TOPOLOGY PROCEEDINGS

Volume 13, 1988

Pages 93-106

http://topology.auburn.edu/tp/

ON RELATIVE ω -CARDINALITY AND LOCALLY FINE COREFLECTIONS OF PRODUCTS

by Aarno Hohti

${\bf Topology\ Proceedings}$

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON RELATIVE ω-CARDINALITY AND LOCALLY FINE COREFLECTIONS OF PRODUCTS

Aarno Hohti

1. Introduction

The notion of n-cardinality is due to van Douwen and Przymusinski [7]. The n-cardinality of a subset of X^n , where X is any set, is the minimum cardinality of a set of hyperplanes of codimension 1, parallel to the coordinate axes, needed to cover the subset. In other words, the n-cardinality $|A|_n$ of $A \subseteq X^n$ is the minimum cardinality of a subset $Y \subseteq X$ such that

 $A \subset Y \times X^{n-1} \cup X \times Y \times X^{n-2} \cup \cdots \cup X^{n-1} \times Y$ or, equivalently,

$$A \subseteq \bigcup \{\pi_i^{-1}[Y]: 1 \le i \le n\}.$$

The basic result proved by van Douwen and Przymusinski tells us that if an analytic subset of Xⁿ, where X is a Polish space, has uncountable n-cardinality, then the n-cardinality of the subset equals 2^{ω} .

By using this concept, we proved in [3] that there are supercomplete spaces [4] X (topologically subspaces of the reals) such that all the finite powers \boldsymbol{x}^{n} are supercomplete but X^{ω} is not. This shows that the action of the Ginsberg-Isbell locally fine coreflection λ [1] is not determined by finite subpowers, even on separable metrizable spaces. Extending results of [5], [6], Husek and Pelant recently proved that the locally fine

coreflection of any product of fine, Cech-complete paracompact spaces is fine. The question whether—in the class of separable metrizable spaces—only Cech-complete (i.e., Polish) spaces have this property will be answered in the negative. By Gleason's Factorization Theorem (see [5], p. 130), it will be enough to consider only countable powers, and this leads us to the study of ω -cardinality.

To prove our result on locally fine coreflections, we need a relativized version of ω -cardinality. The main result concerning this notion states that given a Polish space X, a subset $S \subseteq X$, a subset $\Lambda \subseteq \omega$ and an analytic subset A of the product space X^{ω} , if the Λ -cardinality of A relative to S is uncountable, then this cardinality equals 2^{ω} . It is used in the inductive proof of Theorem 3.2, which is an extension of the Bernstein construction of a non-analytic subset of [0,1]. The results on relative ω -cardinality might be of independent interest.

2. ω-cardinality

Let X be a set, and let $A\subseteq X^\omega$. The ω -cardinality of A, written $|A|_\omega$, is defined as the minimum cardinality of a subset $Y\subseteq X$ such that

$$A \subseteq \pi_0^{-1}[Y] \cup \pi_1^{-1}[Y] \cup \ldots,$$

where the $\pi_{\bf i}$ are the standard projections. That is, A can be "killed" by the hyperplanes $\pi_{\bf i}^{-1}(y)$, $y\in Y$. In the same vein, we can consider the $\Lambda\text{-cardinality}$ of A with respect to any subset $\Lambda\subseteq\omega\colon \left|A\right|_{\Lambda}$ is the minimum cardinality of a subset $Y\subseteq X$ such that

$$A \subseteq \bigcup \{\pi_i^{-1}[Y]: i \in \Lambda\}.$$

In this paper, we have to consider Λ -cardinality relative to given subsets $S \subseteq X$. Let $A \subseteq X^{\omega}$, let $\Lambda \subseteq \omega$ and let $S \subseteq X$. We define that the Λ -cardinality of A relative to S, written $|A,S|_{\Lambda}$, is the minimum cardinality of a subset $Y \subseteq S$ (if such a set exists) such that

$$A \subseteq \bigcup \{\pi_i^{-1}[Y] : i \in \Lambda\}.$$

In case there is no such Y \subseteq S, we define $|A,S|_{\Lambda} = |X|$.

In this section we prove the analogue of the result of van Douwen and Przymusinski for relative $\Lambda\text{-cardinality,}$ where Λ is a finite subset of ω .

