TOPOLOGY PROCEEDINGS

Volume 13, 1988

Pages 73–82

http://topology.auburn.edu/tp/

QUASICOMPONENTS AND SHAPE THEORY

by

Jerzy Dydak and Manuel Alonso Morón

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

QUASICOMPONENTS AND SHAPE THEORY

Jerzy Dydak and Manuel Alonso Morón

K. Borsuk [Bo] (p. 214) constructed a functor $\Lambda\colon SH_{CM}\to TOP$ from the shape category of compacta to the topological category such that $\Lambda(X)$ is the space of components of X. Moreover, for every fundamental sequence $f=\{f_k,X,Y\}$ from X to Y and for every component C of X, $\{f_k,C,\Lambda(C)\}$ is a fundamental sequence from C to $\Lambda[f](C)$. Several authors (see $[Ba_{1,2,3}]$, [G] and [S]) tried to generalize this result to non-compact spaces (locally compact or metrizable). In the present paper we show that the correct setting for possible generalizations is the shape analogue of quasicomponents.

Given a space X let ΔX be the set of all quasicomponents of X with the quotient topology. p_X : $X + \Delta X$ is the projection and S: HTOP \rightarrow Sh denotes the shape functor (see [D-S]) from the homotopy category to the shape category. For any map a: X + Y and $X_0 \in \Delta X$ there is a unique element of ΔY containing $a(X_0)$. That means the map $p_Y a$: $X + \Delta Y$ factors through ΔX , so there is a continuous map $\Delta(a)$: $\Delta X + \Delta Y$ such that $\Delta(a)p_X = p_Y a$. Moreover, a homotopic to b implies $\Delta(a) = \Delta(b)$. Thus we have a functor Δ : HTOP \rightarrow TOP from the homotopy category to the topological category. If one wants to get a functor Δ : SH \rightarrow TOP from the shape category, the natural way is

to take the Čech system $\{X_{U}, p_{UV}, COV\}$ of X (X_{U} are the nerves of numerable coverings U of X) and define $\mathring{\Delta}(X)$ as the inverse limit $\lim_{\leftarrow} \{\Delta X_{U}, \Delta(p_{UV}), COV\}$ (with the inverse limit topology) of the system $\{\Delta X_{U}, \Delta(p_{UV}), COV\}$.

Theorem 1. If every open cover of ΔX admits an open refinement consisting of mutually disjoint sets, then the natural map $\Delta X \rightarrow \overset{\bullet}{\Delta}(X)$ is a homeomorphism.

Proof. The map $\Delta X \to \overset{\bullet}{\Delta}(X)$ is always one-to-one. Indeed, if F and G are two different quasicomponents of X, then there is an open-closed set U in X with U containing F and X-U containing G. The covering $U = \{U, X-U\}$ determines X_U such that F and G are sent to two different points of $\Delta X_U = X_U$.

Claim. If C is a closed set in ΔX , then the image of C in $\overset{\bullet}{\Delta}(X)$ is equal to $\Pi\{\Delta p_{II}(C)\colon\, U\in \text{COV}\}\,\cap\,\overset{\bullet}{\Delta}(X)$.

Proof of Claim. Obviously the image of C in $\mathring{\Delta}(X)$ is contained in $\Pi\{\Delta p_U(C): U \in COV\} \cap \mathring{\Delta}(X)$. Suppose $\{C_U, U \in COV\} \in \Pi\{\Delta p_U(C): U \in COV\} \cap \mathring{\Delta}(X)$. Then $\{p_U^{-1}(C_U), U \in COV\}$ is a system of open-closed sets in X. If its intersection has a mutual point with C, we are done. So let us assume $\bigcap \{p_U^{-1}(C_U), U \in COV\} \subset X - C$. Notice that the sets $X-p_U^{-1}(C_U)$, $U \in COV$, are open-closed in X. Thus there is a refinement W of $\{X-C\} \cup \{X-p_U^{-1}(C_U), U \in COV\}$ consisting of mutually disjoint open-closed sets. By the definition of the Čech system of X, $W \in COV$, X_W is the nerve of W and P_W : $X \to X_W$ is an enumeration of W.

In our case X_{ω} is a 0-dimensional complex and $p_{\omega}: X \to X_{\omega}$ maps each element U of W onto the vertex U of X. Observe that $\Delta X_{\omega} = X_{\omega}$ and C_{ω} must be a vertex U_0 of X_{ω} . On the other hand U_0 is contained in $X-p_{V}^{-1}(C_{V})$ for some V. Thus $p_{V}(C_{\omega})$ is disjoint with C_{V} , a contradiction.

