IV in [K])--these formulas are 

absolute in many circumstances; that is f "really" is a 

function from K onto X. Indeed, M F (f C K x X) so we 

show that f C K x X as follows. M F (f C K x X) really 

means M F= (,3x E f\(K x X)}--hence H(e) /= (..,3X E f\(K x X». 

Similarly H(e) F= (f is a function) since 

M F= (Va E K) (Vx, y E X) ({(a,x) ,(a,y)} C f - x = y). Also, 

of course, M F= (Vx E X) (3a E K) (a,x) E f). Finally, we 
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show that x E M for each x E X follows from K C M.
 

Indeed, let x E X. Since f is "really" onto, we may
 

choose a E K such that (a,x) E f. Now
 

MF (3y) (a,y) E f so choose y E M such that M F (a,y) E f.
 

Clearly H(e) "thinks" (realizes?) that x = y.
 

When one says "let <X,T) be a topological space" it 

is usually meant that T is the topology on X. However 

we shall mean that T is a base for a topology on X. As 

we shall see below this is much more convenient. 

Suppose (X,T) is a topological space in some H(e). 

Our general procedure is to take some kind of submodel, 

M C H(e) (frequently an elementary submodel), such that 

(X,T) E M. We then consider the (generally much smaller) 

subset ~ = X n M. At this point there are two natural 

topologies to consider on XM• On the one hand we have 

the subspace topology generated by {U n XM: U E T}. And 

on the other hand, if M F T is a base for a topology on X 

plus some basic axioms, then weld get the base 

TM = {U n XM: U E T n M}. In general, these give very 

different topologies on XM• For example, if X = 8w and 

M is countable then, of course, (XM,TM) is a countable 

metric space. 

However, it is by comparing these two topologies that 

we prove our reflection results. The game we play is to 

jump back and forth between M and H(e), comparing what 

M "thin,ks" with what Hce) "thinks". 
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Most of the results in this article are what are 

known as reflection results. A reflection question in 

topology usually has the form "if a space X has property 

P, then what is the size of the smallest subspace Y which 

also has property P?". However it is usually the case 

that P is the negation of a nice property. So one might 

rephrase the question as "if K is a cardinal and X is a 

space such that every subspace of X of cardinality at most 

K has P, then does this guarantee that X has P?". 

We will adopt the following notation: 

If P is a class of spaces or a property (which defines the 

class of spaces having that property) then for a space X 

K(X,P) min{IYI: Y C X and Y does not have property p}, 

(where we assume the minimum of the empty set is 00). 

There are not too many reflection results that hold 

for the class of all topological spaces but, for example, 

if we consider the separation property T1 then for any 

space X we have K(X,T ) E {2,oo}. Another less trivial 
I 

example is that K(X, first countable) for all X such.::. wI 

that X(X) = wI (but not for all X such that x(X) > w). 

We shall use such self-explanatory abbreviations for 

classes of spaces as 'X = w', 'w = w' and 't < K' for 

'first countable', 'countable weight' and' tightness at 

most K' respectively. The reader is, of course, referred 

to the Handbook of' Set-theoretic Topology for all topo

logical definitions and basic facts. 
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II. Some elementary applications 

In this section we prove a few simple theorems as an 

introduction to elementary submodel arguments. 

Example 2.1. THE DELTA SYSTEM LEMMA: Let K be a
 

regular cardinal and let {F I a < K} C [K ]<W • Of course
 
a
 

we want to show that there are
 

n < w, F E [K]<w and I E [K]K
 

so that IF I = n and F n F = F for all a,S E I with
 
a a ~ 

a ~ 8. Let M be an elementary submodel of H(K+) such that 

{F 10. < K} is in M and IMI< K. Let A = sup(M n K) and a 

choose any a E K - A. We have found our nand F; let 

n = IFal and F Fa n M. Then one notes that 

and M F. V'Y < K3a( IFal = n l\ (Fa n(max(F U {'Y}) + 1) F). 

To see this, note that the set S = {'YI (30. E K)F n 'Y F}a
 

is an element of M. Furthermore A E S hence M ~ S is
 

cofinal in K. 

It follows that we may pick, by induction on 

a < K, Fa so that Fa n maxF = F for all 8 < a. Alterna8
 
tively, we may choose an elementary chain {M : a < K} of
 

a
 

elementary submodels of cardinality less than K so that
 

M = MO and choose Fa E M +l so that Fa n M F.
 a a 

In the next example we prove Arhangel'skii's famous 

result that the cardinality of a Lindelof first countable 

space is at most c. 

Example 2.2. A Lindelof space with countable 

pseudocharacter and countable tightness has cardinality at 

most c. 
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Let T be a base for a Lindelof topology on X which 

has countable tightness and pseudocharacter. Let 

<X,T) E M -(H(8) such that MW C M and S is "large enough". 

Claim. M n X = X
 

Indeed, suppose not, and choose z E X\M.
 

SubaZaim 1. For each y E X n M3U E T n M such that y 

Proof of Subclaim 1. H(S) F (3{U : n < w} C T such n 

that {y} = n{U : n < w}). Therefore M is a model of this,n 

so let {U : n < w} E M be such that M F {y} = n U. Now n n n 

since {Un}n EMit follows that V r {y} = nnUn' hence we 

may choose U as required.y 

SubcZaim 2. X n M is closed (hence Lindelof) . 

Proof of Subclaim 2. Assume x E X n M. By countable 

tightness, choose a countable set Y C X n M so that x E y; 

Fix a set {Un}nEw C T exhibiting that X has countable 

pseudocharacter at x. Next choose, for each nEw a 

collection {Un,m}mEw C T such that x ~ U{Un,m}mEw & 

X\U C u ew{U }. It follows that Y\{x} = U{-Y---: n,m E w}n m n,m n,m 

where, for each n,m E w Y Y n U • But since n,m n,m 

{y m: n,m E w} is a countable collection of countable subn, 

sets of M, the collection and each member of it is an 

element of M. Now if x were not in M we would have 

M t= y = U{-Y-: n,m E w}n,m 

whereas 

H(S) t= x Y\ -Y-- for each n ,m E w. n,m 
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Now by subclaim 1 U = {u
y 

: y E X n M} forms an open 

cover of X n M but not of X. By subclaim 2, U has a 

countable subcollection W which still covers X n M. Now 

W is a countable subset of M and therefore is an element 

of M. But this is a contradiction since M F W covers X. 

The result now follows from the fact that we may assume 

IMI = c. 

Proposition 2.3. If a space X with base T has a 

point-countabZe base and <X,T> E M ~ H(8) then T n M is a 

base for each point of ~. 

Proof. Let M ~ H(8) with <X,T> E M. Since 

H(8) F <X,T> has a point-countable base 

and M is an elementary submodel, there must be a set 

B E M such that 

M F B is a point-countable base for <X,T>. 

It is straightforward to check that absoluteness guaran

tees that B is a base for <X,n (in H(8)). Also 

H(8) F B is point-countable since this follows from 

M F Vx E X {B E Blx E B} is countable. Now let x be any 

point of ~ and suppose B E B is a neighbqurhood of x. 

Choose U E T and WEB so that x EWe U C B. Now choose 

yEW n M which we may do since x E~. Since B is 

point-countable and {y,B} EMit follows that 

{S E B: yES} C M; hence, in particular, {B,W} C M. 

Furthermore, since U E T and W cue B, it follows that 

M F 3T E T such that WeT C B. 

Therefore there is ,a T E T n M such that x ETC B which 

was to be shown. 
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As we shall see later, the hidden strength of the 

previous result is that the base T is not assumed to be 

point-countable (recall our assumption that T denotes a 

base, not the whole topology). The next result uses some 

compactness in the topological sense to find when T n M 

is not a base at all points of x-nIM. 

Proposit~on 2.4. Let (X,T) be a countably compact 

space which is an el~ment of a countable elementary sub-

model, M, of some sufficiently large H(e). 

if T n M is not a base for (X,T) 

then 3z E x-nJM such that T n M is not a base at z. 

Proof. Clearly we may as well assume that X n M is 

not dense in X, so choose ~ny z E X\x-nJM. Now if T n M 

does contain a base for all points of X n M then there is 

a cover U C T n M of x-nJM whose union does not contain z. 

But now x-nJM is countably compact and U is a countable 

cover of it (since T n M is countable). Therefore there 

is a finite subcover, say W C U, of ~ and hence of 

x n M. But now W E M and M F UW = X while H(e) F Z ~ UW. 

The following non-trivial result is an immediate
 

consequence of the previous two propositions.
 

v 

E~ample 2.5. MISCENKO'S LEMMA. A countably compact
 

space with a point-countable base has a countable base.
 