Theorem 2.1. Let X be a Polish space, let $A\subseteq X^{\omega}$ be analytic, let $S\subseteq X$ and let $\Lambda\in [\omega]^{<\omega}$. Then $|A,S|_{\Lambda}>\omega$ implies $|A,S|_{\Lambda}=2^{\omega}$.

Proof. The result is proved by induction on $|\Lambda|$. Obviously it is valid for $|\Lambda| = 1$. Suppose that we have proved it for $1 \le |\Lambda| \le n$, and let $|\Lambda| = n + 1$. By the definition of relative Λ -cardinality, we can assume that $A \subseteq \bigcup \{\pi_i^{-1} [S] : i \in \Lambda\}$. We consider two cases.

Case 1: $|A|_{\Lambda} \leq \omega$. There is a countable set $D \subseteq X$ with $A \subseteq \bigcup \{\pi_i^{-1}[D]: i \in \Lambda\}$. Since $|A,S|_{\Lambda} > \omega$, there exist $i \in \Lambda$ and $x \in D \cap S$ with

$$|A_{i,x},S|_{\Lambda} > \omega$$

where $A_{i,x} = \pi_i^{-1}(x) \cap A$. But

$$|A_{i,x},s|_{\Lambda} = |A_{i,x},s|_{\Lambda \setminus \{i\}},$$

and the inductive hypothesis implies that $|A_{i,x},S|_{\Lambda}=2^{\omega}$. But then $|A,S|_{\Lambda}=2^{\omega}$, because $x\in D \sim S$.

Case 2. $|A|_{\Lambda} > \omega$. Let $\pi_{\Lambda} \colon X^{\omega} \to X^{\Lambda}$ be the natural projection. Then (as is easily seen) $|A|_{\Lambda} = |\pi_{\Lambda}[A]|_{n+1}$, and therefore $|A|_{\Lambda} = 2^{\omega}$. Clearly $|A,S|_{\Lambda} \ge |A|_{\Lambda}$, and the claim is proved.

Now we move to prove the analogue of 2.1 for relative $\omega\text{-cardinality}.$ Let $S\subseteq X,$ let $E\subseteq X^\omega$ and let $i\in\omega.$ Define

$$A(i,E,S) = \{x \in S: \pi_i^{-1}(x) \cap E \neq \emptyset\}.$$

The set of (i,S)-limit points of E, written $D_{i,S}(E)$ is defined as the set of all $p \in X^{\omega}$ such that $|A(i,U\cap E,S)|$ $\geq \omega$ for all neighborhoods U of p in X^{ω} . We define the successive (i,S)-derivatives in the same way as the Cantor-Bendixon derivatives are defined by transfinite induction:

$$D_{i,S}^{(0)}(E) = E;$$
 $D_{i,S}^{(\alpha+1)}(E) = D_{i,S}^{(\alpha)}(D_{i,S}^{(\alpha)}(E)), \text{ and}$
 $D_{i,S}^{(\beta)}(E) = \bigcap \{D_{i,S}^{(\alpha)}(E) : \alpha < \beta\}$

if β is a limit ordinal. There is α such that $D_{i,S}^{(\alpha+1)}(E) = D_{i,S}^{(\alpha)}(E)$; the set $D_{i,S}^{(\alpha)}(E)$ is called the *perfect* (i,S)-*kernel* of E and denoted by $K_{i,S}^{(E)}(E)$. Notice that $K_{i,S}^{(E)}(E)$ is a closed set and $A(i,E \sim K_{i,S}^{(E)}(E),S)$ is countable, since E is separable. Therefore, if E is a closed subset of X^{ω} with $|A(i,E,S)| > \omega$, then $K_{i,S}^{(E)}(E)$ is a nonempty closed subset of E. In case $K_{i,S}^{(E)}(E)$ equals the closure of E, the set E is called (i,S)-perfect.

The following lemma is needed in the proof of the main result. Notice that it follows from 2.3 that the

hypothesis of 2.2 is never satisfied; thus, 2.2 is of technical character only.

Lemma 2.2. Let $S \subseteq X$ and let $F \subseteq X^{\omega}$ be a closed subset such that $\omega < |F,S|_{\omega} < 2^{\omega}$. Then for each $k \in \omega$ there is a $j \geq k$ such that $|K_{j,S}(F),S|_{\omega} > \omega$.