Notice that for each $X_{\mathcal{U}}$ the set $\Delta p_{\mathcal{U}}(C)$ is closed in the discrete space $\Delta X_{\mathcal{U}}$ (here $p_{\mathcal{U}}\colon X\to X_{\mathcal{U}}$ are the projections). Since $\Pi\{\Delta p_{\mathcal{U}}(C)\colon \mathcal{U}\in \mathit{COV}\}$ is closed, we infer $\Delta X\to\check\Delta(X)$ is closed. Taking C=X we get that $\Delta X\to\check\Delta(X)$ is onto.

Corollary 1. The natural map $\Delta X \rightarrow \tilde{\Delta}(X)$ is a homeomorphism if one of the following conditions is satisfied:

- a. ΔX is paracompact and $\dim \Delta X = 0$,
- b. X is locally compact metrizable and each component of X is compact.

Proof. Case a) follows from Theorem 3 in [E] (p. 278). In case b) X is a topological sum of compact metrizable spaces (see [Ba₂], p. 258).

Remark. In [M] (proposition 1.4) it is shown that each quasicomponent of X is connected provided X is normal, $p_{X}\colon X \to \Delta X \text{ is closed and ind}(\Delta X) = 0.$

Theorem 2. Suppose $f\colon X \to Y$ is a shape morphism, Y is paracompact, $\dim\Delta Y = 0$ and $p_Y\colon Y \to \Delta Y$ is closed. If B is a closed subset of ΔY and $A \subseteq \Delta X \cap \overset{\bullet}{\Delta}(f)^{-1}(B)$, then there exists a unique shape morphism

 $f_0: p_X^{-1}(A) \rightarrow p_Y^{-1}(B)$ such that $S(j) f_0 = f \cdot S(i)$, where $i: p_X^{-1}(A) \rightarrow X$ and $j: p_Y^{-1}(B) \rightarrow Y$ are inclusions.

Theorem 2 is a simple consequence of the following:

Lemma 1. Suppose B is a subset of a paracompact space Y such that each neighborhood of B in Y contains an open-closed neighborhood of B in Y. Let $\{Y_{U}, P_{UV}, COV\}$ be the Cech system of Y. For each covering $U \in COV$ consider the subcomplex N(U|B) (equal to the nerve of U restricted to B) of Y_{U} and let B_{U} be the union of all components of points of N(U|B) in Y_{U} . Then the natural pro-homotopy map $B \to \{B_{U}, U \in COV\}$ satisfies the continuity condition.

Proof. COV is the set of all numerable coverings of Y, Y_U is the nerve N(U) of U and p_U : Y \rightarrow Y_U is an enumeration of U (see [D-S], pp. 20-22). The induced maps B \rightarrow B_U will be denoted by q_U . We need to show two properties:

- a. For each map f: B \rightarrow K \in ANR(M) there is $u \in cov$ and f_{ij} : $B_{ij} \rightarrow$ K with f homotopic to $f_{ij}q_{ij}$.
- b. If f_{u} , h_{u} : B_{u} + K are maps such that $f_{u}q_{u}$ is homotopic to $h_{u}q_{u}$, then there is $V \geq u$ with $f_{u}q_{vu}$ is homotopic to $h_{u}q_{vu}$, where q_{vu} : B_{v} + B_{u} .

Since we can change K up to homotopy type we may assume K is a complete metric space, and therefore it is an ANE for paracompact spaces (see [D-K]).

If f: B + K, we extend f to f': V + K, where V is an open-closed set containing B, and then we extend f' to f": Y + K. Since Y + {Y_U, $U \in A$ } satisfies the continuity condition, there is $U \in COV$ and $g_U: Y_U \to K$ with f" homotopic to $g_U g_U$. Now take $f_U = g_U | B$.

