TOPOLOGY PROCEEDINGS

Volume 13, 1988 Pages 93–106

http://topology.auburn.edu/tp/

ON RELATIVE ω -CARDINALITY AND LOCALLY FINE COREFLECTIONS OF PRODUCTS

by

Aarno Hohti

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON RELATIVE ω -CARDINALITY AND LOCALLY FINE COREFLECTIONS OF PRODUCTS

Aarno Hohti

1. Introduction

The notion of *n*-cardinality is due to van Douwen and Przymusinski [7]. The n-cardinality of a subset of X^n , where X is any set, is the minimum cardinality of a set of hyperplanes of codimension 1, parallel to the coordinate axes, needed to cover the subset. In other words, the n-cardinality $|A|_n$ of $A \subseteq X^n$ is the minimum cardinality of a subset $Y \subseteq X$ such that

 $\mathtt{A} \subseteq \mathtt{Y} \,\times\, \mathtt{x}^{n-1} \,\cup\, \mathtt{x} \,\times\, \mathtt{Y} \,\times\, \mathtt{x}^{n-2} \,\cup\! \cdots \cup\, \mathtt{x}^{n-1} \,\times\, \mathtt{Y},$ or, equivalently,

 $A \subseteq \cup \{\pi_i^{-1}[Y]: 1 \leq i \leq n\}.$

The basic result proved by van Douwen and Przymusinski tells us that if an analytic subset of X^n , where X is a Polish space, has uncountable n-cardinality, then the n-cardinality of the subset equals 2^{ω} .

By using this concept, we proved in [3] that there are supercomplete spaces [4] X (topologically subspaces of the reals) such that all the finite powers X^n are supercomplete but X^{ω} is not. This shows that the action of the Ginsberg-Isbell *locally fine coreflection* λ [1] is not determined by *finite subpowers*, even on separable metrizable spaces. Extending results of [5], [6], Husek and Pelant recently proved that the locally fine coreflection of any product of fine, Cech-complete paracompact spaces is fine. The question whether--in the class of separable metrizable spaces--only Čech-complete (i.e., Polish) spaces have this property will be answered in the negative. By Gleason's Factorization Theorem (see [5], p. 130), it will be enough to consider only countable powers, and this leads us to the study of ω -cardinality.

To prove our result on locally fine coreflections, we need a relativized version of ω -cardinality. The main result concerning this notion states that given a Polish space X, a subset $S \subset X$, a subset $\Lambda \subset \omega$ and an analytic subset A of the product space X^{ω} , if the Λ -cardinality of A relative to S is uncountable, then this cardinality equals 2^{ω} . It is used in the inductive proof of Theorem 3.2, which is an extension of the Bernstein construction of a non-analytic subset of [0,1]. The results on relative ω -cardinality might be of independent interest.

2. ω -cardinality

Let X be a set, and let $A \subseteq X^{\omega}$. The ω -cardinality of A, written $|A|_{\omega}$, is defined as the minimum cardinality of a subset $Y \subseteq X$ such that

$$A \subseteq \pi_0^{-1}[Y] \cup \pi_1^{-1}[Y] \cup \dots,$$

where the π_i are the standard projections. That is, A can be "killed" by the hyperplanes $\pi_i^{-1}(y)$, $y \in Y$. In the same vein, we can consider the Λ -cardinality of A with respect to any subset $\Lambda \subseteq \omega$: $|A|_{\Lambda}$ is the minimum cardinality of a subset $Y \subseteq X$ such that

$$\mathbf{A} \subseteq \cup \{ \pi_{\mathbf{i}}^{-1} [\mathbf{Y}] : \mathbf{i} \in \Lambda \}.$$

In this paper, we have to consider Λ -cardinality relative to given subsets $S \subseteq X$. Let $A \subseteq X^{\omega}$, let $\Lambda \subseteq \omega$ and let $S \subseteq X$. We define that the Λ -cardinality of A relative to S, written $|A,S|_{\Lambda}$, is the minimum cardinality of a subset $Y \subseteq S$ (if such a set exists) such that

 $\mathbf{A} \subseteq \cup \{ \pi_{\mathbf{i}}^{-1}[\mathbf{Y}] : \mathbf{i} \in \Lambda \}.$

In case there is no such $Y\subseteq S\,,$ we define $\left|A,S\right|_{\Lambda}$ = $\left|X\right|.$

In this section we prove the analogue of the result of van Douwen and Przymusinski for relative Λ -cardinality, where Λ is a finite subset of ω .