Proof. Suppose that for each integer $j \geq k$ we have $|K_{j,S}(F),S|_{\omega} \leq \omega$. Define $M = \{j: j \geq k, |A(j,F,S)| > \omega\}^*$. For each $j \in M$, define $F_j = K_{j,S}(F)$. Then F_j is a closed non-empty subset of F, and hence there exists an increasing sequence (F_j^i) of closed subsets of F such that $F_j^i \subset F \wedge F_j$ and

$$F = F_j \cup (\cup_{i \in \omega} F_j^i).$$

As $F_j \cap F_j^i = \emptyset$, we have $|A(j,F_j^i,S)| \leq \omega$ for each $i \in \omega$. It follows that the set

$$D_{1} = \bigcup_{j \in M} \cup \{\pi_{j}[F_{j}^{i}] \cap S \colon i \in \omega\}$$

is countable. On the other hand, for j \in ω $^{\wedge}$ M, j \geq k, we have |A(j,F,S) | \leq ω and thus the set

$$D_2 = \bigcup \{ \pi_{\mathbf{j}}[F] \cap S \colon j \in \omega \land M, j \ge k \}$$

is countable, too. Finally, as by our assumption $j\geq k$ implies $\left|\text{F}_{j}\text{,S}\right|_{\omega}\leq\omega,$ there is a countable set D $_{3}$ \subseteq S such that

$$\cup_{j \in M} F_j \subset \cup_{i \in \omega} \pi_i^{-1}[D_3].$$

Define D = D₁ \cup D₂ \cup D₃ and let $\mathbf{F'} = \mathbf{F} \, \circ \, \cup_{\mathbf{i} \in \omega} \, \pi_{\mathbf{i}}^{-1}[\, \mathbf{D}] \, .$

Notice that $j \ge k$ implies $\pi_j[F'] \cap S = \emptyset$. Thus, $|F',S|_{\omega} = |F',S|_{\Lambda}$, where Λ is the set $\{0,\cdots,k\}$. Clearly

$$|F,S|_{\omega} \le |F',S|_{\omega} + |F \circ F',S|_{\omega} \le |F',S|_{\Lambda} + \omega,$$

which implies (by the assumption of 2.2) that $|F',S|_{\Lambda} > \omega$. Since F' is analytic (being a G_{δ} -set), Theorem 2.1 now gives

$$2^{\omega} = \left| \texttt{F',S} \right|_{\Lambda} = \left| \texttt{F',S} \right|_{\omega} \leq \left| \texttt{F,S} \right|_{\omega},$$
 contradicting the hypothesis of 2.2. Hence, there is a j \geq k with $\left| \texttt{F_{j},S} \right|_{\omega} > \omega$.

Now we are ready to state the main result of this section.

Theorem 2.3. Let X be a Polish space, let $S \subseteq X$ and let $F \subseteq X^{\omega}$ be closed. Then $|F,S|_{\omega} > \omega$ implies $|F,S|_{\omega} = 2^{\omega}$.

Proof. Assume that $|F,S|_{\omega} > \omega$. We shall prove the claim by the method of contradiction. Thus, assume that $|F,S|_{\omega} < 2^{\omega}$. We shall construct a map $\phi \colon 2^{\omega} \to F$ with the property that if $s,s' \in 2^{\omega}$, $s \neq s'$, then $\phi(s),\phi(s')$ do not both belong to any hyperplane $\pi_1^{-1}(x)$, where $x \in S$. To start with, let β be a countable base for open subsets of x^{ω} . Put

$$F' = F \sim \bigcup \{B \in \beta : |F \cap \overline{B}, S|_{\omega} \leq \omega \}.$$

Then F' is a closed subspace of F such that given any open subset U of X^{ω} , either F' \cap U = Ø or $|F' \cap U,S|_{\omega} > \omega$. By Lemma 2.2 there is the least $i \geq 0$ such that $|K_{i,S}(F'),S|_{\omega} > \omega$. Let

