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ON RELATIVE w..CARDINALITY AND LOCALLY 

FINE COREFLECTIONS OF PRODUCTS 

Aarno Hohti 

1.	 Introduction 

The notion of n-cardinality is due to van Douwen and 

Przymusinski [7]. The n~cardinality of a subset of xn , 

where X is any set, is the minimum cardinality of a set of 

hyperplanes of codimension 1, parallel to the coordinate 

axes, needed to cover the subset. In other words, the 

n-cardinality IAI of A C Xn is the minimum cardinality of 
n 

a subset Y C X such that
 

l 2 l
A C Y x xn - u X x Y x xn - u···u xn - x Y,
 

or, equivalently,
 

-1
A C u {'IT i [Y]: 1 2. i 2. n}.
 

The basic result proved by van Douwen and Przymusinski
 

tells us that if an analytic subset of xn , where X is a
 

Polish space, has uncountable n-cardipality, then the
 

2wn-cardinality of the subset equals •
 

By using this concept, we proved in [3] that there
 

are supercornplete spaces [4] X (topologically subspaces
 

Xn
of the reals) such that all the finite powers are 

supercomplete but XW is not. This shows that the action 

of the Ginsberg-Isbell locally fine coreflection A [1] is 

not determined by finite subpowers, even on separable 
v 

rnetrizable spaces. Extending results of [5], [6], Husek 

and Pelant recently proved that the locally fine 
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coreflection of any product of fine, Cech-complete para-

compact spaces is fine. The question whether--in the 
v 

class of separable metrizable spaces--only Cech-complete 

(i.e., Polish) spaces have this property will be answered 

in the negative. By Gleason's Factorization Theorem (see 

[5], p. 130), it will be enough to consider only countable 

powers, and this leads us to the study of w-cardinality. 

To prove our result on locally fine coreflections, 

we need a relativized version of w-cardinality. The main 

result concerning this notion states that given a Polish 

space X, a subset sex, a subset A c wand an analytic 

subset A of the product space XW
, if the A-cardinality of 

A relative to S is uncountable, then this cardinality 

equals 2w• It is used in the inductive proof of Theorem 

3.2, which is an extension of the Bernstein construction 

of a non-analytic subset of [0,1]. The results on 

relative w-cardinality might be of independent interest. 

2. w'-cardinality 

Let X be a set, and let A C X 
w• The w-cardinality of 

A, written IAI , is defined as the minimum cardinality of 
w 

a subset Y C X such that 

-1 -1
A ~ nO [Y] U TIl [Y] U ••• , 

where the TI are the standard projections. That is, A cani 
-1be "killed" by the hyperplanes TI (y), Y E Y. In the samei 

vein, we can consider the A-cardinality of A with respect 

to any subset A ~ w: IAI 
A 

is the minimum cardinality of a 

subset Y C X such that 

-1
A ~ U {TI i [Y]: i E A}. 
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In this paper, we have to consider ~-cardinality 

relative to given subsets sex. Let A ~ xW
, let A C w 

and let seX. We define that the A-cardinality of A 

relative to S, written IA,sl~, is the minimum cardinality 

of a subset yeS (if such a set exists) such that 

-1A C U {TI [y] : i E A}.i 

In case there is no such Y ~ S, we define IA,sl~ = Ixl. 

In this section we prove the analogue of the result 

of van Douwen and Przymusinski for relative ~-cardinality, 

where A is a finite subset of w. 

XWTheorem 2.1. Let X be a Polish spaae~ let A ~ be 

analytia~ let S ~	 X and let A E [w]<w. Then IA~sIA > w 
w

implies IA~sIA = 2 . 

Proof· The result is proved· by induction on IAI. 
Obviously it is valid for I AI = 1. Suppose that we have 

proved it for 1 :..1 A.I < n, and let. 1 AI = n + 1. By the-
definition of relative ~-cardinality, we can assume that 

A C U {TIil [5] : i E A}. We consider two cases. 

Case 1: IAI A < w. There is a countable set D C X 

with A ~ U{ni1CDI: i E A}. Since IA,sI 
A 

> w, there exist 

i E A and xED ~ S with 

IA. ,S I A > W, 
~,x H 

where A. = TI~l	 (x) n A. But 
~,x ~ 

IA. ,SI A = IA. ,sr A {.}'
~,x ~,x ~ ~ 

and the inductive	 hypothesis implies that IA. ,slA 2w• 
~,x 

But then IA,slA = 2w, because xED ~ S. 
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Case 2. 

projection. Then (as is easily seen) IAI = I7T [A] I +l ,
A A n 

and therefore IAI A = 2w• Clearly IA,SI A ~ IAI A, and the 

claim is proved. 