Theorem 2.1. Let X be a Polish space, let $A \subseteq X^{\omega}$ be analytic, let $S \subseteq X$ and let $\Lambda \in [\omega]^{<\omega}$. Then $|A,S|_{\Lambda} > \omega$ implies $|A,S|_{\Lambda} = 2^{\omega}$.

Proof. The result is proved by induction on $|\Lambda|$. Obviously it is valid for $|\Lambda| = 1$. Suppose that we have proved it for $1 \le |\Lambda| \le n$, and let $|\Lambda| = n + 1$. By the definition of relative Λ -cardinality, we can assume that $\Lambda \subseteq \cup \{\pi_i^{-1} \ [S] : i \in \Lambda\}$. We consider two cases.

Case 1: $|A|_{\Lambda} \leq \omega$. There is a countable set $D \subset X$ with $A \subseteq \cup \{\pi_i^{-1}[D]: i \in \Lambda\}$. Since $|A,S|_{\Lambda} > \omega$, there exist $i \in \Lambda$ and $x \in D \sim S$ with

$$|A_{i,x},S|_{\Lambda} > \omega,$$

where $A_{i,x} = \pi_i^{-1}(x) \cap A$. But

$$|\mathbf{A}_{i,x}, \mathbf{S}|_{\Lambda} = |\mathbf{A}_{i,x}, \mathbf{S}|_{\Lambda \setminus \{i\}},$$

and the inductive hypothesis implies that $|A_{i,x},S|_{\Lambda} = 2^{\omega}$. But then $|A,S|_{\Lambda} = 2^{\omega}$, because $x \in D \sim S$. 96

Case 2. $|A|_{\Lambda} > \omega$. Let $\pi_{\Lambda} : X^{\omega} \to X^{\Lambda}$ be the natural projection. Then (as is easily seen) $|A|_{\Lambda} = |\pi_{\Lambda}[A]|_{n+1}$, and therefore $|A|_{\Lambda} = 2^{\omega}$. Clearly $|A,S|_{\Lambda} \ge |A|_{\Lambda}$, and the claim is proved.

Now we move to prove the analogue of 2.1 for relative ω -cardinality. Let $S \subseteq X$, let $E \subseteq X^{\omega}$ and let $i \in \omega$. Define

 $A(i,E,S) = \{x \in S: \pi_i^{-1}(x) \cap E \neq \emptyset\}.$ The set of (i,S)-limit points of E, written $\mathbb{D}_{i,S}(E)$ is defined as the set of all $p \in X^{\omega}$ such that $|A(i,U\cap E,S)|$ $\geq \omega$ for all neighborhoods U of p in X^{ω} . We define the successive (i,S)-derivatives in the same way as the Cantor-Bendixon derivatives are defined by transfinite induction:

> $D_{i,S}^{(0)}(E) = E;$ $D_{i,S}^{(\alpha+1)}(E) = D_{i,S}(D_{i,S}^{(\alpha)}(E)), \text{ and}$ $D_{i,S}^{(\beta)}(E) = \cap \{D_{i,S}^{(\alpha)}(E): \alpha < \beta\}$

if β is a limit ordinal. There is a such that $D_{i,S}^{(\alpha+1)}(E) = D_{i,S}^{(\alpha)}(E)$; the set $D_{i,S}^{(\alpha)}(E)$ is called the *perfect* (i,S)-*kernel* of E and denoted by $K_{i,S}(E)$. Notice that $K_{i,S}(E)$ is a closed set and $A(i,E \sim K_{i,S}(E),S)$ is countable, since E is separable. Therefore, if E is a closed subset of X^{ω} with $|A(i,E,S)| > \omega$, then $K_{i,S}(E)$ is a nonempty closed subset of E. In case $K_{i,S}(E)$ equals the closure of E, the set E is called (i,S)-perfect.

The following lemma is needed in the proof of the main result. Notice that it follows from 2.3 that the

hypothesis of 2.2 is never satisfied; thus, 2.2 is of technical character only.