 $F" = K_{i,S}(F') \sim \cup \{B \in \beta : |K_{i,S}(F') \cap \overline{B}, S|_{\omega} \leq \omega \}.$ Then F" is a closed subspace of $K_{i,S}(F')$ such that given any open subset U of X^{ω} , either F" \cap U = \emptyset or $|F" \cap U,S|_{\omega} > \omega. \quad \text{For each } r < i \text{ we have } K_{r,S}(F") \neq F".$ $(\text{If } K_{r,S}(F") = F", \text{ then } |K_{r,S}(F'),S|_{\omega} \geq |K_{r,S}(F"),S|_{\omega} = |F",S|_{\omega} > \omega, \text{ which would yield a contradiction with the}$

definition of i given above.) Then for each such an r, there is an open set U_r with $U_r \cap F'' \neq \emptyset$ and $A(r, \overline{U}_r, S) = \emptyset$. Indeed, suppose that r < i and that $|A(r, \overline{U}_r \cap F'', S)| > 1$ for each open set U_r for which $U_r \cap F'' \neq \emptyset$. Then F'' would have no (r,S)-isolated points and hence would be (r,S)-perfect. Thus, we would have $K_{r,S}(F'') = F''$, which contradicts the result just obtained above. Thus, there is an open set U_r' such that $U_r' \cap F'' \neq \emptyset$ and $|A(r, \overline{U_r'} \cap F'', S)| \le 1$. In case $A(r, \overline{U_r'} \cap F'', S) = \emptyset$, we are done, otherwise let $A(r, \overline{U_r'} \cap F'', S) = \{p\}$. Since $|U_r' \cap F'', S|_{\omega} > \omega$, we have $(U_r' \cap F'') \sim \pi_r^{-1}(p) \neq \emptyset$.

Choose $q \in U_{\mathbf{r}}^{\mathbf{r}} \cap F^{\mathbf{r}}$ with $\pi_{\mathbf{r}}(q) \neq p$. Since $\pi_{\mathbf{r}}^{-1}(p)$ is closed, we can find an open neighbourhood V of q such that $\overline{V} \cap \pi_{\mathbf{r}}^{-1}(p) = \emptyset$. Now take $U_{\mathbf{r}} = V \cap U_{\mathbf{r}}^{\mathbf{r}}$. By redefining $F^{\mathbf{r}}$ as $F^{\mathbf{r}} \cap \overline{U_{\mathbf{r}}}$, we still have $|F^{\mathbf{r}}, S|_{\omega} > \omega$. By repeating this procedure for all $\mathbf{r} < \mathbf{i}$, we get a set $F^{\mathbf{r}}$ such that $A(\mathbf{r}, F^{\mathbf{r}}, S) = \emptyset$ for all $\mathbf{r} < \mathbf{i}$. Let ρ be some fixed compatible complete metric for X^{ω} . Choose two points $p_0, p_1 \in F^{\mathbf{r}}$ and open sets $U_0, U_1 \subseteq X^{\omega}$ satisfying the following conditions:

- 1) $p_{j} \in U_{j}, j = 0,1;$
- 2) $\overline{\pi_i[U_0]} \cap \overline{\pi_i[U_1]} = \emptyset;$
- 3) $\operatorname{diam}_{\rho}(U_{j}) < 1/2, j = 0,1.$

Define

$$\begin{cases} F_0 = F'' \cap \overline{U}_0, \\ F_1 = F'' \cap \overline{U}_1. \end{cases}$$

Then the sets F_j satisfy the conditions $\omega < |F_j,S|_{\omega} < 2^{\omega}$. Define $\Lambda_j = \{i\}$, where j = 0,1.

For the inductive step, let $n\in\omega$ and suppose that we have defined for all $s\in 2^n$ the points p_s and the sets F_s , Λ_s and that they satisfy the following properties:

- 1) if $s, s' \in 2^n$, $s \neq s'$, and $j \in \Lambda_s \cap \Lambda_{s'}$, then $\frac{\pi_j(F_s)}{\pi_j(F_{s'})} = \emptyset;$
- 2) if $j \in \{0,\dots,n\} \sim \Lambda_s$, then $A(j,F_s,S) = \emptyset$;
- 3) $|F_s,S|_{\omega} > \omega$ for all $s \in 2^n$;
- 4) $\operatorname{diam}_{O}(F_{S}) < 2^{-(n+1)} \text{ for all } s \in 2^{n}.$