If $f_{\mathcal{U}}, h_{\mathcal{U}}$: $B_{\mathcal{U}}$ + K are maps such that $f_{\mathcal{U}}q_{\mathcal{U}}$ is homotopic to $h_{\mathcal{U}}q_{\mathcal{U}}$, choose an open-closed neighborhood V of B in Y with $q_{\mathcal{U}}(V)$ contained in $B_{\mathcal{U}}$. By extending the homotopy between $f_{\mathcal{U}}q_{\mathcal{U}}$ and $h_{\mathcal{U}}q_{\mathcal{U}}$ we may assume that those two maps are homotopic as maps from V to K. Let $\mathcal{U}=(\mathcal{U}|V)\cup(\mathcal{U}|Y-V)$. Define a map s: $Y_{\mathcal{U}}\to K$ (t: $Y_{\mathcal{U}}\to K$) as $f_{\mathcal{U}}p_{\mathcal{U}}$ on $N(\mathcal{U}|V)$ ($g_{\mathcal{U}}p_{\mathcal{U}}$ on $N(\mathcal{U}|V)$) and constant on $N(\mathcal{U}|Y-V)$. Then $sp_{\mathcal{U}}$ is homotopic to $tp_{\mathcal{U}}$, so there is $V \succeq \mathcal{U}$ with $sp_{\mathcal{U}}$ is homotopic to $tp_{\mathcal{U}}$. Since $N(\mathcal{U}|V)=B_{\mathcal{U}}$, we are done.

A simple consequence of Theorem 2 is the following:

Corollary. Suppose f: X + Y is a shape isomorphism of paracompact spaces. If both maps $p_X: X + \Delta X$, $p_Y: Y + \Delta Y$ are closed and $\dim \Delta X = \dim \Delta Y = 0$, then for every $X_0 \in \Delta X$ there is a shape equivalence $f_0: X_0 + Y_0 = \Delta(f)(X_0)$ such that $S(j)f_0 = fS(i)$, where $A: X_0 \hookrightarrow X$ and $A: X_0 \hookrightarrow Y$ are inclusions.

Here is a partial converse to the above Corollary:

Theorem 3. Suppose f: X + Y is a closed map of paracompact spaces such that for every $X_0 \in \Delta X$ the

Dydak and Morón

restriction $f_0: X_0 \to Y_0 = \Delta(X_0)$ of f is a shape equivalence and $\Delta(f): \Delta(X) \to \Delta(Y)$ is a bijection. If $p_Y: Y \to \Delta Y$ is closed and $\dim \Delta Y = 0$, then f is a shape equivalence.

Proof. Replacing Y by the mapping cylinder of f we may assume that f is the inclusion of a closed set X into Y. We need to show that for each map a: $X \to K \in ANR(M)$ there is an extension a': $Y \to K$. Since we can change K up to homotopy type we may assume K is a complete metric space, and therefore it is an ANE for paracompact spaces (see [D-K]). For each $X_0 \in \Delta X$ we can extend a $|X_0|$ to $Y_0 \in \Delta Y$ containing X_0 . Subsequently we extend a from X to an open-closed neighborhood V of Y_0 in Y. Now, choose a refinement of $\{V\}$ consisting of mutually disjoint open sets and it is clear how to define an extension of a.

If a,b: Y \rightarrow K are two maps such that a \mid X and b \mid X are homotopic, we proceed similarly as above to show that a and b are homotopic.

Remark. Theorem 3 is a generalization of Theorem 4.5.5 in [D-S] (p. 62).

Theorem 4. Suppose X is a paracompact space such that $p_X \colon X \to \Delta X$ is closed and $\dim \Delta X = 0$. If for every $x_0 \in \Delta X$ the deformation dimension $\operatorname{def-dim}(x_0)$ is less than or equal to n, then $\operatorname{def-dim}(X) \leq n$.

Proof. It suffices to show that for every simplicial complex K (with the metric topology) any map $f\colon X \to K$ is homotopic to a map g with $g(X) \subseteq K^{(n)}$.

Claim. If $def-dim(Y) \leq n$, then any map $g\colon Y \to \bigcup_{p=1}^{\infty} \ K^{(p)} \times [p,\infty) \text{ is homotopic to a map which }$ values lie in $\bigcup_{p=1}^{n} \ K^{(p)} \times [p,\infty)$.

Proof of Claim. Since the identity map $\cup_{p=1}^{\infty} \ K_{\mathbf{w}}^{(p)} \ \times \ [\mathtt{p}, \infty) \ \rightarrow \ \cup_{p=1}^{\infty} \ K^{(p)} \ \times \ [\mathtt{p}, \infty)$

Suppose g: X + K. Since the projection $\pi\colon L'=\bigcup_{p=1}^\infty K^{(p)}\times [p,\infty) \to K$ is a homotopy equivalence $(\pi \text{ induces isomorphisms of homotopy groups at each point)},$ there is g': X + L' with g' $\approx \pi g$. Given any quasicomponent X_0 of X, g' $|X_0|$ is homotopic to g_0 with $g_0(X_0)$ contained in L_n . Since L' is an ANE for paracompact spaces (see [H], p. 63), we can find an open closed neighborhood V_0 of X_0 in X such that $g'|V_0$ is homotopic to a map with values in L_n . Finally we can find a covering V of X consisting of mutually disjoint open sets such that g'|V is homotopic to a map with values in L_n for every V in V. Now, it is clear that g' is homotopic to a map g'' with values in L_n . Then $g''\pi$ is homotopic to g and its values are in $K^{(n)}$.