Now we move to prove the analogue of 2.1 for relative 

w-cardinality. Let sex, let E C XW and let i E w. 

Define 

. -1
A(1.,E,S) = {x E S: 7T 

i 
(x) n E :-f fI}. 

The set of (i,S)-limit points of E, written fl. S(E) is1., 

defined as the set of all p E X
W such that IA(i,UnE,S) I 

> w for all neighborhoods U of p in Xw. We define the 

successive (i,S)-derivatives in the same way as the Cantor-

Bendixon derivatives are defined by transfinite induction: 

D~O) (E) = E;
1.,S 

(a)D.(a+l} (E) D. S (D. S (E) ), and1.,S 1., 1., 

D ~ B} (E) = n{D.( as) (E): a < S}
1.,S 1., 

if 8 is a limit ordinal. There is a such that D~a+l) (E) = 
1.,S 

D~as) (E)i the set Dya) (E) is called the perfect (i,S)-kerneZ1., 1.,S 

of E and denoted by K. S(E). Notice that K. S(E) is a
1, 1, 

closed set and A(i,E ~ K. S(E) ,S) is countable, since E is
1., 

separable. Therefore, if E is a closed subset of XW with 

IA(i,E,S) I > w, then K. S(E) is a nonempty closed subset of
1, 

E. In case K. S(E) equals the closure of E, the set E is 
1, 

called (i,S)-perfect. 

The following lemma is needed in the proof of the 

main result. Notice that it follows from 2.3 that the 
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hypothesis of 2.2 is never satisfied; thus, 2.2 is of 

technical character only. 

Lemma 2.2. LetSC X and	 Zet F C XW be a cZosed 

2wsubset such that w < IF,sl < . Then for each k E w w 

there is a j > k such that IK. S(F) ,sl > w.J, w 

Proof. Suppose that for each integer j > k we have 

IK. S(F) ,S/ < w. Define	 M {j : j ::. k, IA(j ,F,S) I > wt.J, w 
For each j E M, define F. K. S(F). Then F. is a closed 

J J , J 

non-empty subs~t of F, and hence there exists an increas

ing sequence (F~) of closed subsets of F such that 
J 

F~ C F tV F. and 
J. J 

iF = F. U (U. c .. F.).
J ~'-W J 

As F. n F~ = 9, we have IA(j,F~,S) I < w for each i E w.
] ] J. 

It follows that the set 

D = U' EM U{TI.[F~] n S: i E w}
1 J ] J 

is countable. On the other hand, for jEw tV M, j ::. k, 

we have /A(j,F,S) I .:. wand thus the set 

D = U{TIj[F] n S: jEw tV M,j > k}2 

is countable, too. Finally, as by our assumption j ::. k 

implies IF.,sl < w, there is a countable set D C S such] w- 3 

that 

Define D = D U D U D3 and letl 2 
-1F' = F tV U TI [D].

iEw i 

Notice that j ~ k implies TIj[F'] n S =~. Thus, IF',slw 

IF',sI A, where A is the set {O,··· ,k}. Clearly 

IF,slw ~ IF',slw + IF tV F' ,slw ~ IF',sI A + w, 
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which implies (by the assumption of 2.2) that \F',sI A > w. 

Since F' is analytic (being a Go-set), Theorem 2.1 now 

gives 

w
2 = IF',Sr A = IF',sl w ~ \F,sl w' 

contradicting the hypothesis of 2.2. Hence, there is a 

j > k wi th IF., S \ > w. 
- J w 

Now we are ready to state the main result of this 

section. 