Let $\{s_0, \cdots, s_{2^{n}-1}\}$ be an enumeration of 2^n . (We consider 2^n , $n \in \omega$, as the set of all sequences (t_0, \cdots, t_n) with terms in $\{0,1\}$. In the sequel the symbol $\sigma \mid m$ denotes the restriction of $\sigma \in 2^n$ to the set $\{0, \cdots, m\}$. For $i \in \{0,1\}$, the symbol $\sigma \land i$ denotes the concatenated sequence $\sigma(0) \cdots \sigma(n)i$. Similarly, 2^ω denotes the set of all sequences $(t_i)_{i \in \omega}$ with terms in $\{0,1\}$, and for each $\sigma \in 2^\omega$, $\sigma \mid n$ denotes the corresponding element of 2^n .) Let $t = s_0$ and let $k = \max(\Lambda_t)$. By 2.2 there is the least i > k with $|K_{i+S}(F_t), S|_{\omega} > \omega$. Let

 $F_{\mathsf{t}}' = K_{\mathsf{k},\mathsf{S}}(F_{\mathsf{t}}) \sim \cup \{\mathsf{B} \in \beta : |K_{\mathsf{k},\mathsf{S}}(F_{\mathsf{t}}) \cap \overline{\mathsf{B}},\mathsf{S}|_{\omega} \leq \omega \}.$ As before, we can reduce F_{t}' so that if we have $K_{\mathsf{r},\mathsf{S}}(F_{\mathsf{t}}') \neq F_{\mathsf{t}}'$ for some $\mathsf{r} < \mathsf{i}$ (i.e., F_{t}' is not (r,S)-perfect), then $A(\mathsf{r},F_{\mathsf{t}}',\mathsf{S}) = \emptyset$. Define

$$\Lambda_{+}^{!} = \{r: 0 \leq r \leq i, A(r, F_{+}^{!}, S) \neq \emptyset\}.$$

Notice that we can use the inductive hypothesis (for F_t instead of F) to find points $q,q' \in F_t$ such that $\pi_j(q) \neq \pi_j(q')$ for all $j \in \Lambda_t' \subset \Lambda_t$. Choose neighborhoods V and V' of q,q', respectively, such that $\pi_j(V) \cap \pi_j(V') = \emptyset$ for all $j \in \Lambda_t'$. Since F_t' is (i,S)-perfect, we can choose

distinct $x, x' \in S$ with $P = \pi_i^{-1}(x) \cap V \cap F_+^! \neq \emptyset$, P' = $\pi_i^{-1}(x') \cap V' \cap F'_t \neq \emptyset$. Choose any points $p \in P$, $p' \in P'$; then $\pi_{i}(p) \neq \pi_{i}(p')$ for all $j \in \Lambda_{+}^{i} \cup \{i\}$. Put $p_{+,0} = p$, $p_{t \wedge 1} = p'$. Define $\Lambda_{t \wedge 0} = \Lambda_{t \wedge 1} = \Lambda_t' \cup \{i\}$.

For the subinductive hypothesis, let $0 < m < 2^n - 1$ and suppose that the points $P_{s_i \wedge 0}$, $P_{s_i \wedge 1}$ have been defined for all $j \le m$. Let $t = s_{m+1}$, and let Λ_t^i , F_t^i and i be defined as before. By repeating the procedure used above for finding p,p', if necessary, sufficiently many times, we can find points p_{t+0} , $p_{t+1} \in F_t$ such that

 $\{\pi_{i}(p_{t \wedge 0}), \pi_{i}(p_{t \wedge 1})\} \cap \{\pi_{i}(p_{s \wedge 0}), \pi_{i}(p_{s \wedge 1})\} = \emptyset$ whenever $s \in \{s_0, \dots, s_m\}$ and $j \in (\Lambda_+^i \cup \{i\}) \cap \Lambda_s$. (Use the inductive condition 1) above and in choosing x and x' in the preceding paragraph, notice that any finite set can be avoided.) This finishes the subinductive step.

Thus, we have defined the points p_s for all $s \in 2^{n+1}$. Choose neighbourhoods Ug such that

- $p_s \in U_s$;
- if $s,s' \in 2^{n+1}$, $s \neq s'$ and $j \in \Lambda_s \cap \Lambda_{s'}$, then 2) $\overline{\pi_{i}[U_{s}]} \cap \overline{\pi_{i}[U_{s}]} = \emptyset;$
- $diam_{0}(U_{s}) < 2^{-(n+2)}$.