Lemma 2.2. Let $S \subseteq X$ and let $F \subseteq X^{\omega}$ be a closed subset such that $\omega < |F,S|_{\omega} < 2^{\omega}$. Then for each $k \in \omega$ there is a $j \ge k$ such that $|K_{j,S}(F),S|_{\omega} > \omega$.

Proof. Suppose that for each integer $j \ge k$ we have $|K_{j,S}(F), S|_{\omega} \le \omega$. Define $M = \{j : j \ge k, |A(j,F,S)| > \omega\}^{*}$. For each $j \in M$, define $F_{j} = K_{j,S}(F)$. Then F_{j} is a closed non-empty subset of F, and hence there exists an increasing sequence (F_{j}^{i}) of closed subsets of F such that $F_{j}^{i} \subseteq F \sim F_{j}$ and

$$\begin{split} \mathbf{F} &= \mathbf{F}_{j} \cup (\cup_{i \in \omega} \mathbf{F}_{j}^{i}) \,. \\ \text{As } \mathbf{F}_{j} \cap \mathbf{F}_{j}^{i} &= \emptyset, \text{ we have } |\mathbf{A}(j,\mathbf{F}_{j}^{i},S)| \leq \omega \text{ for each } i \in \omega \,. \\ \text{It follows that the set} \end{split}$$

 $D_{1} = \bigcup_{j \in M} \bigcup \{ \pi_{j} [F_{j}^{i}] \cap S: i \in \omega \}$ is countable. On the other hand, for $j \in \omega \sim M$, j > k,

we have $|A(j,F,S)| \leq \omega$ and thus the set

$$\begin{split} D_2 &= \cup \{\pi_j[F] \ \cap S: \ j \in \omega \ \sim M, j \geq k \} \\ \text{is countable, too. Finally, as by our assumption } j \geq k \\ \text{implies } |F_j, S|_{\omega} \leq \omega, \ \text{there is a countable set } D_3 \subset S \ \text{such that} \end{split}$$

 $\cup_{j \in M} F_j \subset \cup_{i \in \omega} \pi_i^{-1}[D_3].$

Define D = D₁ \cup D₂ \cup D₃ and let F' = F $\sim \cup_{i \in \omega} \pi_i^{-1}[D]$.

Notice that $j \ge k$ implies $\pi_{j}[F'] \cap S = \emptyset$. Thus, $|F',S|_{\omega} = |F',S|_{\Lambda}$, where Λ is the set $\{0, \dots, k\}$. Clearly $|F,S|_{\omega} \le |F',S|_{\omega} + |F \sim F',S|_{\omega} \le |F',S|_{\Lambda} + \omega$, which implies (by the assumption of 2.2) that $|F',S|_{\Lambda} > \omega$. Since F' is analytic (being a G_{δ} -set), Theorem 2.1 now gives

 $2^{\omega} = |\mathbf{F}', \mathbf{S}|_{\Lambda} = |\mathbf{F}', \mathbf{S}|_{\omega} \leq |\mathbf{F}, \mathbf{S}|_{\omega},$

contradicting the hypothesis of 2.2. Hence, there is a $j \ge k$ with $|F_j, S|_{\omega} > \omega$.

Now we are ready to state the main result of this section.

Theorem 2.3. Let X be a Polish space, let $S \subseteq X$ and let $F \subseteq X^{\omega}$ be closed. Then $|F,S|_{\omega} > \omega$ implies $|F,S|_{\omega} = 2^{\omega}$.

Proof. Assume that $|F,S|_{\omega} > \omega$. We shall prove the claim by the method of contradiction. Thus, assume that $|F,S|_{\omega} < 2^{\omega}$. We shall construct a map $\varphi: 2^{\omega} \rightarrow F$ with the property that if s,s' $\in 2^{\omega}$, s \neq s', then $\varphi(s), \varphi(s')$ do not both belong to any hyperplane $\pi_{i}^{-1}(x)$, where $x \in S$. To start with, let β be a countable base for open subsets of X^{ω} . Put