III. Elementary chains and the cu-covering property 

As we saw in the proof of Arhangel'skii's theorem i

is a very powerful assumption to have that your elementary 
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submode1 is "closed under w-sequences". Also we cannot 

expect that countable elementary Submodels can "trap" a 

great deal. Indeed a typical inductive construction 

usu~lly carries through without much difficulty through 

the countable limit ordinals (discounting the problems of 

"trapping" the uncountable sets). On the other hand most 

constructions have considerable difficulty passing wI' 

so we can expect some non-trivial reflection by taking 

elementary submodels of cardinality wI even in the absence 

of CH. 

A useful property, which can to some extent replace 

"closed under w-sequences", is the w-aovering property. 

We shall say that a set M has the w-covering property if 

for each countable A C M there is a countable B E M such 

that A C B. If {M : a E wI} is an elementary E-chain of a 

countable elementary submodels of some H(8) such that for 

each ~ E wI M E M +l then clearly the union of the a a 

M 's is an w-covering elementary submodel of H(8) of 
a 

cardinality wI-

In this section we shall present several proofs that 

use elementary submodels of cardinality wI which satisfy 

the w-covering property. It can be shown that such 

elementary submodels are exactly those which are un

countable and are the union of an elementary E-chain of 

countable elementary submodels~ 
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Theorem 3.1. If every subspace of cardinality wI 

of a countably compact space is metrizable, then the space 

itself is metrizable. 

It is convenient to make a few preliminary remarks 

before actually proving the theorem. To give a slick 

proof using elementary submodels it seems to be necessary 

to first prove that such a space is necessar~ly first 

countable, or at least that we may assume that if there 

is a counterexample then there is a first countable one. 

This can be done directly with relative ease--because of 

countable compactness a counterexample would have a sub

space with density at most wI which was also a counter

example. However it seems ~ore appropriate to proceed 

by first proving the following surprising result of Hajnal 

and Juhasz (the result for regular spaces was proven by 

Tkacenko [Tk]). This was proven during their systematic 

study of cardinal functions on unions of chains of spaces 

which is very similar to investigating reflection pro

perties of the cardinal functions. We state this result 

twice in order to recall our notation introduced in I. 

Proposition 3.2 [J]. If every subspace of cardinality 

at most wI has countable weight then the space itself has 

countable weight. 

Proposition 3.2 [J]. For any space X, K(X,W 

implies w(X) = w. 

Proof. Let (X,T) E M where M is an w-covering ele

mentary submodel of H(e) of cardinality wI. We must first 
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show that T n M is a base for the subspace topology on 

X n M. Indeed suppose x E X n M and U is an open neigh

bourhood of x. Since K(X,W = w) > wI' X n M\U has a 

countable dense subset D. Since M has the w-covering 

property we may choose a countable D' E M so that 

D C D' C X. Now M F weD' U {x}) =whence there is 

T E T n M such that x E T and T n D' C U. So we now have 

X n M\U o C D' \ T C X\ T, hence l-1 n T C U as was to be shown. 

It now follows that there is a countable subset B of 

T n M which is a base for X n M since w(X n M) = wand 

T n M forms a base. We may suppose B E M by the 

w-covering property. But ·now M F w(X) = w, hence the 

result follows by elementarity. 

ppoof of 3.1. Let T be a base for the topology on X 

and assume that (X,T) is not metrizable. Let (X,T) E M 

where M is an wI-sized, w-covering elementary submodel of 

some H(e). We shall show that X n M with the subspace 

topology is not metrizablei hence K(X,metriz) wI. By 

3.2, we know that X has a(subspace Z with Izl wI and 

w(Z) > w. By elementarity, there is such a set Z in M, 

so assume Z E M. Since X is countably compact and w(Z) is 

uncountable, we know that Z is not metrizable--hence we 

may as well assume that X = Z. 

We may also assume that, for each x E X, Z U {x} is 

metrizable, hence first countable. Therefore M F Z U {x} 

is metrizable. If X is not regular at x then M will 
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reflect this since Z E M is dense. Indeed, suppose 

U E T is a neighbourhood of x such that V\u ~ ~ for each 

neighbourhood of x. By elementarity, we may assume that 

U E M. Assume though that x has a neighbourhood such that 

V n M C U (i.e. X n M is regular). Since Z U {x} is 

first-countable and in M we may choose W E M such that 

Wn z C V. Therefore W.C V C U. Since Wand U a~e both 

members of M, this is a contradiction since M F W C U 

while H(e) F W\u ~ ~. 

So we may assume that X is regular at x and there

fore it follows that X is first countable at x and T n M 

contains a local base at x. Therefore it suffices to show 

that <X n M, T n W is not metrizable. 

~ 
Let {M : a < WI} be a continuous E-chain of countablea 

elementary submodels of M with (X,T) E M and whose unionO 

is all of M. For each a E w ' we have that 3x E X n Ml a 

such that T n M does not contain a base at x. But 
a 

since {X,T,M } E M +l there is in fact an x E M +l n X n Ma a a a 
such that T n M does not contain a base at x. a 

Finally, let us suppose th~t (X n M, T n W has a 

point-countable base and obtain a contradiction to 

Proposition 2.3. Let N be a countable elementary sub-

model of H(S) such that each of X,M,T and {M : a E wI} are a 

in N. Let a = N n wI and consider a point x E M n X n M a 

such that T n M does not contain a neighbourhood base at a 

x as discussed in the previous paragraph. But now 
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(T n M) n N = U{T n Me: SEa}. 

Therefore (T n M) n N does not contain a local base for 

x E X n M n N, which is the contradiction we seek. 

A noteworthy aspect of the above proof is the double 

usage of elementary sUbmodels. That is we developed some 

of the properties of the model M and then put M itself 

into a countable submodel. 

Clearly one of the awkward things about the above 

proof is that we had to first show that the space would 

have to be first countable in order to deduce that T n M 

yielded the subspace topology on X n M. We shall now 

discuss the situation for reflecting countable character. 

It is easy to see that 

K(X,X = w) > wI ~ X(X) = w. 

Indeed remove the limit ordinals having cofinality wl 

from w2 + 1 and observe that this example shows that even 

K(X,X = w) > wl&X is countably compact ~ X(X) w. 

Therefore we could not have proceeded qirectly in 3.1. But 

for which spaces does K(X,X = w) > wI imply first count

ability? 

ProposCtion [J]. For compact spaces X,
 

K(X,X = w) > wI - X(X) = w.
 

It makes sense to ask how much compactness you need 

to obtain the above result. A space is called initially 

wI - compact if every cover by wI open sets ,has a finite 

subcover. This condition is, of course, equivalent to 
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each of the conditions "there is no free closed filter 

base of size wI" and "each set of size at most wI ha.s a 

compl~te accumulation point". Let us first observe that 

this is how much compactness one needs to prove 

Arhangel'skii's result relating free sequences and 

countable tightness. Recall that a sequence {x : a < K}
a 

is called a free sequence of length K if for each a < K 

it is the case that {xS: S < a} is disjoint f~om 

{xS: S ~ al. When we say free sequence we shall assume 

the length is wI. 

Proposition 3.3. If a countably compact space does 

not have countable tightness then it contains free 

sequences. In addition, for an initially wI-compact 

space X, t (X) .= W iff X has no free sequences. 

Note that 3.3 is actually a reflection type result as 

well since it has as an immediate Corollary the fact that 

K(X,t = W) > wI ~ t(X) = W 

for all initially w compact spaces.1

Proposition 3.4. For initially wI-compact regular 

spaces x, 

K(X,X = w) > wl - X(X) = w. 

Proof. Let (X,T) be a regular initially wI-compact 

space such that K(X,X w) > wl. By the remark following 

3.3 we have that t(X) w. Let M be an w-covering 

elementary submodel of some H(S) so that (X,T) E M & 

IMI = wI. It suffices to show that M F X(X) = w. 
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As in 3.2 it suffices to show that T n M induces the 

subspace topology on X n M. Let x E X n M and 

T = {T E Tlx E T}. Let U E T and suppose that x x 

T n M\U ~ ~ for all T E T n M. Using initial wI-compactx 

ness we may choose 

z E n{T n M\U: T E T n M}.x 

Using t(X) = w, choose a countable set D C X n M\U so that 

zED. Again, by w-covering of M we can find T E T n M x 

so that x E T & T n D ~. Now, since we are assuming 

that X is regular and T E M we may choose T' E T n M so x 
that TT C T, hence TT n D ~. This is a contradiction 

since z is supposed to be in TT n o. 

I do not know if one needs to assume that X is 

regular in the previous result. If there" is a non-compact 

first~countable initially w -compact space then there is
1

an example to show that the assumption of regularity in 

3.4 is necessary. On the other hand, it is easy to see 

that one does not need to assume regularity of CH holds. 

Indeed, this is because under CH (and it is consistent 

with.CH) that every initially wI-compact Hausdorff space 

of countable tightness is compact! 