For each $s \in 2^{n+1}$, let

$$F_s = F'_{s|n} \cap \overline{U}_s$$
.

We get a map

$$F : 2^{<\omega} \rightarrow 2^{X^{\omega}}$$

defined by $F(s) = F_s$. Notice that for all $s \in 2^{\omega}$, we have $\cdots \supseteq F(s|n) \supseteq F(s|(n+1)) \supseteq \cdots$

and diam $_{\rho}F(s\,|\,n)$ \rightarrow 0, whence we can define a map $\phi\colon 2^{\omega}$ \rightarrow X^{ω} by setting

$$\varphi(s) = \bigcap \{F(s|n): n \in \omega\}.$$

Moreover, as F is closed, ϕ [2 $^{\omega}$] lies in F. Now let s,s' \in 2 $^{\omega}$, s \neq s'. Choose the least n \in ω with s(n) \neq s'(n). Then by the construction of the sets F₊, k \geq n implies

- 1) if $j \in \Lambda_{s|k} \cap \Lambda_{s'|k}$, then $\overline{\pi_{j}[F_{s|k}]} \cap \overline{\pi_{j}[F_{s'|k}]} = \emptyset$ and thus $\pi_{j}(\varphi(s)) \neq \pi_{j}(\varphi(s'))$;
- 2) if $j \in \{0, \dots, k\} \sim (\Lambda_{s \mid k} \cap \Lambda_{s \mid \mid k})$, then either $F_{s \mid k} \cap \pi_{j}^{-1}[S] = \emptyset \text{ or } F_{s \mid \mid k} \cap \pi_{j}^{-1}[S] = \emptyset \text{ and therefore either } \phi(s) \not\in \pi_{j}^{-1}[S] \text{ or } \phi(s \mid) \not\in \pi_{j}^{-1}[S].$

It follows from 1) and 2) that $\phi(s)$, $\phi(s')$ do not both belong to any hyperplane $\pi_j^{-1}(x)$, where $x \in S$. Therefore, the number of such hyperplanes needed to cover F is 2^{ω} . This condition shows that $|F,S|_{\omega} = 2^{\omega}$, as required.

The following result is a more general version of 2.3, proved in the same way as 2.3.

Theorem 2.4. Let X be a Polish space, let $S \subseteq X$, let $\Lambda \subseteq \omega$ and let $F \subseteq X^{\omega}$ be closed. Then $|F,S|_{\Lambda} > \omega$ implies $|F,S|_{\Lambda} = 2^{\omega}$.

Proof. If Λ is finite, then 2.4 can be proved by induction following the proof of 2.2; on the other hand, if Λ is infinite, then the proof of 2.3 applies, provided that only projections π_j with $j \in \Lambda$ are considered.

The concept of Λ -cardinality, relative to a subset of a Polish space X, can be generalized in a natural way

to products in which not all the factors are the same space. Let $(X_i)_{i \in \mathbb{N}}$ be a countable family of Polish spaces, and let $\Lambda \subseteq \omega$. For each $i \in \Lambda$, suppose that $X_i = X$ and let S be a subset of X. Then the Λ -cardinality of a subset $A \subseteq \Pi_{i \in \omega} X_i$ relative to S, written as usual $|A,S|_{\Lambda}$, is the least cardinality of a subset Y \subseteq S such that

$$A \subseteq \bigcup \{\pi_i^{-1}[Y]: i \in \Lambda\}.$$

The following result is proved in the same way as 2.4.

Theorem 2.5. Let $(X_i)_{i \in m}$ be a countable family of Polish spaces, let $\Lambda \subseteq \omega$, let $X_i = X$ for all $i \in \Lambda$ and let $S \subseteq X$. Then $|F,S|_{\Lambda} > \omega$ implies $|F,S|_{\Lambda} = 2^{\omega}$ for every closed subset $F \subseteq \Pi_{i \in \omega} X_i$.

As a corollary, we obtain an easy proof of the extension of 2.4 to analytic subsets.

Corollary 2.6. Let X be a Polish space, let $S \subseteq X$, let $\Lambda \subseteq \omega$ and let $A \subseteq X^{\omega}$ be analytic. Then $|A,S|_{\Lambda} > \omega$ implies $|A,S|_{\Lambda} = 2^{\omega}$.