 $F' = F \sim \bigcup \{B \in \beta : |F \cap \overline{B}, S|_{\omega} \leq \omega\}.$ Then F' is a closed subspace of F such that given any open subset U of X^{\overline{\overl}

$$\begin{split} \mathbf{F}^{"} &= \mathbf{K}_{\mathbf{i},\mathbf{S}}(\mathbf{F}^{"}) ~ \cup \{\mathbf{B} \in \boldsymbol{\beta} : |\mathbf{K}_{\mathbf{i},\mathbf{S}}(\mathbf{F}^{"}) ~ \cap \mathbf{\overline{B}}, \mathbf{S}|_{\boldsymbol{\omega}} \leq \boldsymbol{\omega} \}. \end{split}$$
Then F" is a closed subspace of $\mathbf{K}_{\mathbf{i},\mathbf{S}}(\mathbf{F}^{"})$ such that given any open subset U of $\mathbf{X}^{\boldsymbol{\omega}}$, either F" \cap U = $\boldsymbol{\emptyset}$ or $|\mathbf{F}^{"} ~ \cap \mathbf{U},\mathbf{S}|_{\boldsymbol{\omega}} > \boldsymbol{\omega}.$ For each $\mathbf{r} < \mathbf{i}$ we have $\mathbf{K}_{\mathbf{r},\mathbf{S}}(\mathbf{F}^{"}) \neq \mathbf{F}^{"}.$ $(\mathbf{If} ~ \mathbf{K}_{\mathbf{r},\mathbf{S}}(\mathbf{F}^{"}) = \mathbf{F}^{"}, \text{ then } |\mathbf{K}_{\mathbf{r},\mathbf{S}}(\mathbf{F}^{"}),\mathbf{S}|_{\boldsymbol{\omega}} \geq |\mathbf{K}_{\mathbf{r},\mathbf{S}}(\mathbf{F}^{"}),\mathbf{S}|_{\boldsymbol{\omega}} = |\mathbf{F}^{"},\mathbf{S}|_{\boldsymbol{\omega}} > \boldsymbol{\omega}, \text{ which would yield a contradiction with the} \end{split}$ definition of i given above.) Then for each such an r, there is an open set U_r with $U_r \cap F'' \neq \emptyset$ and $A(r, \overline{U}_r, S) = \emptyset$. Indeed, suppose that r < i and that $|A(r, \overline{U}_r \cap F'', S)| > 1$ for each open set U_r for which $U_r \cap F'' \neq \emptyset$. Then F'' would have no (r,S)-isolated points and hence would be (r,S)-perfect. Thus, we would have $K_{r,S}(F'') = F''$, which contradicts the result just obtained above. Thus, there is an open set U_r' such that $U_r' \cap F'' \neq \emptyset$ and $|A(r, \overline{U}_r' \cap F'', S)| \leq 1$. In case $A(r, \overline{U}_r' \cap F'', S) = \emptyset$, we are done, otherwise let $A(r, \overline{U}_r' \cap F'', S) = \{p\}$. Since $|U_r' \cap F'', S|_{\omega} > \hat{\omega}$, we have $(U_r' \cap F'') \sim \pi_r^{-1}(p) \neq \emptyset$.

Choose $q \in U_r' \cap F''$ with $\pi_r(q) \neq p$. Since $\pi_r^{-1}(p)$ is closed, we can find an open neighbourhood V of q such that $\overline{V} \cap \pi_r^{-1}(p) = \emptyset$. Now take $U_r = V \cap U_r'$. By redefining F'' as $F'' \cap \overline{U_r}$, we still have $|F'', S|_{\omega} > \omega$. By repeating this procedure for all r < i, we get a set F'' such that $A(r,F'',S) = \emptyset$ for all r < i. Let ρ be some fixed compatible complete metric for X^{ω} . Choose two points $p_0, p_1 \in F''$ and open sets $U_0, U_1 \subset X^{\omega}$ satisfying the following conditions:

1)
$$p_j \in U_j, j = 0,1;$$

2) $\overline{\pi_i[U_0]} \cap \overline{\pi_i[U_1]} = \emptyset$

Define

$$\begin{cases} F_0 = F^* \cap \overline{U}_0, \\ F_1 = F^* \cap \overline{U}_1. \end{cases}$$

Then the sets F_j satisfy the conditions $\omega < |F_j, S|_{\omega} < 2^{\omega}$. Define $\Lambda_j = \{i\}$, where j = 0, 1.