Ppoposition 3.5. Let <x,n be an initially wI-compact 

Hausdorff space of countable tightness. Then every maximal 

free filtep of closed sets has a base of sepapable sets. 

Fupthepmope, if CH holds then the space is compact. 

Ppoof. Suppose that F is a maximal free filter of 

closed subsets of <x,n. Let M be an w-covering elementary 
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submodel of some appropriate H(8} such that {X,T,F} E M & 

IMI = wI. If CH holds we assume in addition that MW C M. 

Choose any z E FM = n{~: F E F n M}, which we may do 

since IF n MI = wI. Let A E F n M be arbitrary and, by 

countable tightness, choose a countable set DCA n M so 

that zED. Since M has the w-covering property and A E M 

we may assume that D E M. Since z E F n 0 = F n 0 for 

each F E F n M it follows that 

M F 0 n F ~ ~ for each F E F. 

Therefore, by elementarity and the maximality of F, 0 E F, 

showing that F has a base of separable sets. It also shows 

that {Fi'lM I. FE·· F n M} C. F, FM E', F' and furthermore that 

IFMI > wI since F is a free filter and X is initially 

wI-compact. 

Now suppose that M is closed under w-sequences and 

that z' is any other point of FM• Let U & u ' be disz z 

joint neighbourhoods of z and z'. Let D D n U and z z 

D ' D n U •. Now just as we showed that 0 was in F,
Z z 

the same proof shows that both 0- and ~ are in F since z z 

they are both in M. However this contradicts that 

z E ~ for all F E F n M since z ~ ~. z 

One can prove even a stronger result than the above 

one but the proof does not benefit by the use of ele

mentary submodels and can be proven by a simple induction 

of. length wI
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Proposition 3.5A [FREMLIN]. If <X,T} contains no 

free sequences then for each countably complete maximal 

filter F of cZosed sets and each set H E F+ = 

{z· C X: Z n F ~ J for each F E F} there is a countable 

H' C H so that HT E F. 

However an interesting feature of the proof of 3.5 is 

that it gives us a pretty good idea of how the consistency 

results in both directions must go. For example to show 

that it is consistent with,CH we can imagine that'M is 

an inner model of CH and there are more reals to be added. 

It must be the case that new subsets of X n M are added 

which can serve as the pair uz,u ' mentioned above. Therez 
are a lot of properties that we can show the pair must 

have--for example they both meet every countable set in M 

whose closure is a member of F n M and that M ~ F is a 

countably complete filter. We then investigate which kinds 

of forcings which add reals could not possibly add such a 

pair. It turns out that Cohen forcing is such a forcing 

but we shall not give the details here. In section 5-7 

we shall prove the result, due to, Fremlin and Nyik6s that 

assuming the Proper Forcing Axiom, each initially wl 

compact space of countable tightness is compact. As for 

the consistency of there being such spaces the above 

analysis indicates that we have to plan for those inner 

models of CH and be building a' space in such a way that 

it is possible to add the necessary sets. This is still 

open. 
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Another question which suggests itself is whether or 

not we could replace 'compact' in the character reflection 

result with 'countably compact & countable tightness'. It 

turns out that if there are large cardinals then it is 

consistent that simply 'countable tightness' will suffice 

and no compa~ess is necessary at all. This will be 

proven in section 6. However it is consistent that these 

two properties do not suffice. 

Example 3.6. In the constructible universe, L, there 

is a countably compact space of countable tightness and 

uncountable character such that each subspace of 

cardinality wI has countable character. 

It is shown in [DJW], that there is a family of 

functions {fa: a < w2 } in L so that 

(1) f : a -+ w for each a < wa 2 

(2) a < S < w implies {1' < a: fa (1') ~ f (1') } is finite2 S
(3) 'If: w2 -+ w 3a < w such that {1' < a: f(1') ~ f (1')} is2 a 

infinite. 

For each a < w2 ' let Aa,O {(S/m) E a x w: m < fa(S)} 

and for n > 0 let A = {(S,n + f~(S»: S < a}. By aa,n u. 

straightforward 'Ostaszewski-type' induction one can 

define a locally countable, locally compact topology on 

w2 x w so that for each A < w2 with uncountable cofinality 

the subspace A x w is countably compact and furthermore 

ensure that for each n < w the set AA,n is clopen. 

Next one defines, just as in [DJW], a topology on 

X {p} U w2 x w by declaring that w x w is endowed with2 
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the above topology and U is a neighbourhood of {p} pro

viding p E U and Va E w 3n E w so that

2


U ~ U{A : n < mEw}.
a,m 

IV.	 More on metric spaces --Hamburger's question 

Peter Hamburger has asked a natural question about 

metric spaces which can be asked in our terminology as 

"Does there exist a first countable non-metrizab1e space,
 

X, such that K(X,metriz) > w ?". If the existence of

1

large	 cardinals is inconsistent, then the answer is 

known	 to be "yes". In fact the example would just be a 

special kind of subspace of the ordinal space w2--ca11ed 

an E-set. An E-set is what is known as a non-refleating 

stationary set. A set E of ordinals is called an E-set 

if E is stationary in its supremum, (Va E E) cf(a) < wI 

and for each A < sup (E) with cf(A) > wEn A is not 

stationary in A. 

As mentioned above if there are no large cardinals 

then in fact there is an E-set contained in w2 (see [De2]>. 

In section 6 we shall discuss the consistency, from a 

large	 cardinal, of there being no E-sets. There~ore 

Hamburger's question for ordinal spaces is resolved. We 

shall	 show that the situation is the same for loca11Y-~l 

spaces. Recall that X is locallY-A if every point has a 

neighbourhood of cardinality at most A. 

We proceed by analyzing the inductive step: "if X is 

a loaally small space, does 

K(X, metriz) > K - K(X, metriz) > K?" 
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The singular case holds in ZFC and the consistency of the 

regular case follows from (and implies) the consistency of 

large cardinals. The main tools will be Proposition 2.3 

and elementary chains. 

Theopem 4.1. Suppose w = cf(K) < A < K and that X is 

a ZoaaZZY-A spaae. Then K(X,metriz) ~ K. 

Ppoof. We may as well assume that X has cardinality 

K. Fix a base B for X consisting of open sets of 

cardinality at most A. 

Choose a regular cardinal 8 much larger than K and an 

elementary E-chain {M : n < w} so that 
n 

A U {K, <X,B)} C M H(8), IMnl < K for each n E W, andO ~ 

X C U M • By assumption, X = M n K is metrizable for 
n n n 

Ieach nEw. Furthermore, for each B E B n M Theorem 1.6 
n 

implies that B C X hence X is open in X. Therefore X n n 

has a point-countable base. Furtherm9re, B E B n M ~ 
n 

B C X ' hence B n M does not contain a base for any pointn n 

of X\X • Also by 2.3, B n M contains a base for alln 

points of Xn . Therefore Xn is a clopen subset of X and 

{Xn+I\Xn : nEw} is a partition of X into clopen 

metrizable pieces. 

Theopem 4.2. Suppose cf(K) ~ A < K and that X is 

a loaally-A spaae. Then K(X,metriz) ~ K. 

Proof. Assume that X is such a space with cardi

nality equal K. We begin just as in 4.1 by choosing a 

base B of open sets of cardinality at most A and an 
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elementary E-chain {M : a < cf{K)} so that for each 
a 

a E cf{K), 1M I < K, A U {X,B} C M and furthermore a a 

U{M: a E cf(K)} ~ X U B. Just as above it follows that 
a 

each X X n M is open and if we can show that they are 
a a 

closed as well then we will have shown that X is 

metrizab1e. 

Let S = {a < cf(K): X- # X}. Let us first show that 
a a 

it suffices to show that S is not stationary. Choose a 

cub C C Cf{K) so that C n S =~. Let 

C = {1 : a E Cf(K)} be listed in increasing order. For a 

each a E Cf(K), X \X is therefore c10pen and 
10.+1 1 a 

metrizab1e. It would then follow that X is metrizab1e-

henge we should" assume that S is stationary. 

Choose N ~ H(6) so that INI = Cf(K), N is w-covering 

and 

{X,B,{M : a E Cf(K)}} E N. 
a 

Now for each a E S,NFxnM is not closed, hence 
a 

S {a E cf(K): N n X n M ~ N n X n M } 
a a 

{a: XN n XN n M # XN 0 M }
a a 

where ~ = X n N. Since S is stationary we can choose 

N' ~ H(8) of cardinality less than cf(K) so that 

{N,X,B,{Ma:a E Cf(K)}} EN' and N' n cf(K) = 1.l E S. Now 

N' n XN = n M and N' n B = M n B, since~ 1.l l.l 

N F U{Ma : a E Cf(K)} ~ X U B. Since B n~c X
N

n M for 
1.l 

each B E B n M = B n N' I it follows that N' n B does not 
l.l 

contain a neighbourhood base for any of the points of 

XN n N' \ N'. But since this latter set is not empty, ·XN is 

not rnetrizab1e by 2.3. 
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'Locally-A' can be replaced by 'locally - < K' in 

4.1, but I"don't know if it can be in 4.2. Also we leave 

as an open question, the regular cardinal version of 4.2. 