Proof. Since A is analytic, there is a closed subset $\mathbf{F} \subseteq \boldsymbol{\omega}^{\omega} \times \mathbf{X}^{\omega} \text{ such that } \mathbf{A} = \boldsymbol{\pi}_{\mathbf{0}}[\,\mathbf{F}] \text{ , where } \boldsymbol{\pi}_{\mathbf{0}} \colon \boldsymbol{\omega}^{\omega} \times \mathbf{X}^{\omega} \to \mathbf{X}^{\omega}$ is the standard projection. Put $X_0 = \omega^{\omega}$ and for $i \in \omega \setminus \{0\}$, put $X_i = X$. Define $\Lambda^i = \{i + 1: i \in \Lambda\}$. Since $A = \pi_0[F]$, it is clear that

 $|F,S|_{\Lambda}$, (in $\Pi_{i \in \omega} X_i$) = $|A,S|_{\Lambda}$ (in X^{ω}) and the claim then follows from 2.5.

3. Locally Fine Coreflections

The locally fine coreflection of a uniform space uX, written λuX , is the coarsest uniformity on X, finer than u, with the property that every locally uniformly uniform cover is uniform. For this concept, see e.g. [1], [2]. Much of the importance of this notion derives from its connection with supercompleteness [4]. The proof of the following result is similar to that of Corollary 3.5 in [2].

Lemma 3.1. Let Y be a dense subspace of a Polish space X. If for each closed $K \subseteq X^{\omega} \sim Y^{\omega}$ there is a G_{δ} -set $G \subseteq X$ with $Y \subseteq G$ and $K \subseteq X^{\omega} \sim G^{\omega}$, then $\lambda((\mathcal{F}Y)^{\omega}) = \mathcal{F}(Y^{\omega})$. Thus, to prove that $\lambda((\mathcal{F}Y)^{\omega}) = \mathcal{F}(Y^{\omega})$, it is sufficient to show that given a closed subset $K \subseteq X^{\omega} \sim Y^{\omega}$, there is a countable $D \subseteq X \sim Y$ with

$$K \subseteq \bigcup \{\pi_i^{-1}[D] : i \in \omega\}.$$

Now we give the promised application of 2.3.

Theorem 3.2. There is a non-analytic subset $Y \subseteq [0,1]$ such that $\lambda((\overline{J}Y)^{\omega})) = \overline{J}(Y^{\omega})$.

Proof. Let $(F_{\alpha}: \alpha < 2^{\omega})$ be an enumeration of all closed subsets of $[0,1]^{\omega}$ and let $(A_{\alpha}: \alpha < 2^{\omega})$ be an enumeration of all analytic subsets of [0,1] of cardinality 2^{ω} . We shall construct two sets $Y,Z\subseteq [0,1]$ by induction on α . To begin with, let $p\in F_0$ and put $Y_0=\{\pi_i(p): i\in\omega\}$. Choose $q\in A_0 \sim Y_0$ and let $Z_0=\{q\}$.

Suppose that α < 2^{ω} and that the sets Y_{g} , Z_{g} have been defined for all β < α with the following properties:

- $Y_{\beta}^{\omega} \cap F_{\beta} \neq \emptyset$ whenever $|F_{\beta},[0,1] \wedge Y_{\beta|_{\omega}} > \omega$;
- 2) $Y_{R} \cap Z_{R} = \emptyset$;
- 3) $\beta' < \beta < \alpha \text{ implies } Y_{\beta'} \subset Y_{\beta'}, Z_{\beta'} \subset Z_{\beta'}$
- $A_{R} \cap Z_{R} \neq \emptyset;$
- $|Y_{R}|, |Z_{R}| < 2^{\omega}$.