;

For the inductive step, let $n \in \omega$ and suppose that we have defined for all $s \in 2^n$ the points p_s and the sets F_s , Λ_s and that they satisfy the following properties:

1) if s,s' $\in 2^n$, s \neq s', and j $\in \Lambda_s \cap \Lambda_s$, then $\overline{\pi_j(F_s)} \cap \overline{\pi_j(F_{s'})} = \emptyset;$

2) if
$$j \in \{0, \dots, n\} \sim \Lambda_s$$
, then $A(j, F_s, S) = \emptyset$;

- 3) $|F_s,S|_{\omega} > \omega$ for all $s \in 2^n$;
- 4) diam₀(\mathbf{F}_{s}) < 2⁻⁽ⁿ⁺¹⁾ for all $s \in 2^{n}$.

Let $\{s_0, \dots, s_{2^{n-1}}\}$ be an enumeration of 2^n . (We consider 2^n , $n \in \omega$, as the set of all sequences (t_0, \dots, t_n) with terms in $\{0,1\}$. In the sequel the symbol $\sigma \mid m$ denotes the restriction of $\sigma \in 2^n$ to the set $\{0, \dots, m\}$. For $i \in \{0,1\}$, the symbol $\sigma \land i$ denotes the concatenated sequence $\sigma(0) \dots \sigma(n)i$. Similarly, 2^{ω} denotes the set of all sequences $(t_i)_{i \in \omega}$ with terms in $\{0,1\}$, and for each $\sigma \in 2^{\omega}$, $\sigma \mid n$ denotes the corresponding element of 2^n .) Let $t = s_0$ and let $k = \max(\Lambda_t)$. By 2.2 there is the least i > k with $|K_{i,S}(F_t), S|_{\omega} > \omega$. Let

$$\begin{split} F_t' &= K_{k,S}(F_t) \sim \cup \{B \in \beta : |K_{k,S}(F_t) \cap \overline{B}, S|_{\omega} \leq \omega\}. \\ \text{As before, we can reduce } F_t' \text{ so that if we have } K_{r,S}(F_t') \neq \\ F_t' \text{ for some } r < i \text{ (i.e., } F_t' \text{ is not } (r,S)\text{-perfect}), \text{ then } \\ A(r,F_t',S) &= \emptyset. \quad \text{Define} \end{split}$$

 $\Lambda_t' = \{r: 0 \le r \le i, A(r, F_t', S) \ne \emptyset\}.$ Notice that we can use the inductive hypothesis (for F_t' instead of F) to find points $q, q' \in F_t'$ such that $\pi_j(q) \ne \pi_j(q')$ for all $j \in \Lambda_t' \subseteq \Lambda_t$. Choose neighborhoods V and V' of q, q', respectively, such that $\pi_j[V] \cap \pi_j[V'] = \emptyset$ for all $j \in \Lambda_t'$. Since F_t' is (i,S)-perfect, we can choose

distinct x, x' \in S with P = $\pi_i^{-1}(x) \cap V \cap F_+^{!} \neq \emptyset$, P' = $\pi_i^{-1}(x') \cap V' \cap F'_t \neq \emptyset$. Choose any points $p \in P, p' \in P'$; then $\pi_i(p) \neq \pi_i(p')$ for all $j \in \Lambda'_t \cup \{i\}$. Put $p_{t \wedge 0} = p$, $p_{tal} = p'$. Define $\Lambda_{ta0} = \Lambda_{tal} = \Lambda_t' \cup \{i\}$.

For the subinductive hypothesis, let 0 < m < 2^n - 1 and suppose that the points $P_{s_i \wedge 0}$, $P_{s_i \wedge 1}$ have been defined for all $j \leq m$. Let $t = s_{m+1}$, and let Λ_t^i , F_t^i and i be defined as before. By repeating the procedure used above for finding p,p', if necessary, sufficiently many times, we can find points $p_{t \land 0}, p_{t \land 1} \in F_t^{!}$ such that

 $\{\pi_{i}(p_{t,0}), \pi_{i}(p_{t,1})\} \cap \{\pi_{i}(p_{s,0}), \pi_{i}(p_{s,1})\} = \emptyset$ whenever $s \in \{s_0, \dots, s_m\}$ and $j \in (\Lambda_t^* \cup \{i\}) \cap \Lambda_s^*$. (Use the inductive condition 1) above and in choosing x and x' in the preceding paragraph, notice that any finite set can be avoided.) This finishes the subinductive step.