Question 4.3. If K is regular and there is a 

locally- < K topology on the set K in which every subspace 

of cardinality less than K is metrizable, does it follow 

that (K,n is not metrizable iff {A < Klcf(A) = w & 

r ~ A} is stationary? 

The proof of the next result must be delayed until 

6.1. 

Theorem 4.4. If it is consistent that there is ~ 

supercompact cardinaZ then it is consistent that, for the 

cZass of ZocaZZy-Nl spaces, 

K(X,metriz) > wI • X is metrizabZe 

Recall that a space is said to be (NI-)CWH (for 

Collection-Wise Hausdorff) if every (Nl-sized) discrete 

set can be separated by disjoint open sets. Shelah has 

also proven that it is consistent (subject to a large 

cardinal) that a locally-NI first countable space which 

is N1-CWH is CWH. However when the local smallness condi

tion in this and the above results on metric spaces are 

dropped no such reflection results are known to hold. It 

is known that the situation is different since an example 

in [F] shows that 4.4 does not hold if local smallness is 

dropped. To finish this section we will first formulate 
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a combinatorial principal on w and then construct a space2 

from it. I do not know whether or not this combinatorial 

2wlprinciple is a consequence of GCH or even = w --it is2

consistent with these assumptions. 

Let S~ be the cofinality w limits in w2 and let (t) 

denote the statement: 

(t) 3{AA IA E S~} .and {gA IA E S~} so that: 

(1) AA is a cofinal increasing sequence in Ai 

(2) gA is a function from AA into Wi 

(3) VlJ < w2 3hlJ: lJ + w such that VA E lJ n Sa 
2 

{a E AA1hlJ(a) < gA (a)} is finitei and 

(4) vg: w + w 3A E s~ so that2 

{a E AA1g(a) ~ gA (a)} is infinite. 

ExampLe 4.5. (t) implies there is a first countable 

space which is ~l-CWH and for which subspaces of size ~l 

are metrizable but which is not CWH and not metrizable. 

Let {A\: \ E S~} and {g\: \ E S~} be as in (tl. We shall 

define a topology on the set w U w x w x w so that w2 2 2 2 

is closed discrete and unseparated and the rest of the 

space is open and discrete. 

For each A E s~ let {a~: new} list AA in increasing 

order. For each point CL E w we define a countable
2 

neighbourhood base U(a,n) as follows: 

for a ~ s~ U(a,n) = {a} U {a} x w
2 

x (w\n): 

for A E SA
2 
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The simplicity of the space ensures that a subspace 

will be metrizable if an only if it is CWH. To see that 

the space is ~l-CWH, let ~ < w2 and choose h~ as in (t). 

For each A E ~ n s~, define h'(A) h~(A) + j where j is 

such that h (a A) > g, (a A) for all n > j. Otherwise de
~ n 1\ n 

fine h' equal to h. It is easy to check that thi~ h' as 
1.1
 

a function from ~ into the neighbourhood bases yields a
 

separation of ~.
 

Let us now show that the space is not CWH. Indeed 

suppose that g: -+ w is such that U(a,g(a» is disjointw2
 

from U(A,g(A» for each a '< A < w2 • Choose A E sO so

2 

A Athat A' = {:n E w: g(an ) -< gA(an )} is infinite. Let
 

m = g(A) and choose m < n E A'. But now the point
 

A A

(an,A,gA (an» 

A Ais in	 both the sets U(an,g(a » and U(A,g(A».n 

v.	 Elementary submodels in forcing proofs 

Forcing, of course, is the technique developed by 

Cohen which takes a (ground) model of set theory, 

together with a 'new' desired set, and canonically con

structs a model of set theory (the extension) containing 

the new set and the ground model. The difficult part of 

most forcing arguments is to show what sets are not added. 

That is, one must prove some kind of preservation argu

mente For example, it is frequently important that the 

ordinal which is wI in the ground model remains so in the 

extension--we would say that "wI is preserved". Some
 

other examples of properties which we may want preserved
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include: "being an ultrafilter over wIt; "a tree having 

no cofinal branches"; "a Souslin tree remaining Souslin". 

If V is the ground model, and P E V is a poset then 

we assume the existence of G C P--a generic filter (iee. 

for each dense open D C P with D E V G n D ~ ~). V[G] 

is just the model obtained by adding G to V and using the 

axiom of comprehension to interpret all the P-names from 

V. (The fact that this works is remarkable and difficult 

to prove but to apply it is not as difficult as I suspect 

is commonZy assumed). Therefore we now have two models 

of set theory, V and V[G]. If T E V is a base for a 

topology on X E V, then we can still discuss <X,T) in 

V[G]--it will be the same topological space but it may 

have different seaond order properties. That is, we 

would want to discuss the preservation of topological 

properties such as: the countable compactness of <X,T), 

the non-normality of <X,T), etc. 

In this section we give some examples of how ele

mentary submodels can be utilized in proving such preser

vation r~sults. We begin with Cohen-real forcing. 

Recall that the poset Fn(I,2) = {s: s is a function into 

2,dom(s) E [r]<w} and is ordered by s < t * s ~ t. 

Lemma 5.1. If G is Fn(I,2rgeneric over V and 

A E V[G] is a subset of w, then both 

FA = {B C 00: B E V & A C B} and I {B C A: B E V}
A 

are countably generated. 
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Proof. Let A be a Fn(I,2)-narne for A and let 

A E M'-< H(e). 

Claim. If B E V and pl~ A C B, then 3B I E M with 

p\r A C B I C B. 

To prove the claim, let pi = P n M and B I . 
in: 3q < pi so that q!r- n E A}. Clearly B I C Band B I E M• . 
Furthermore p I If- A C B I This proves the claim and that• 

F is countably generated. That I is countably generated 

is proven analogously. 

Lemma 5.2. Suppose (X,T) is a space and x E X is 

such that t(x,X) = w then ljr-Fn (I,2) t(x,X) w. 
or •Proof. Suppose l!r (x E A) and A E M ~ H(e). We 

shall complete the proof by showing that 

ll~x E A n M. 

Assume that pjf- U n (A n M) = ~ where x E U E T. Let 

pi = P n M and define Api = {y E X: 3q < pi qjr-Y E A} and 

note that x E Api and Api E M. Since M F t(x,X) w, x 

is in the closure of some countable subset B of A whichI 

P 
is an element of M. Now choose y E U n B and, by ele. 
mentarity, pi > q E M so that q/r-y E A. Finally, we have 

our desired contradiction since dom(q) n dom(p) dom(pl) , . 
hence p U q E Fn(I,2), and (p U q) If-y E UnA. 

Although countably closed forcing does not preserve 

countable tightness in general, it is often the case that 
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additional hypotheses on the space are required to prove 

the desired preservation result. 

Lemma 5.3. If X is a space of countable tightness 

which is first countable on countable subsets then the 

countable tightness of X is preserved by countably 

closed forcing. 

Proof. Let P be a countably closed forcing, A a 

P-name and assume p/r- x E A for-.--some x E X. Let M be a 

countable elementary submodel such that {p,x,A,X} E M. 

With A defined as above, we have that x E A n M for 
q q 

each q E M n P. By assumption X n M is first countable 

hence choose {U : nEw} a neighbourhood base for x in the n 

subspace X n M. Within M choose a descending sequence 

{Pn: nEw} C P with PO p and for each nEw there is 

an xn E X n M so that Pnlrxn E Un n A. Finally since P 

is countably closed there is a q E P with q < Pn for each 

n, and qjr{x : nEw} C A. This completes the proof
n 

since x E {x : nEw}.n 

Another preservation result for Cohen forcing we'll 

need is 5.4. This result is proven in [DTW] and we shall 

not give a proof here. The proof uses a combinatorial 

structure on the Cohen poset called an endowment and 

elementary submodels do not playa role. 