Theorem 2.3. Let X be a Polish space, let S ~ X and 

let F C X
W be closed. Then IF,sl > w implies IF,sl = 2w• w w 

Proof. Assume that IF,sl > w. We shall prove the 
w 

claim by the method of contradiction. Thus, assume that 

IF,Slw < 2
w• We shall construct ,a map~: 2w ~ F with the 

property that if s,s' E 2w, s ~ Sf, then ~(s) ,~(s') do not 

-1both belong to any hyperplane n (x), where xES. Toi 

start with, let B be a countable base for open subsets of 

Xw• Put 

F' = F tV U{B E B : IF n B, s I < w}.
w -

Then F' is a closed subspace of F such that given any open 

subset U of xW
, either F' n u = ~ or IF' n u,sl > w. 

w 

By Lemma 2.2 there is the least i > 0 such that 

IK . S (F I ) ,S I > w• Le t 
~, w 

.F II = K. S (F I) tV U{B E B : IK. S: (F I ) n B, s I < w}. 
~~ ~, w -

Then F" is a closed subspace of K. S(F') such that given 
~, 

any open subset U of XW
, either F" n U = f1 or 

IF-II n u,S I > w. For each r < i we have K (F") ~ F".w r,S
 

(If Kr,S(F") = F", then IKr,s(F') ,slw ~ IKr,s(F") ,slw =
 
IF",sl > w, which would yield a contradiction with the
 w 
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definition of i given above.) Then for each such an r, 

there is an open set U with U n Fit ~ fl and A(r,Ur,s) fl. r r 
Indeed, suppose that r < i and that IA(r,U n F",S) I > 1r 

for each open set U for which U n Fit ~~. Then Fit r r 

would have no (r,S)-isolated points and hence would 

be (r,S)-perfect. Thus, we would have K (F") = F" which . r,S ' 

contradicts the result just obtained above. Thus, there is 

an open set U~ such that U~ n F" ~ fl and IA(r,U~ n Fit ,S) I 

< 1. In case A(r,UT n F",S) = fl, we are done, otherwise 
r 

let A(r,Ut: n F",S) = {p}. Since Iu' n F",sl > W, we have r r w 

(U' n F") "" 7T-
l 

(p) t- fl. r r 

Choose q E u~ n F" with 7T (q) t- p. Since 7T 
-1 (p) is closed,r r 

we can find an open neighbourhood V of q such that 

- -1V n 7T (p) = fl. Now take U = V n U;. By redefining F" r r 

as F" n Ur' we still have IF",slw > w. By rep~ating this 

procedure for all r < i, we get a set F" such that 

A(r,F",S) = fl for all r < i. Let p be some fixed compati

ble complete metric for Xw. Choose two points PO,Pl E F" 

and open sets UO'U C X
W satisfying the following condi

I 

tions:
 

1) Pj e·u j , j = 0,1;
 

2) 7T i [UOJ n TI i [U1 J f1;
 

3) diam (U.) <1/2, j = 0,1.
 
p ] 

Define 

Fo=F"noo' 

{ Fl = F" n 01 . 

Then the sets F]. satisfy the conditions w < IF.,SI < 2w•] w 
Define A. = {il, where j = 0,1.

] 
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For the inductive step, let nEw and suppose that 

we have defined for all s E the points ps and2n 

the sets Fs,A and that they satisfy the followings 

properties: 

1) if s,s' E 2
n

, s ~ s', and j E As n As" then 

'IT ,(F ) n 'IT, (F ,) ~; 
J s J s 

2) if j E {O,···,n} ~ As' then A(j,Fs'S) 

3) IF ,sl > w for all s E 2n ;s w 
4) diam (F ) < 2-(n+l) for all s E 2n . 

p s 

Let {sO,···,s } be an enumeration of 2n . (We consider 
2n-l' 

2n , nEw, as the set of all sequences (to,···,t ) with 
n

terms in {O,l}. In the sequel the symbol a I m denotes 

the restriction of a E to the set {O,···,m}. For2n 

i E {O,l}, the symbol a A i denotes the concatenated 

2w sequence 0(0) ···o(n)i. Similarly, denotes the set of 

all sequences (t,) 'Ew with terms in {O,l}, and for each 
~ ~ 

2w a E , oln denotes the corresponding element of 2n.) 

Let t So and let k = max(A ). By 2.2 there is thet 

least i > k with IK. s(F ) ,51 > w. Let 
J., t w 

F t Kk,S(Ft ) 'V U{B E B:IKk,S(Ft ) nB",slw < w}. 

As before, we can reduce F so that if we have Kr,S(F ) ~ t t 

F for some r < i (i.e., F is not (r,S)-perfect), thent t 

'1. Define 

At = {r: 0 < r < i,A(r,Ft,S) ~ ~}. 