Thus, we have defined the points p_s for all $s \in 2^{n+1}$. Choose neighbourhoods U such that

1) $p_s \in U_s;$
2) if s,s' $\in 2^{n+1}$, s \neq s' and j $\in \Lambda_s \cap \Lambda_s$, then
$\overline{\pi_{j}[U_{s}]} \cap \overline{\pi_{j}[U_{s},]} = \emptyset;$
3) diam _p (U _s) < $2^{-(n+2)}$.
For each $s \in 2^{n+1}$, let
$F_s = F'_{s n} \cap \overline{U}_s.$
We get a map
$F: 2^{<\omega} \rightarrow 2^{X^{\omega}}$
defined by F(s) = F _s . Notice that for all $s \in 2^{\omega}$, we have
$\cdots \supseteq F(s n) \supseteq F(s (n+1)) \supseteq \cdots$

and diam_pF(s|n) \rightarrow 0, whence we can define a map $\ \phi:\ 2^\omega \rightarrow X^\omega$ by setting

 $\varphi(s) = \cap \{F(s \mid n): n \in \omega\}.$

Moreover, as F is closed, $\varphi[2^{\omega}]$ lies in F. Now let s,s' $\in 2^{\omega}$, s \neq s'. Choose the least n $\in \omega$ with s(n) \neq s'(n). Then by the construction of the sets F_t, k \geq n implies

1) if
$$j \in \Lambda_{s|k} \cap \Lambda_{s'|k}$$
, then $\overline{\pi_{j}[F_{s|k}]} \cap \overline{\pi_{j}[F_{s'}|k]} = \emptyset$
and thus $\pi_{j}(\varphi(s)) \neq \pi_{j}(\varphi(s'));$

2) if
$$j \in \{0, \dots, k\} \sim (\Lambda_{s|k} \cap \Lambda_{s'|k})$$
, then either
 $F_{s|k} \cap \pi_{j}^{-1}[S] = \emptyset$ or $F_{s'|k} \cap \pi_{j}^{-1}[S] = \emptyset$ and therefore
either $\varphi(s) \notin \pi_{j}^{-1}[S]$ or $\varphi(s') \notin \pi_{j}^{-1}[S]$.

It follows from 1) and 2) that $\varphi(s), \varphi(s')$ do not both belong to any hyperplane $\pi_j^{-1}(x)$, where $x \in S$. Therefore, the number of such hyperplanes needed to cover F is 2^{ω} . This condition shows that $|F,S|'_{\omega} = 2^{\omega}$, as required.

The following result is a more general version of 2.3, proved in the same way as 2.3.

Theorem 2.4. Let X be a Polish space, let $S \subseteq X$, let $\Lambda \subseteq \omega$ and let $F \subseteq X^{\omega}$ be closed. Then $|F,S|_{\Lambda} > \omega$ implies $|F,S|_{\Lambda} = 2^{\omega}$.

Proof. If Λ is finite, then 2.4 can be proved by induction following the proof of 2.2; on the other hand, if Λ is infinite, then the proof of 2.3 applies, provided that only projections π_j with $j \in \Lambda$ are considered.

The concept of Λ -cardinality, relative to a subset of a Polish space X, can be generalized in a natural way to products in which not all the factors are the same space. Let $(X_i)_{i \in \omega}$ be a countable family of Polish spaces, and let $\Lambda \subseteq \omega$. For each $i \in \Lambda$, suppose that $X_i = X$ and let S be a subset of X. Then the Λ -cardinality of a subset $\Lambda \subseteq \Pi_{i \in \omega} X_i$ relative to S, written as usual $|\Lambda, S|_{\Lambda}$, is the least cardinality of a subset $Y \subseteq S$ such that

$$A \subseteq \cup \{\pi_i^{-1}[Y] : i \in \Lambda\}.$$

The following result is proved in the same way as 2.4.

Theorem 2.5. Let $(X_i)_{i \in \omega}$ be a countable family of Polish spaces, let $\Lambda \subseteq \omega$, let $X_i = X$ for all $i \in \Lambda$ and let $S \subseteq X$. Then $|F,S|_{\Lambda} > \omega$ implies $|F,S|_{\Lambda} = 2^{\omega}$ for every closed subset $F \subseteq \Pi_{i \in \omega} X_i$.

As a corollary, we obtain an easy proof of the extension of 2.4 to analytic subsets.