Proposition 5.4. If <X,T) is a space such that for 

some set I, ll~Fn(I,2) <X,n has a a-discrete base then X 

must aZready have one. 
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A poset P is defined to be proper [S] if for each 

A > Wthe stationarity of each stationary S C [A]W is 

preserved by forcing with P. Recall that C C [A]W is 

closed if the union of each countable chain contained in 

C is again in C. The elementary submodel approach makes 

the concept of properness much easier to understand and 

to use. In fact properness can be viewed as a condition 

which guarantees that many elementary submodels in V will 

extend to elementary submodels in V[G]. If e is a large 

enough cardinal and if A = IH(e) I we can identify [A]W 

and [H(e)]w. Furthermore the set of countable elementary 

submodels of H(e) is closed and unbounded. Since P is 

proper, it can be shown that if G is P-generic over V, 

then in V[G] the s~t {M E H(e): M ~ H(e) & M n V E V} is 

stationary in [H(e) ]w. Therefore there are "stationarily 

many" such M such that P,G E M. Now we have 

H(e) F G n D ~ ~ for each dense open D C P such 

that D E V 

hence by elementarity M F G n D ~ ~ for each dense open. 

subset D of P such that D E V. It also follows that M n V 

is an elementary submodel of the H(e) of V. Any conditi~n 

q E P which forces that G n M meets each dense open sub

set from M n V is called a (P,M n V)-generic condition. 

Combinatorially, in V, this translates to q E P is (P,M)

generic if for each r < q and each dense open D E M there 

is a condition p E D n M such that r is compatible with p. 
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As a result there is an equivalent definition of 

proper which is the one we shall work with. P is proper 

iff for each regular 8 > 2 
1p ! and each countable elemen

tary submodel, M, of H(8) which includes P, there is a 

(P,M)-generic condition bel6w each pEP n M (see [SJ). 

Lemma 5.5. If P is an wI-closed poset, then P is 

proper and furthermore, if X E V and G is P-generic over 

V then [XJ w C v. 

Proof. Let {On: nEw} list the dense open subsets 

of P which are in M - a countable elementary submodel. 

Let PO = p be any element of P n M and choose a descending 

sequence Pn' nEw so that Pn E 0 n M. Since P is count-
n 

ably closed, there is a q E P so that q for each< Pn 

nEw.. This q is clearly an (M,P)-generic condition. 

Furthermore, this q has the property that for each ele

ment of M which is a P-name of a function from w into v, 

q forces it to equal a function in V. This is how one 

proves [xJw c V. 

A useful generalization of countably closed forcing 

is the iteration of Cohen forcing followed by countably 

closed forcing. There are many preservation results for 

the iteration which do not hold for countably closed 

forcing itself. 

Lemma 5.6. Suppose Q is a Fn(I,2)-name of a countabZy 

closed poset and that I is uncountable. If (X,T) has 

countable tightness at x E X, then 

ll~Fn(I,2)*Q(X,T) has countable tightness at x. 
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Proof. By 5.2 we may begin by assuming that G is 

Fn(I,2)-generic over V and (X,T) E V. Let A be a Q-name 

of a subset of X, q E Q, and assume that"q\rx E A. Let 

M be a countable elementary submodel containing 

{X,T,I,Q,q,A,x}. Now since I is uncountable and M is not, 

there are, in V[G], filters on Fn(w,2) which are generic 

over V[G n M]. That is; if P is any countable atomless 

poset which is an element of V[G n M], then there is a 

filter H C P so that H E V[G] and H n D ~ 9 'for all dense 

open D C P with D E V[G n M]. Well, such a P is Q n M 

and so we choose such an H C Q n M. Since Q is countably 

closed, choose ql E Q so that H C {p E Q: ql < pl. 

CZaim. x E {y E X n M: qllJ-y E A}. 

Proof of CZaim. Let U E T be an open neighbourhood 

of x and let p E Q n M. Recall the definition of . 
Ap {y E X: 3p ' < P pi Ir-Y E A}. Since Ap 

EM and 

M F t(x,X) = w, there is a countable B C A p such that 

x E Band B E M. Therefore U n B ~ fI and furthermore, by 

elementarity for each y E B there is a pi E M so that 

p' I~ yEA. This shows that . 
D = {p E Q n M: 3y E U n M such that p\r- yEA}U 

is a dense open subset of Q n M. Furthermore U E V, hence 

U E V[G n M], and so H n DU ~~. Since ql is below every 

member of H. This completes the proof of the claim and 

the Lemma. 
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The condition [X]w C V in 5.5 gives us a kind of 

w-absoluteness for V relative to V[G] which is similar to 

what we had when we were taking elementary submodels 

closed under w-sequences. For example we have the 

following result. 

Lemma 5.7. If G is generic over a countably closed 

poset P and (X,T) E V is a countably compact space having 

no free wI-sequences, then 

V[G] F <X,T) is countabZy compact, with no free 

wI-sequences. 

Proof. It is a trivial consequence of 5.5 that X is 

still countably compact since, for example, there are po 

new countable subsets of X and each countable subset 

from V still has all its limit points. Now suppose that 

{x : a < WI}' is a P-name so thata	 .
 

ll~{xa: a < WI} is a free sequence in X.
 

Since P is countably closed we can choose, in V, a 

descending sequence {p : a < WI} C P and {y : a < WI} so a . a 

that, for each a, p IrY x. It follows that a. a. a 

lYe: B <.y} n lYe: y ~ S < a} = ~, for each a < WI' since 

Pcx l~ YB X for each S < a. But now the sequences 
{Y : a E WI} is a free sequ~nce since, by 3.3, X has a 
countable tightness in V. 

Todorcevi6 pioneered the use of elementary submodels 

as "side conditions" in building proper posets. The 

following result is due to Fremlin for some special cases 

and the general result is due to Balogh. 
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Proposition 5.8. If (x,n is a non-compact, 

countabZy compact space, then there is a proper poset Q 

so that 

I~ Q( X, T) contains a copy of the ordinaZ space wI. 

Proof. It turns out the the proof splits into two 

essentially different cases, depending on whether or not 

X contains free sequences. As we only plan to use the 

case when X does not, we shall only prove the result for 

this case and refer the reader to [B], or [0] for a proof 

of the other case. Since the iteration of proper posets 

is again proper, we may assume, by 5.7, that we have 

already forced with the countably closed collapse of the 

cardinal ITI + Ixi. Therefore we may assume that X has 

cardinality and character WI. Choose a free maximal 

closed filter F and define Q as follows. q E Q if 

q = (g , H , M ) where: q q q 
(1) H E [T]<w;

q 

(2) M is a finite elementary E-chain of countable 
q 

elementary submodels of H(e) such that 

{X,T,F} E M for each M E Mqi 

(3) gq is a function whose domain, is a subsetEql 

of {A E WI: 3M E Mq M n wl = A}i 

(4) for each A E E and each M,M I EM, A E MI\M q q 

gq(A) E MI n n{F n M: F E F n M}. 

The actual definition of the conditions is designed' 

to make the finding of (M,Q)-generic conditions a 

2 1pltriviality. Indeed, if ~ > and M ~ H(~) with P E M 
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and p E M n P, then, we will show below that~ 

q = (gp,Hp,M U {M n H(e)}) is (M,P)-generic.p 

We take care to ensure that the range of the union

of the first coordinates over the generic filter will 

yield a copy of wI by defining q < P providing: 

gq ~ g ,H ~ H , M ~ M and,p q p q p 

gq(A) E n{u E Hp : gp(A*) E U} 

for each A E E n maxE , where q p 

A* minCE \A).p 

It is not too difficult to show that, if P does not 

collapse wI and G is P-generic then 

wI ~ U{range(gp):'p E G} C (X,T). 

The main difficulty to this claim is in showing that 

However, anyone who reads the rest of the proof can easily 

do this. One may find it easier to slightly change the 

definition of the conditions by allowing H E [T U wl]<wq 
. and for q < p add the condition that 

A > max(H n A*) for each A E E n max(E ) and A* = 
q q p 

minCE \A). The result of this is that, if G is Q-generic,p 

E = U{Eplp E G} is a cub in wI and g = U{gplp E G} is a 

homeomorphism. That is, if A* E Ep , then Plr A* E E and 

if pit E n A* has no maximum then pl~ (E n A*) cofinal in 

A* (keep adding things to H n A*) and pl~ {gee) Ie E E n A*}p 
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converges to g(A*) - again keep adding neighbourhoods of 

g(A*) to Hp n T. 

However the hard part of the proof is to show that P 

2 1plis proper (hence preserves W ). Let ~ > and letl 

P E M ~ H(~) with IMI = wand let pEP n M. Define p' 

(g ,H ,M U {M n H(S)}). We must first show that p' E P
P P q 

and that p' < p. First of all P E M and S = 

sup{a.: 3q E P,3M' E Mq a. EM'} E M, hence M n H(S) ~ H(S). 

Furthermore, if M' E Mp ' then M' E M and M F M' -< H(S), 

hence M' -< M n H(S). It follows that p' < p. 