Notice that we can use the inductive hypothesis (for Ft 
instead of F) to find points q,q' E F such that 'ITj(q) ~ t 

'ITj(q') for all j E At C At. Choose neighborhoods V and 

V' of q,q', respectively, such that 'IT.[V] n 'IT,[V'] = '1 for 
J J 

all j E At. Since F is (i,S)-perfect, we can chooset 
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-1distinct x,x' E S with P = Tr (x) n vn F ~ ~, P' = i t 
-1

Tr i (x') n v' n Ft ~~. Choose any points p ~ P, p' E P'; 

0 0then	 7T 
J 

(p) ~ 1T 
J 

(p' ) for all j E At U {i}. Put PtAO p, 

= p'. Define A A = A' U {i}.PtAl tAO tAl t 

For the subinductive hypothesis, let 0 < m < 2
n - I 

and suppose that the points PSoAO' PSoAI have been defined 
J J 

for all j ~ m. Let t = sm+l' and let At' Ft and i be 

defined as before. By repeating the procedure used above 

for finding p,p', if necessary, sufficiently many times, 

we can find points PtAO' E Ft such thatPtAI 

{Tr j (ptAO), Tr j (PtAl)} n {Tr j (PSAO)' Tr j (PsAl) } fl 

whenever s E {sO,·,··,sm} and j E (At U {i}) n As. (Use 

the inductive condition 1) above and in choosing x and x' 

in the preceding paragraph, notice that any finite set 

can be avoided.) This finishes the subinductive step. 

Thus, we have defined the points ps for all s E 2n+1 . 

Choose neighbourhoods Us such that 

1) Ps E Us; 
12)	 if s,s' E 2n+ , s ~ s' and j E As n As" then 

Tro[U] n 7To[U ,] = {Ii
J s J s 

3) diam (U ) < 2- (n+2) . 
p 5 

lFor each s E 2n+ , let 

FS = F'sl n nus· 

We get a map 

F 

defined by F(s) = F • Notice that for all s E 2w, we have s 
.... 2 F(sln) 2 F(sl (n+l» 2 ... 
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and diam F(s\n) ~ 0, whence we can define a map
p 

XW by setting 

(p(s) = n {F(sln): nEw} • 

Moreover, as F is closed, (p[ 2w] lies in F. Now let s,s' 

E 2w, s ~ s ' • Choose the leasb nEw with s (n) 1: s' (n) • 

Then by the construction of the sets F k ~ n impliest , 

1) if j E Asl k n As' Ik' then TIj[Fsl k ] n TIj[Fs ' Ik] = ~ 

and thus 1T. «(p (s» ~ 1T. «(p (s ' ) ) ; _____J J 

2) if j E {O,··· ,k} 'V (As Ik n As' Ik)' then either 

Fsl k n njl[SI= ~ or FSI Ik n njl[SI = ~ and therefore 

belong to any hyperplane 1T. (x), where xES. Therefore, 

either (p(s) ~ 1T~l[S] 
J 

or (p(s') ~ 1T~l[S]. 
J 

It follows from 1) and 2) that (p(s) ,(pes') do not both 

-1 
J 

2wthe number of such hyperplanes needed to cover F is • 

This condition shows that IF,sr = 2w, as required.
w 

The following result is a more general version of 

2.3, proved in the same way as 2.3. 

Theorem 2.4. Let X be a Polish space, let S ~ X, let 

A C wand let F C XW be closed. Then IF,sIA > w implies 

IF,slA = 2
w. 

Proof. If A is finite, then 2.4 can be proved by 

induction following the proof of 2.2; on the other hand, 

if A is infinite, then the proof of 2.3 applies, provided. 

that only projections 1T. with j E A are considered. 
J 

The concept of A-cardinality, relative to a subset 

of a Polish space X, can be generalized in a natural way 
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to products in which not all the factors are the same 

space. Let (Xi)iEw be a countable family of Polish 

spaces, and let A C w. For each i E A, suppose that 

Xi X and let S be a subset of X. Then the A-cardinality 

of a subset A ~ Xi relative to S, written as usualIT iEw 

IA,sI A, is the least cardinality of a subset yeS such 

that 

A C U {TI~l[y]: i E A}. 
- 1. 

The following result is proved in the same way as 2.4. 

Theorem 2.5. Let (Xi)iEw be a countable family of 

Polish spaces, let A ~ w, let Xi = X for all i E A and let 

SeX. Then IF,sI A > w implies IF,sI A = 2~ for every 

ctosed subset F C IT. e .. x.. 
- 1. '-W 1. 

As a corollary, we obtain an easy proof of the exten

sion of 2.4 to analytic subsets. 