Corollary 2.6. Let X be a Polish space, let $S \subseteq X$, let $\Lambda \subseteq \omega$ and let $A \subseteq X^{\omega}$ be analytic. Then $|A,S|_{\Lambda} > \omega$ implies $|A,S|_{\Lambda} = 2^{\omega}$.

Proof. Since A is analytic, there is a closed subset $F \subseteq \omega^{\omega} \times X^{\omega}$ such that $A = \pi_0[F]$, where $\pi_0: \omega^{\omega} \times X^{\omega} + X^{\omega}$ is the standard projection. Put $X_0 = \omega^{\omega}$ and for $i \in \omega \sim \{0\}$, put $X_i = X$. Define $\Lambda' = \{i + 1: i \in \Lambda\}$. Since $A = \pi_0[F]$, it is clear that

 $|F,S|_{\Lambda}$, (in $\Pi_{i\in\omega} X_{i}$) = $|A,S|_{\Lambda}$ (in X^{ω}) and the claim then follows from 2.5.

3. Locally Fine Coreflections

The locally fine coreflection of a uniform space uX, written λ uX, is the coarsest uniformity on X, finer than u, with the property that every locally uniformly uniform cover is uniform. For this concept, see e.g. [1], [2]. Much of the importance of this notion derives from its connection with supercompleteness [4]. The proof of the following result is similar to that of Corollary 3.5 in [2].

Lemma 3.1. Let Y be a dense subspace of a Polish space X. If for each closed $K \subseteq X^{\omega} \sim Y^{\omega}$ there is a G_{δ} -set $G \subset X$ with $Y \subseteq G$ and $K \subseteq X^{\omega} \sim G^{\omega}$, then $\lambda((\overline{J}Y)^{\omega}) = \overline{J}(Y^{\omega})$. Thus, to prove that $\lambda((\overline{J}Y)^{\omega}) = \overline{J}(Y^{\omega})$, it is sufficient to show that given a closed subset $K \subseteq X^{\omega} \sim Y^{\omega}$, there is a countable $D \subset X \sim Y$ with

 $\mathbf{K} \subseteq \cup \{ \pi_i^{-1} [\mathbf{D}] : \mathbf{i} \in \omega \}.$

Now we give the promised application of 2.3.

Theorem 3.2. There is a non-analytic subset $Y \subseteq [0,1]$ such that $\lambda((\overline{J}Y)^{\omega}) = \overline{J}(Y^{\omega})$.