Now consider r < p' and D E M such that D is a dense 

open subset of P; without loss of generality we may assume 

rED. Let r = <gr n M, H n M, M n M> and note thatO r r 

r O E P n M and that r ~ rOe Let D 

{(g ,H ): r O > qED} E H(S) n M. Let us first note that q q 

it suffices to find a pair (g,H) E D n M such that 

range(g\g ) C U* where U* = n{u E H : 9 (A O
* ) E U} and r r r 

* A = min Er\M. Indeed, if (g,H) E D n M, then by ele-O 

mentarity there is qED n M so that (g ,H) = (g,H) and q q 

r > q. One easily checks that q and rare compatible._
O 

Let Er\M = {A ' ••• , An-I} listed in increasing order.O 

For expository purposes, first suppose that n = 1. Then, 

by definition of rep we know that 

gr(AO) E n{F: F E F n M}. 

Now, by 3.5A, we may assume that F is just a base for the 

filter which consists of separable sets. Therefore 

F = ~ for each F E F n M and, since F is countably 
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complete n{F: F E F n M} ~~. Since 0 E M n H(8), it 

follows that Z = {x E X: 3(g,H) E D {x} = range(g - gr )} 
o 

E M n 8(8). Therefore if Z ~ F+, then there is some 

F E F n M such that F n Z =~. But this contradicts that 

gr(A O) E F n Z. Therefore it follows that gr(A O) E Z n M. 

Hence we may choose such an x in U* and a qED n M such 

that {x} = range(g- - 9 ).q r O 

The idea of the elementary chains is that we can then 

handle the case n > 1. For i = 0,1, ... , n - 1, let 

x .• 
1 

Also for i 0, ... , n - 1, let gi = gr n Mi and 

Hi H n Mi and let gn = gr and H = Hr·r n 

Just exactly as in the case n = 1, but using M in- ln 

place of M = MO' we obtain that 

cl [ {x: 3( 9 , H> E D s. t. 9 = gr-( max (dom (g , ) ), x) & 

H -1 C H}] E F.n


Define, for i 0, ... , n - 1:
 

Dn-(i+l) {(g,H>: Cl[Zn_(i+l) [(g,H> ]] E F}i 

where for any (g,H) we let 

Zn_ (i+l) [( g ,H) ] = 

{x: 3( g' ,H') E D - i s.t. g' 9--( max (dom (g , ) ) , x> 
n
 

and H C HI}.
 

Note that D E MO for all i = 0, .•. , n, where n- i 

D D. Furthermore we have noted above that n 

(gn-I ~Hn-I) E Dn- I • Assume that i < n and that 

( gn-i ,Hn_~ E Dn- i • Now since 
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Xn-(i+l) E Zn-(i+l)[<gn-(i+l),Hn-(i+l)~ and
 

Zn-(i+l) E Mn-(i+l)' we again obtain that
 

clZn_(i+l) E F.
 

Therefore <gO,HO) E DO E MO.
 

We may now pick, <11 0 ' yO) , · · ., <11 - l , yn-l) and
n
 

Hi, o •• ,H~_l all in MO' so that ,{yo' ···'Yn-l} C U*. These
 

are picked recursively so that for each i = n - 1, ... ,0,
 

if
 

then H' , :::> H' ('+1) and {g' . ,H-' .) ED .. To carry 
n-~ n- ~ n-~ n-~ n-~
 

out the inductive step we note that since
 

(g' . ,H' ,) ED., we have that clZ '+1[< g' "H' ,)] E F. 
n-~ n-~ n-1 n-~. n-1 n-1
 

Ther~fore gr(A O) E cl[MO n Zn-i+l[<g~-i,H~-i)]] a~d w'e may
 

choose Yn-(i+l) E MO n U* n Zn-i+l[<g~-i,H~-i)]. Then by
 

elementarity we can choose 11 -i+l and H - i +l in M as
n n
 

required above.
 

VI. Large cardinals and reflection axioms 

We have seen lots of examples where we had a space 

<x,n E H(S) and a property or formula ~(vl,v2,v3) so 

that when we took M ~H(S) and a parameter A E M, we had 

H(S)O~ ~(X,T,A) (hence M F ~(X,T,A» 

but 

H (S) 1= -, <p (X n M, T n M, A n M) •
 

In fact the whole point of reflection is to find conditions
 

on M which are sufficient to guarantee that ~ does reflect,
 

as opposed to the situation described above.
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If a cardinal K is supercompact and (X,T},A E H(e) 

and ~(vl,v2,v3) is any formula such that H(e) F ~(X,T,A) 

then there is an M ~ H(e) such that 

IMI < K & {X,T,A} E M & 

H(e) F ~(X n M, T n M, A n M) 

(see [KaMa]). When we combine this with forcing we get 

reflection results at "small" cardinals which need large 

cardinals. To get the most out of this, one would want to 

master the techniques described in such articles as [Del], 

[KaMa] and [DTW]. We shall just take the results after 

the fact as Axioms. 

PFA is, of course, the Proper Forcing Axiom: Given 

a proper poset P and a family {D : a < w } of dense open
a l 

subsets of P, there is a filter G C P such that G n D ~ ~ 
a 

for all a < w
l

. 

Fleissner has an axiom called Axiom R: If S C [X]w 

is stationary and C C [x]<w2 is t.u.b. then 3Y E C such 

that S n [y]w is stationary in [y]w. The set C C [x]<w2 

is said to be t.u.b. if it is unbounded and if the union 

of every chain of length w from C is again a member of C.1 

Axiom R is a specific case of a scheme (see [DTW] 

for more details). Roughly speaking, if P is a nice 

class of forcing notions, then we could have Axiom P : If
K 

~(vl,v2,v3) is a (local + structural) property which is 

preserved by forcings from P and if (a,b,c) E H(e) is such 

that ~(a,b,c) holds--then 3Y E [H(8)]<K such that 

~(a n Y, b n Y, c n Y) holds and Y n K E K. 
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For example, for axiom R, take X,S,C E H(e) and P is 

the class of pr9per posets of cardinality < K = w • Then2 

~(X,5,C,K) ~ "5 is stationary in [x]w, C is unbounded in 

[X]<K and closed under unions of chains of length wI". 

Now note that proper forcing preserves stationarity-

hence ~. 

PFA+ is what you get when you combine PFA and axiom R. 

For what it's worth, the author finds it easiest to apply 

PFA by recalling how the consistency of PFA+ is proven. 

That is, the model in which PFA holds is obtained by 

forcing with an iteration of length K of proper posets. 

When you are considering a space (X,n in the extension 

you know, from the fact that K is a large cardinal, that 

this space and any of its properties will reflect to an 

inner model--but there will be more forcing to be done. 

But now the difference between PFA and the above axiom 

scheme is that you get to choose the next forcing in the 

iteration. The idea then is to choose the next forcing 

so that the iteration of it with any other proper paset 

will preserve the properties of interest. 

Other axioms which are frequently used (but not as 

axioms) are: 

"the Cohen forcing Axiom" = Axiom Cohen 2w; 

"Mitchell forcing Axiom" = Axiom (Cohen*w1-aZosedJw 2; 

where Cohen*w1-aZosed denotes the class of posets which are 

of the form Fn(w2 ,2) * P and P is forced to be a countably 

closed poset by the Cohen posets. 
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"Levy forcing Axiom" = Axiom wl-closedw2 • 

Using these axioms together with a judicious choice 

of ~ we can obtain wI-sized, w-covering elementary sub

models of some H(8) together with some instances of 
1 . 

-TIl-reflection. For example as we promised in IV. 

Proposition 6.1. Axiom R - K(X,metriz) < w2 for X 

in the class of locally-Nl spaces. Hence, in particular, 

Axiom R implies there are no E-sets. 

Proof. Let X be a locallY-~l space and assume that 

X is not metrizable. By 4.1 and 4.2, we may assume that 

K(X,metriz): A = Ixi = X is a regular cardinal. Let B be 

a base for X consisting of open sets of cardinality at most 

~. For our application of Axiom R we define 

S = {s E [x]wli\sup(s) ~ ~} 

and 

c = {Y E [x]w1I Y is a clopen subset of X}. 

Since X is first-countable and locallY-~l' C is indeed a 

t.u.b. subset of [x]Wl. Before we show that S is sta

tionary in [X]w, let us suppose that it is and show how 

to deduce the result from Axiom R. By Axiom R, we may 

choose Y E C such that S n [y]W is stationary in [y]w. 

Let e be any large eno~gh cardinal and fix a continuous 

elementary E-chain {Ma,Ia, E wI} so that {X,Y,B,S} C MO. 

Now the set {Ma, n Y\a E wI} is a cub set in [Y]w, hence 

there is an a, E wI such that M nYE S. But now ifa, 

B E B n Ma,' then sup (B n Y) .E Ma, n A. Hence B n Ma, does 

not contain a neighbourhood base for any of the points 
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in the non-empty set (M n Y)\sup(M n Y). By 2.3, Y is a. a. 

not metrizable. 

Now to prove that S is stationary. Suppose that A is 

a closed and unbounded subset of [X]w such that A n S ~. 