Corollary 2.6. Let X be a Polish space, let sex, 

let A C wand let A C X
W be analytic. Then IA,sIA > w 

implies IA,sIA = 2
w. 

Proof. Since A is analytic, there is a closed subset 

F C WW x XW such that A = TIO[F], where TI O: WW x XW 
~ XW 

is the standard projection. Put X WW and foro 
i E w ~ {a}, put x. = X. Define AI {i + 1: i E A}.

1. 

Since A TIO[F], it is clear that 

wIF,sIAI (in IT iEw Xi) = IA,sI A (in X ) 

and the claim then follows from 2.5. 
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3.	 Locally Fine Coreflections 

The -locally fine coreflection of a uniform space uX, 

written AUX, is the coarsest uniformity on X, finer than 

u, with the property that every locally uniformly uniform 

cover is uniform. For this concept, see e.g. [1], [2]. 

Much of the importance of this notion derives from its 

connection with supercompleteness [4]. The proof of the 

following result is similar to that of Corollary 3.5 in 

[ 2] • 

Lemma	 3.1. Let Y be a dense subspace of a PoZish 

W space X. If for each closed K C XW 
~ y there is a Go-set 

G C X with y C G and K ~ XW ~ GW~ then A( (]Y)w) = ](yw). 

Thus, to prove that A( (]Y) w) =] (Yw) , it is sufficient to 

show that given a closed subset K C XW 
~ yW, there is a 

countable D C X ~ Y with 

K C U 
-1{IT. [D]:
J. 

i E w}. 

Now we give the promised application of 2.3. 

Theorem 3.2. There is a non-analytic subset Y C [0,1] 

such that A ( (]y) w» = J (Yw) • 

2wProof. Let (F : a < ) be an enumeration of all a 

closed subsets of [O,l]w and let (A : a < 2w) be an 
a 

enumeration of all analytic subsets of [0,1] of 

2 wcardinality • We shall construct two sets Y,Z ~ [0,1] 

by induction on a. To begin with, let p E FO and put 

YO = {IT i (p): i E w}. Choose q E AO ~ YO and let Zo = {q}. 
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Suppose that a < 2w and that the sets YS,ZS have been 

defined for all S < a with the following properties: 

1) Y~ n Fa ~ ~ whenever IFa,rO,l] ~ Ya/w > Wi 

2) YS n Zs = ~; 

3) S' < S < a implies YS' c YS' ZS' c ZS; 

4) AS n Zs ~ ~; 

w
5) IYel,IZsl < 2 • 

If a is a limit ordinal, let Y~ = U {Y : S < a} and
S

Z~ U {ZS: S < a}. Otherwise, let Y~ = YS' Z~ = ZS' 

where a = S + 1. Now consider the set Fa. If 

IFa,[O,l] ~ Y~lw > w, then by 2.3 IFa,[O,l] ~ Y~lw 

In this case there is a point 

p E F ~ u {TI~l[z*]: i E w},
a J. a 

because z~ ~ [0, 1] ~ y~ and IZ~ I < 2w
• Put 

Y = U {TI.(p): i E w} U Y~; a 1. u. 

clearly yW n F ~~. On the other hand, if IF ,[0,1] ~ a a a 

y~lw ~ w, then there is a countable D C [0,1] ~ y~ such 

that Feu {TI~l[D]: i E w}. In this case choose 
a J. 

p E A ~ y~ (remember that IAal = 2w) and define Y = y~, a a 

Z Z* U D U {p}. This completes the inductive step.a a 
Put y 

Y is not analytic, since its complement meets every analy~~ 

tic set of uncountable cardinality. To show that y has 

the desired property, let K C [07 1]w ~ yW be closed. As 

2wyW n K = ~, and K = Fa for some a < , we have 

IK, [0,1] Y~lw < w and thus by the construction of Z there~ 

is a countable set D C Z with K C U {TI-1
[D]: i E w} •i 

Therefore, 3.1 applies to show that A(] (Y) w) =] (Yw). 
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Corollary 3.3. There is a non-analytic subset 

y C [0,1] such that A(J(y)K) = ](yK) for every cardinal 

number K. 

Proof. By 3.2 there is a non-analytic Y C [0,1] such 

that	 A(](Y)W) = ](yw). By Gleason's factorization theorem, 

as given in [5], p. 130, A(](y)K) = ](yK) for al.1 K. 
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