Proof. Let $(F_{\alpha}: \alpha < 2^{\omega})$ be an enumeration of all closed subsets of $[0,1]^{\omega}$ and let $(A_{\alpha}: \alpha < 2^{\omega})$ be an enumeration of all analytic subsets of [0,1] of cardinality 2^{ω} . We shall construct two sets $Y,Z \subseteq [0,1]$ by induction on α . To begin with, let $p \in F_0$ and put $Y_0 = \{\pi_i(p): i \in \omega\}$. Choose $q \in A_0 \sim Y_0$ and let $Z_0 = \{q\}$. Suppose that α < 2^{ω} and that the sets Y_B, Z_B have been defined for all β < α with the following properties: $Y^{\omega}_{\beta} \cap F_{\beta} \neq \emptyset$ whenever $|F_{\beta},[0,1] \sim Y_{\beta|\omega} > \omega;$ 1) 2) $Y_{\beta} \cap Z_{\beta} = \emptyset;$ 3) $\beta' < \beta < \alpha$ implies $Y_{\beta}, \subset Y_{\beta}, Z_{\beta}, \subset Z_{\beta};$ $A_R \cap Z_R \neq \emptyset;$ 4) $|\mathbf{Y}_{\beta}|, |\mathbf{Z}_{\beta}| < 2^{\omega}.$ 5) If α is a limit ordinal, let $Y^{\star}_{\alpha} = \bigcup \{Y_{\beta}: \beta < \alpha\}$ and $Z_{\alpha}^{\star} = \bigcup \{ Z_{\beta} : \beta < \alpha \}.$ Otherwise, let $Y_{\alpha}^{\star} = Y_{\beta}, Z_{\alpha}^{\star} = Z_{\beta},$ where $\alpha = \beta + 1$. Now consider the set F_{α} . If $|\mathbf{F}_{\alpha},[0,1] \sim \mathbf{Y}_{\alpha|\omega}^{\star} > \omega$, then by 2.3 $|\mathbf{F}_{\alpha},[0,1] \sim \mathbf{Y}_{\alpha|\omega}^{\star} = 2^{\omega}$. In this case there is a point $p \in F_{\alpha} \sim \cup \{\pi_i^{-1}[Z_{\alpha}^{\star}]: i \in \omega\},\$ because $Z^{\star}_{\alpha} \subseteq [0,1] \circ Y^{\star}_{\alpha}$ and $|Z^{\star}_{\alpha}| < 2^{\omega}$. Put $Y_{\alpha} = \bigcup \{\pi_{i}(p) : i \in \omega\} \cup Y_{\alpha}^{*};$ clearly $Y^{\omega}_{\alpha} \cap F_{\alpha} \neq \emptyset$. On the other hand, if $|F_{\alpha},[0,1] \sim$ $Y^{\star}_{\alpha}|_{\omega} \leq \omega$, then there is a countable D \subset [0,1] $\vee Y^{\star}_{\alpha}$ such that $F_{\alpha} \subset \bigcup \{\pi_{i}^{-1}[D]: i \in \omega\}$. In this case choose $p \in A_{\alpha} \vee Y_{\alpha}^{\star}$ (remember that $|A_{\alpha}| = 2^{\omega}$) and define $Y_{\alpha} = Y_{\alpha}^{\star}$, $Z_{\sim} = Z_{\sim}^{\star} \cup D \cup \{p\}$. This completes the inductive step. Put $Y = \bigcup \{Y_{\alpha}: \alpha < 2^{\omega}\}, Z = \bigcup \{Z_{\alpha}: \alpha < 2^{\omega}\}.$ Note that Y is not analytic, since its complement meets every analytic set of uncountable cardinality. To show that Y has the desired property, let $K \subset \left[\ 0 \ , 1 \right]^{\omega} \ \lor \ Y^{\omega}$ be closed. As Y^{ω} \cap K = Ø, and K = F_{\alpha} for some α < 2^{ω} , we have $|K,[0,1] \sim Y^{\star}_{\alpha}|_{\omega} \leq \omega$ and thus by the construction of Z there is a countable set $D \subset Z$ with $K \subset \cup \{\pi_i^{-1}[D]: i \in \omega\}$. Therefore, 3.1 applies to show that $\lambda(\mathcal{F}(Y)^{\omega}) = \mathcal{F}(Y^{\omega})$.

Corollary 3.3. There is a non-analytic subset $Y \subset [0,1]$ such that $\lambda(\mathcal{F}(Y)^{\kappa}) = \mathcal{F}(Y^{\kappa})$ for every cardinal number κ .

Proof. By 3.2 there is a non-analytic $Y \subseteq [0,1]$ such that $\lambda(\mathcal{J}(Y)^{\omega}) = \mathcal{J}(Y^{\omega})$. By Gleason's factorization theorem, as given in [5], p. 130, $\lambda(\mathcal{J}(Y)^{\kappa}) = \mathcal{J}(Y^{\kappa})$ for all κ .

Acknowledgement

The author thanks the referee for his useful remarks on the first version of this paper.

References

- [1] Ginsberg, S. and J. Isbell: Some operators on uniform spaces, Trans. Amer. Math. Soc. 93, 1959, pp. 145 -168.
- Hohti, A.: On supercomplete uniform spaces II, Czech.
 J. Math. 37:3, 1987, pp. 376 385.
- [3] Hohti, A.: On supercomplete uniform spaces III, Proc. Amer. Math. Soc. 97:2, 1986, pp. 339 - 342.
- [4] Isbell, J.: Supercomplete spaces, Pacific J. Math. 12, 1962, pp. 287-290.
- [5] Isbell, J.: Uniform spaces, Math. Surveys, no. 12, Amer. Math. Soc., Providence, R.I., 1964.
- [6] Pelant, J.: Locally fine uniformities and normal covers, Czech. J. Math. 37:2, 1987, pp. 181 187.
- [7] Przymusinski, T.: On the notion of n-cardinality, Proc. Amer. Math. Soc. 69, 1987, pp. 333 - 338.

University of Helsinki

SF-00100 Helsinki, FINLAND