Let {M I a. E A} be a continuous elementary E-chain of 
a 

elementary submodels of H{e) such that, for each a. E A, 

WI U {X,B,A,S} C Mo.' IMal < A, and M n A E A. As in the a 

proof of 4.2, each X n Ma. A n M is an open metrizable 
a. 

subspace of X. Since X is not metrizable, there is an a. 

such that X n Ma. is not closed. Since X is first-countable, 

we may choose a countable set sex n Ma. such that 

S\ M ~ ~. Therefore S\ sup (Ma. n A) ~ ~. Now let N be a a 

countable elementary submodel of M which containsa 
s U {A}i we claim that a = N n X E A n S. First a E S 

since a ~ sand sup (a) < sup (Ma.) • Since N ~ (A is an un

bounded subset of [x]w), it follows that there is a 

countable chain C C N n A such that a = UC--hence a E A. 

This contradicts that A was chosen to miss S. 

Now we show that it is consistent that 3.4 can be 

improved. 

Proposition 6.2. It follows from the Mitchell A~iom 

(and the Levy Axiom) that a space with countable tightness 

and uncountable aharacter has a ~ wI-sized subspaae with 

uncountable character. That is, K(X,X ~ WI) ~ WI for 

any X with countable tightness. 
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Proof. Let <x,T) have countable tightness and assume 

that x E X has uncountable character. Suppose further 

that the character of every countable subspace of X is 

countable. Choose a regular cardinal e large enough to 

contain the power set of the power set of X. Define the 

formula ~ so that 

t(x,(X,T») = wand 

X (x, ( X, T}) > w 

q>(x,X,T,H(e)) iff (va E [H(e) JW3; E H(e) so that 

lal = w, a C a, and 

H(e) ~ X(x,(X n a,n = w). 

Now we must check .that forcing by Cohen * WI-closed 

preserves that ~ holds. Lemma 5.6 (and 5.3 for Levy) 

proves that countable tightness is preserved. The second 

line in the definition of q> is also preserved by any 

proper forcing but it deserves more discussion. At first 

glance it seems a total triviality--but the important 

point is that we are talking about the set H = H(e) as 

opposed to the defined notion. All the second line is 

really saying is that "H has the w-covering property" and 

we are simply asserting that this is preserved by proper 

forcing. Of course if we had put a = a in line two--this 

would not have been preserved by any forcing which adds a 

real. Since H has the w-cQvering property, uncountable 

character is preserved. 
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Now either of the above Axioms gives us a set M with 

IMI = wI (which we may as well assume is a subset of 

H(8) ) so that 

~(x,X n M, T n M, M) holds. 

Therefore, in the subset X' = X n M and with respect to 

the topology induced by T' = T n M, the point x has 

countable tightness and uncountable character. Therefore 

to finish the proof we wish to show, just as we were doing 

in III, that T' induces the subspace topolog~ on X'--at 

least at x. So let x E U E T and assume that 

x E cIT,[X'\U]. Since we have t(x,(X',T'» = w, we may 

choose a countable a C X'\U so that x E cIT,a. But now 

M has the w-covering property hence we may choose a 

countable a E M so that a Cae M. This contradicts 

that MFa has countable character with respect to the 

topology induced by T since M would then contain a base 

for the subspace topology at x. 

We finish this section with the PFA results on 

initially WI-compact spaces of countable tightness. 

Fremlin and Nyikos proved (i) and (ii) is due to Balogh. 

In fact Balogh proved that, under PFA, compact spaces of 

countable tightness are sequential but we do not include 

this result since it depends on the case in 5.7 which we 

did not prove. 

Theopem 6.3. PFA impLies that if X is an initially 

WI-compact space of countable tightness, then: 
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(i) X is compact; 

(ii) X is sequentially compact; and 

(iii) X is first countable at some of its points. 

Proof. Let <X,T> be an initially wl-compact space 

with countable tightness. Let P be the usual countably 

closed collapse?f Ixi. In the extension obtained by 

forcing with P, the space (X,T> will not be compact if 

any of the conditions (i) - (iii) failed to hold. Indeed, 

if (ii) fails to hold then clearly X contains a closed 

subspace in which there are no points of first-countability-

so we may as well assume that (iii) fails. For each 

x E X, fix a closed Go' F such that x ~ F • Letx x 

; = {g E <wI xl n F ~ S}· 
aEdom (g) g(a) 

If G is a P-generic branch, then n F- ~ sinceaEw G(a)l 

each non-empty Go subset of X must contain many points. 

One can now observe that forcing with P will add a 

generic branch through Pi (or force with P in the first 

place, or even that we may assume without loss of 

generality that each non-empty Go subset of X has the same 

cardinality as X hence P =P). 

In the extension (X,T) is still countably compact 

and contains no free sequences by 5.7. Now use 5.8 to 

find a proper poset Q in the extension so that there is a 

P * Q-name 9 so that 

l\rg is a homeomorphism from WI into <x,n. . . 
Therefore there are also P * Q-names {{W ,U }: a E WI}a a 

such that 
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1 l~p*QYa E wI {Wa,U } C T anda 

g([O,aJ) C W C W C U and U n g«a,wl » ~. 
a a a a 

Finally, we define D for a E WI to be D 
a a. 

{p E P Q: 3x,W,U such that p I/-g(a) = x, W = W, and* a 

U U} . Since the above statements are forced by 1, it 
a 

follows that D is dense for each a E WI. Use PFA to 
a 

find a filter G C P which meets each D. Pick, for each 
a 

a E WI' x ' W ' Ua' and Pa so that P E G n D anda a a a 

W ' and U U • 
a a a 

Since G is a filter, it follows that for S < a,x E W and
S a 

that x ~ US. Therefore (back in V) {xa: a E WI} is a a 

free sequence--since we have the same base for the topol

ogy in-both models, W- n ~ must be empty. This contra
a a 

dicts the fact that X contains no free sequences (in V) . 

Remark_ The role of the pair {W ,U } in the above a a 

proof is critical. It is not true, in general, that if 

you introduce a free sequence with proper forcing then 

you must have had one to begin with. Perhaps the easiest 

way to see what is going on is to think of the above 

mentioned "author's-view" of PFA. When you meet WI-many 

dense sets from the poset P * Q, you are really forcing 

over some inner model. We can think of this forcing as 

introducing a sequence which is "free with respect to the 

inner model space". However there are still points to 

be added to the space which can destroy that freedom. Also 

there are still neighbourhoods to be added of the point~ 
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you do have and this is why we do not, and can not,
 

assert that we get a copy of wI in x.
 

VII.	 Submodels closed under w-sequences and forcing 

In this last section we will prove a few results 

that show that the techniques involved when using large 

cardinals can be used even without the large cardinals. 

All that is going on in the results of the previous 

section is that a forcing statement is first reflected, 

then the forcing is factored and finally a preservation 

result is proven. When countable objects seem to determine 

all the reflection that you need then it is possible that 

a large cardinal is not needed. It may. suffice to reflect 

the for~ing statement (as in the above outline) by s~mply 

taking an elementary submodel closed under w-sequences. 

The more difficult arguments (e.g. those using PFA) may
 

require the assumption of O(w ) because it sometimes
2

depends on the order in which you iterate your posets.
 

If the forcing is simply an iteration of the same poset
 

then you probably just need to assume CH in the ground
 

model as we shall demonstrate below with Cohen forcing.
 

Frequently these results are proven using the ~-system
 

lemma and other combinatorics.
 . 
The general procedure is to let, say, {A : a < w2 },a.	 . 

{B : a < w2 } and {C : a < w } be Fn(w2 ,2)-names of subsets a	 a 2
of w2 • Let A = {A : a < w2} and similarly define Band C. a 
Let M ~ H(w3) be such that 

{A,B,C} E M, MW C M, and M n w A < w2 •2 
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Recall that a Fn{w 2 ,2)-name, say A, of a subset of w2 can 

be assumed to be a subset of w2 x Fn{w 2 ,2) where . 
pl~a	 E A iff (a,p) E A. 

Now we let AaA = A n (A x Fn(A,2» for each a < A. a 

Similarly define BaA and CaA . Using the facts that 

M ~ H(w 3) and MW C M one can easily prove that 

ll~Fn(A,2)AaA Aa n A and many other reflection results 

of the form . 
11~Fn(A,2)~(AaA'···' CYA) * 11~Fn(w2,2)~(Aa'···' Cy ). 

The final and crucial step after having obtained the 

validity of the appropriate forcing reflection is to 

prove that further Cohen forcing preserves the property. 

Let us begin with a well-known result of Kunen's. 

Proposition 7.1. In the model obtained by adding 

w2-cohen reals to a model of CH, there are no w2-ahains 

in pew) mod fin. 