Remark. In the compact metrizable case Theorem 4 was proved by S. Nowak [N].

Theorem 5. Suppose X is a paracompact space such that p_X : $X \to \Delta X$ is closed and $\dim \Delta X = 0$. If F is a closed covering of X such that $p_X^{-1}(p_X(F)) = F$ and every $B \in F$ is movable (uniformly movable), then X is movable (uniformly movable).

Proof. We will prove only the uniformly movable case. The proof of the movable case is similar. Let $\{X_{\mathcal{U}}, P_{\mathcal{U}\mathcal{V}}, COV\}$ be the Cech system of X. By Lemma 1, the natural pro-homotopy map $B + \{B_{\mathcal{U}}, \ \mathcal{U} \in COV\}$ satisfies the continuity condition for each $B \in F$. Thus for each covering $\mathcal{U} \in COV$ and for each $B \in F$ there is a covering $V(B) \in COV$, $V(B) \geq \mathcal{U}$, and a shape morphism $g_B \colon B_{V(B)} \to X$ such that $S[p_{\mathcal{U}}]g_B = S[p_{V(B)\mathcal{U}}]$. Choose an open refinement \mathcal{U} of $\{(p_{V(B)})^{-1}(B_{V(B)})\colon B \in F\}$ consisting of mutually disjoint open sets. Now, we define an open refinement \mathcal{V} of \mathcal{U} as follows: given \mathcal{U} in \mathcal{U} we choose \mathcal{U} in \mathcal{U} we choose \mathcal{U} intersecting \mathcal{U} to be precisely $\mathcal{U} \cap \mathcal{U}(B)$. Notice that $\mathcal{U} \cap \mathcal{U}(B)$ is contained in $\mathcal{U} \cap \mathcal{U}(B)$, so that we can piece together $\mathcal{U} \cap \mathcal{U}(B)$ to get $\mathcal{U} \cap \mathcal{U}(B) \cap \mathcal{U}(B) \cap \mathcal{U}(B)$.

Remarks. Theorem 5 is related to Theorem 3.1 of [M]. In [D-S-S] there is an example of a non-movable metrizable space X such that each of its quasicomponents is movable. The same example shows that one cannot drop both of the hypotheses (p_v closed and $dim\Delta X = 0$) in Theorem 4.

References

- [Bo] K. Borsuk, Theory of shape, Polish Scientific Publishers, Warsaw 1975.
- [Ba] B. J. Ball, Shapes of saturated subsets of compacta, Colloq. Math. 24 (1974), 241-246.
- [Ba₂] B. J. Ball, Quasicompactifications and shape theory, Pacific J. Math. 84 (1979), 251-259.
- [Ba₃] B. J. Ball, Partitioning shape-equivalent spaces, Bull. Acad. Pol. Sci. 29 (1981), 491-497.
- [D-K] J. Dydak and G. Kozlowski, A generalization of the Vietoris-Begle theorem, Proc. Amer. Math. Soc. 102 (1988), 209-212.
- [D-S] J. Dydak and J. Segal, Shape theory: An introduction, Lecture Notes in Math. 688, Springer Verlag, 1978, 1-150.
- [D-S-S] J. Dydak, J. Segal and Stanislaw Spiez, A nonmovable space with movable components, Proceedings of the Amer. Math. Soc. (to appear).
- [E] R. Engelking, Outline of general topology, North-Holland Publishing Co., Amsterdam 1968.
- [G] S. Godlewski, On components of MANR-spaces, Fund. Math. 114 (1981), 87-94.
- [H] S. T. Hu, Theory of retracts, Wayne State University Press, Detroit, 1965.
- [M] M. A. Morón, Upper semicontinuous decompositions and movability in metric spaces, Bull. Acad. Pol. Sci. 35 (1987), 351-357.
- [N] S. Nowak, Some properties of fundamental dimension, Fund. Math. 85 (1974), 211-227.
- [S] J. M. R. Sanjurjo, On a theorem of B. J. Ball, Bull. Acad. Pol. Sci. 33 (1985), 177-180.

University of Tennessee

Knoxville, TN 37996

and

E. T. S. de Ingenieros de Montes Universidad Politecnica de Madrid Ciudad Universitaria Madrid-28040, SPAIN