If α is a limit ordinal, let $Y_{\alpha}^{\star} = \bigcup \{Y_{\beta} : \beta < \alpha\}$ and $Z_{\alpha}^{\star} = \bigcup \{Z_{\beta} : \beta < \alpha\}.$ Otherwise, let $Y_{\alpha}^{\star} = Y_{\beta}$, $Z_{\alpha}^{\star} = Z_{\beta}$, where $\alpha = \beta + 1$. Now consider the set F_{α} . If $|F_{\alpha},[0,1] \sim Y_{\alpha|\omega}^* > \omega$, then by 2.3 $|F_{\alpha},[0,1] \sim Y_{\alpha|\omega}^* = 2^{\omega}$. In this case there is a point

$$p \in F_{\alpha} \sim \bigcup \{\pi_{i}^{-1}[Z_{\alpha}^{*}]: i \in \omega\},$$

because $Z_{\alpha}^{\star} \subseteq [0,1] \circ Y_{\alpha}^{\star}$ and $|Z_{\alpha}^{\star}| < 2^{\omega}$. Put

$$Y_{\alpha} = \bigcup \{\pi_{i}(p) : i \in \omega\} \cup Y_{\alpha}^{*};$$

clearly $Y_{\alpha}^{\omega} \cap F_{\alpha} \neq \emptyset$. On the other hand, if $|F_{\alpha},[0,1]| \sim$ $Y_{\alpha}^{\star}|_{\omega} \leq \omega$, then there is a countable D \subseteq [0,1] \circ Y_{α}^{\star} such that $F_{\alpha} \subset \bigcup \{\pi_{i}^{-1}[D]: i \in \omega\}$. In this case choose $p \in A_{\alpha} \lor Y_{\alpha}^{\star}$ (remember that $|A_{\alpha}| = 2^{\omega}$) and define $Y_{\alpha} = Y_{\alpha}^{\star}$, $Z_{\alpha} = Z_{\alpha}^{*} \cup D \cup \{p\}$. This completes the inductive step.

Put Y = $\cup \{Y_{\alpha}: \alpha < 2^{\omega}\}$, Z = $\cup \{Z_{\alpha}: \alpha < 2^{\omega}\}$. Note that Y is not analytic, since its complement meets every analytic set of uncountable cardinality. To show that Y has the desired property, let K \subset [0,1] $^{\omega}$ \sim Y $^{\omega}$ be closed. As $Y^{\omega} \cap K = \emptyset$, and $K = F_{\alpha}$ for some $\alpha < 2^{\omega}$, we have $|K,[0,1]| \sim Y_{\alpha,\omega}^{\star} \leq \omega$ and thus by the construction of Z there is a countable set $D \subset Z$ with $K \subset \bigcup \{\pi_i^{-1}[D]: i \in \omega\}$. Therefore, 3.1 applies to show that $\lambda(\mathcal{J}(Y)^{\omega}) = \mathcal{J}(Y^{\omega})$.

Corollary 3.3. There is a non-analytic subset $Y\subseteq [0,1] \text{ such that } \lambda(\overline{\mathcal{J}}(Y)^K)=\overline{\mathcal{J}}(Y^K) \text{ for every cardinal}$ number K.

Proof. By 3.2 there is a non-analytic $Y \subseteq [0,1]$ such that $\lambda(\mathcal{J}(Y)^{\omega}) = \mathcal{J}(Y^{\omega})$. By Gleason's factorization theorem, as given in [5], p. 130, $\lambda(\mathcal{J}(Y)^{\kappa}) = \mathcal{J}(Y^{\kappa})$ for all κ .

Acknowledgement

The author thanks the referee for his useful remarks on the first version of this paper.

References

- [1] Ginsberg, S. and J. Isbell: Some operators on uniform spaces, Trans. Amer. Math. Soc. 93, 1959, pp. 145 168.
- [2] Hohti, A.: On supercomplete uniform spaces II, Czech.
 J. Math. 37:3, 1987, pp. 376 385.
- [3] Hohti, A.: On supercomplete uniform spaces III, Proc. Amer. Math. Soc. 97:2, 1986, pp. 339 342.
- [4] Isbell, J.: Supercomplete spaces, Pacific J. Math. 12, 1962, pp. 287-290.
- [5] Isbell, J.: Uniform spaces, Math. Surveys, no. 12, Amer. Math. Soc., Providence, R.I., 1964.
- [6] Pelant, J.: Locally fine uniformities and normal covers, Czech. J. Math. 37:2, 1987, pp. 181 187.
- [7] Przymusinski, T.: On the notion of n-cardinality, Proc. Amer. Math. Soc. 69, 1987, pp. 333 338.

University of Helsinki SF-00100 Helsinki, FINLAND