Proof. Suppose A,{Aala < w21, are Fn(w2 ,2)-names 

such that 

llrFn (W ,2)A = {A~I a < W2 } C P(w) and 
2

A c* AS for a < (3 < w2•a 
Also fix a name B for {B : a E w } so that a 2 

ll~B = {B E pew) I IA \BI < w for all a < w2 }·a 

A. For a < A, we may assume that, in fact, A a 
and B are Fn(A,2)-names. Nowa
 

M F ll~{B(3: (3 < w2 } = {BI (Va < w ) IAa\BI < w}.
2 
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Suppose A is such that 1 I~Fn(~,2) (Va E~) IAa\AI < w. 

Since Fn(~,2) is ccc and 00 is countable, there is aBE M . 
so that lll- Fn (~, 2) A = B. Therefore, 

ll~3B < ~ such that B = B •S
This application of "w-absoluteness" has shown that 

if G is Fn(w2 ,2)-generic and if G~ = G n Fn(~,2), then 

V[G~] F {val(Ba,G~) I a < ~} 

{B E P(00) I (Va < ~ ) val (Aa ' G~) C* B}. 

Now in V[G], let A = val(A ,G) for a < 00 • By(), a 2 

assumption, IAa\A~1 < 00 for all (), < ~ and IA~\B(),I < 00 for 

all (), <~. Now refer to 5.1 and let 1 = {B C 00: B E V[G~] 

and B C A~}. Since 1 is countably generated and cf(~) = 00 1 , 

there is an lEI so that A 
(), 

C* I for cofinally many 

a E~. Therefore, A C* I for all (), E~. But then, bya 

the above, there is a SEA such that I = B • But this
S

implies that AA =* AA+l (a contradiction) since 

BS = I C A~ c* A~+l C* BS• 

This technique is also useful in proving Malykin's 

interesting new result. Van Douwen and van Mill have 

shown that it is consistent that (e.g. under PFA) w* - {x} 

is C*- embedded in 00* for any point x E 00*. Malykin has 

shown that this is also true in the Cohen model. I feel 

that this result demonstrates that there are still 

interesting consistency results to be obtained in the 

Cohen model. 
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Proposition 7.2. If G is Fn(w 2 ,2)-generic over V, 

a modeZ of CH~ then, in V[G], w*-{x} is C*-embedded for 

each x E w*. 

Sketch of Proof. Assume that f: w*-{x} ~ [a,l] is 

continuous and that r < r are such that x E f+[a,r ] n a l a 

f+[rl,l]. It is well-known that R = f+[a,r ] and a a 

similarly R are regular closed subs~ts of w*. Let1 

{A } and {BQ}Q be the subsets of w whose remainders 
a a<w 2 ~ ~<w2 

are contained in R and R respectively. Fix Fn(w ,2)
a 1 2 

names for the Aa'S and the Be'S and find A < just asw2 

in 7.1 (you would also want to ensure that x was in M). 

Using 5.1 and the fact that w* is an F-space one can show 

that R n R ~ n{c*: c E ~ n V[GA]}. Indeed, supposeO 1 

that Dew is such that 0 n X ~* ~ for all X E x n vEGA] 

and that 0* n R =~. By 5.1, there are {X : nEw} C a n 

x n V[G ] which generate the filter {y E V[G ]: D c* y}.
A A

This set {Xn : on E w} need not be in V[G
A

] in general but 

since x is a filter we can enlarge the set {X } so that n 
we may assume that it is in V[G ]. Let Z = n{x~: nEw}

A

and note that x E Z n R and that Z n R is again regularO O 

closed. But now Z E V[GA], hence we may choose an a < A 

so that Aa E V[GA] and A~ C Z n R
O

• This contradicts that 

there should be an n so that X c* w\A. To finish the n a 
proof then we just have to note that x n V[G ] does not

A
generate x. 


 



TOPOLOGY PROCEEDINGS Volume 13 1988 69 

We finish with a new proof of a result from [DTW]. 

The original proof of this (and the PMEA analogue) 

involved rather more difficult filter combinatorics. 

Proposition 7.3. If G is Fn(w ,2)-generic over V,2 

a model of Cij then, in V[G], a first countable space of 

weight wI is metrizable if each of its ~l-sized.subspaces 

are metrizable. . 
Proof. Let {Ba: a E wI} be---Fn-(w2 , 2) -names of sub

sets of w2 so that 1\r{w ,{B l a < wI}} is a first2 a 

countable space in which each subspace of size wI is 

metrizable. Let M ~ H(w3 ) be so that MW C M, IMI = wI and . 
{BU}U<W E M. Let A = M n w2' GA = G n Fn(A,2) and let 

l 

{BUA}U<W be as above. Then V[G,] = < A, {B ,} < } is a
A aA a WIl

. 

first countable space. By 5.4, ll~Fn(A,2){ A,{BaA}a<A) has 

a a-discrete base. Fix a Fn(A,2)-name U so that 

11~U C wI x wI x wand so that U "codes" a a-discrete 

base for A. That is, the (a,n)th member of the base will 

be the union of {B : (S,a,n) E U}. We will show that the
SA 

collection whose (a,n)th member is the union of 

{B : (S,a,n) E U} will forma a-discrete base for the
S

whole space. 

We would be done if the name U were a member of M 

but there is no reason to suppose that this would be so. 

However, the trick is to isolate, for each remaining 

x E w2 a countable piece of" the name U which will do the 
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job. This countable piece will be in M which will allow 

us to play the w-absoluteness game. 

Let x E w and let a E wI be such that lll-{B : S < a O}2 O S

contains a base at x. Let N be a countable elementary . 
submodel of H(w 3) which contains the set {x,{B : S < aO}'

S

U,M}. Now let ~ = N n wI and let UN = U n N. Since M is 

closed under w-sequences, UN E M. 

Let ~(a,U) denote the formula (with parameter 

{Bsl s E wI}): 

"l~ (If Y E w2 is such that {B ' SEa} contains aS 

base for y, then, 

(i)	 for each nEw, y has a neighbourhood meeting 

at most one member of the family . . 
{U{B S I (s,y , n) E U}, y E wI}' and 

(ii) for each ~ E a, such that y E B~~ there are 

Y E	 wi-and nEw such that y E U{BSI . 
(S,y,n) E U} C B~) • "
 

Now we observe that:
 

M F q> ( a 0 ' UN) • 

Therefore, 

H(W 3 ) ~ ~(aO,UN)· 

But now, since UN = un N, we have: 

N F ~ (aO' U) • 

And, finally, since N ~ H(w ), we obtain that
3

H(w3 ) F ~(aO'U). 

This completes the proof since it shows that, at . 
least with respect to x, U codes a a-discrete base. 



TOPOLOGY PROCEEDINGS Volume 13 1988	 71 

References 

[AI] A. V. Arhangel'skii, On the cardinality of bicompacta 

satisfying the first axiom of countability, Soviet 

Math. Dokl. 10, 951-955. 

[A2] , Structure and classification of topo

logical spaces and cardinal invariants, Uspehi Mat. 

Nauk. 33, 23-84. 

[B]	 Zoltan Balogh, On the structure of compact spaces of 

countable tightness, to appear Proc. AMS. 

[Del] Keith J. Devlin, The Yorkshireman's guide to the 

proper forcing axiom, "Proc. 1978 Cambridge Sununer 

School in Set Theory." 

[De2]	 , The axiom of constructibi li,ty, Springer 

Verlag. 

[D]	 A. Dow, Removing large cardinals from the Moore

Mrowka solution, preprint. 

[DJW]	 A. Dow, I. Juhasz and W. A. R. Weiss, On increasing 

ch~ins of first countable spaces, to appear in Israel 

J. Math. 

[DTW]	 A. Dow, F. Tall and W. A. R. Weiss, New proofs of 

the Normal Moore space Conjecture, to appear in two 

parts in Top. Appl. 

[F]	 W. G. Fleissner, Left separated spaces with point

countable bases, Trans. AMS 294, 665-677. 

[Fr] David Fremlin, Perfect pre-images of wI' to appear. 

[FrN] David Fremlin and Peter Nyikos, InitialZy wl-compact 

spaces a~e compact unde~ PFA, Private Communication. 

[J]	 Istvan Juhasz, Cardinal functions in topology: ten 

years later, Math. Center Tracts, Amsterdam. 

[KaMa]	 A. Kanamori and M. Magidor, The evolution of large 

cardinal axioms in set theory, Proc. Conf. on Higher 

Set Theory, Lect. Notes Math., pp. 99-275. 

[K]	 Kenneth Kunen, Set theory: An introduction to 

independence proofs, North Holland, 1978. 



72 Dow 

[Ma] M. Magidor, On the pole of supepcompact 

extendible capdinals in logic, Israel J. 

147-171. 

and 

Math. 10, 

York University 

North York, Ontario, CANADA M3J 1P3 


	a1.pdf



