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REMARKS ON CLOSURE-PRESERVING
SUM THEOREMS

J. C. Smith and R. Telgarsky

1. Introduction

In 1975 Junnila and Potoczny [6] and Katuta [2] inde-
pendently showed that, if a space X has a closure-
preserving cover by compact sets, then X is metacompact.
Thus began a study of spaces which have closure-preserving
covers by "nice" (finite, countably compact, Lindelof,
etc.) sets. The reader is referred to [1,2,4,5,6,8,11,12,
l3,16,l7,18,l9,24] for these developments as well as their
relationship with winning strategies in some topological
games.

In 2 we show that if a space X has a closure-
preserving cover by nowhere dense sets, then X need not
be lSt category. However, if these sets are also countably
compact, then X must be lSt category. The closure-
preserving property of the cover is strengthened in a
natural way in 3, and a somewhat more general result is
obtained for the ideal of closed subsets of a space. The
desired result for nowhere dense sets follows as a special
application.l Finally in 4 closure-preserving sum theorems
are obtained for the dimension functions dim and Ind for

normal and totally normal spaces.

lThe authors would like to thank the referee for
his/her comments on this paper.
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Definition 1.1. (i) A family 7 of subsets of a space
X is closure-preserving (c-p) if U{F: F € 7'} = U F' for
every F' C 7.
(ii) A c-p family 7 is special if there exists a
point finite open collection { such that for F € 7,
X-F=UUE{: UNF = ¢}.

In this case we say that {/ generates 7.

Definition 1.2. A family J of closed subsets of a

space X is an ideal of closed sets if,

(1) for every finite J' C J, U J* € J and

(ii) if H is a closed set and H C J € J, then H € J.

We will denote the family of countable unions of

members of J by oJ.

Remark. As noted in [1], if ¢ is a point finite
open cover which generates a c~p J-cover, then the family
= NN J: € =
Ch {x, (nZ 1: x € X and le[ n}
consists of J-small sets, and (|, is a discrete collection
of relative closed sets in X, - ¥X,_,r where

X = {x €x: |U] <nl}.

Definition 1.3. A space X is called weakly
B-refinable if every open cover of X has an open refine-
o k) .
ment U;_; §i satisfying
. @ . . s s -
(i) {G;};_; is point finite, where G, = J§i and
(ii) for each x € X, there exists some n(x) such that

< o,

0 < ord(x,§n(x))
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A cover U:=l gi satisfying (i) and (ii) above is
called a weak B-cover.

It is well known that the class of weakly 6-refinable
spaces lies strictly between the classes of f-refinable
and weakly 6-refinable spaces (see [8]).

All spaces will be assumed to be T,-

2. Closure-preserving covers by nowhere dense sets

In this paper we consider spaces which have a closure-
preserving cover by nowhere dense sets. Note that if
Q= {rl,rz,"'} is the set of rationals and F = {ri}?=l’
then {Fi: i <w} is a closure-preserving cover of Q by
finite sets. Clearly, Q is a ISt category space.

The following example shows that if a space X has a
closure~-preserving cover by nowhere dense sets, then X
need not be of the ISt category.

Example. Let L = {0,1}”1 where {0,1} is the two
point discrete space. The topology on Y is the countable
box topology; that is, a basic open set in Y is a countable
intersection of basic open sets in thé usual product
topology. Define X = {y € Y: |a <wy: yla) # 0| < wl}.

Now if F = {x € X: x(8) =0 for each 8 > a}, it is easy
to check that {Fa= a < wl} is a closure-preserving cover
of X by discrete closed sets. Furthermore each Fa is
nowhere dense. We assert that X is not 1St category.
Indeed, let {Gn: n < w} be a sequence of open dense sub-

sets of X. Let B, be a basic open set such that B

0 €6

0 0’

and define
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Cy = {a < wy: x(a) = y(a) for all x,y € BO}.

Now by induction choose a basic open set Bn c Gn N Bn—l

and let
c, = {a < wy x(0) = y(a) for all x,y € Bn}.
Since C = ngw Cn is countable, there exists a point
N c 0N =
Z € X such that z € % Bn € % Gn and z(a) 0 for

a > supC. Therefore X is not lSt category.
The following result is an easy consequence of Zorn's

Lemma so the proof is omitted.

Lemma 2.1. Let J = {Fa: a € A} be any non-empty
family of non-empty sets. Then there exists a maximal

pairwise disjoint subfamily of 7.

Definition 2.2. Let ¢ € E C X and f a family of
subsets of X.
(1) M(E) = a maximal pairwise disjoint subfamily of
{FNE: F €JF},
(2) M*(E) = U/(E).
The following uses a technique due to Telgdrsky and

Yajima [16: Theorem 3.3].

Lemma 2.3. Let ( = {Ca: o € A} be a closure-pre-
serving cover of X by countably compact sets. If
{Hn};=l is any decreasing sequence of closed subsets of

, ,  oaw o S
X satisfying Hn+l cX M (Hn) for each n, then nh=lHn ¢.

@

n=1 of

Proof. Suppose there exists a sequence {Hn}

closed sets satisfying the above condition, but
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o

N 3 -~ e
n=lHn # ¢. Then there exists some Cao C such that

N @)} H
Cao Hn # ¢ for each n. Furthermore (Cao Hn) & M(Hn),

for otherwise, C MH Therefore for each n, there

ap n+1l = 9.

exists some C € ( such that (C NH ) €€ MH) and
a, an n n
C n(c N H ) # ¢. Now choose x_ € C n(c MNH ) so
an ag n n an aqQ n

e M* ® .
that x €M (Hn) and hence X ¢ Hoyq- Then {xn}n=l is a

sequence of distinct points in Ca and must cluster at
0
€ €ETx:ns> IrcuU en”
y Cao. Now y Xp:on o2 1} c n=lCan and y n=lHn
as well. But this is a contradiction, since

Therefore

A . .
y € (Can HHYGM(HH) implies that y £ H_ ;.

it must be the case that ﬁm_ H = ¢.
n=1"n

Remark. It should be noted that the above proof only
used the fact that every countable subfamily of C‘was

closure-preserving.

Theorem 2.4. Let X be a regular space with a closure-
preserving cover C‘by countably compact nowhere dense
sets. Then X is 15° category.

Proof. Since M*(X) is closed and nowhere dense in X,
by Lemma'Z.l above, there exists a maximal pairwise dis-
joint family A(X) of regular closed subsets of X such that
U #(X) CX - M*(X). Furthermore, it is easy to see that
U #(X) is dense in X. Define ¢, = {int(H): H € #(X)} and

Gy = ugo. Note that G, is also dense in X. Now by in-

0
duction we construct the sequence (go,co,gl,cl,'"9n,cn'°')

where

9n+l = {int(H): H € #(G) where G € §n},

Gn+l =V 9n+l and
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A(G) = a maximal pairwise disjoint family of
regular closed subsets of X such that U#(G)is dense in
G - M*(Q).
As before it is easy to see that Gn is open and dense in X.
Finally, if HO = X and Hn

= ¢. Therefore ﬂ:=OGn = ¢ and hence X is 1St

+1 € H(Hn), by Lemma 2.3,

mn=OHn
category.
Corollary 2.5. Let X be a regular countably compact

space. If 7 is a closure-preserving cover of X, then scme

member of I has non-empty interior.

3. Special c-p covers

In [1] the authors studied spaces having c-p J-covers
induced by a point finite open cover. Here we get analo-
gous results to Theorem 2.4 above by omitting the regular-
ity and countably compact conditions.

The notion of B(D,A)-refinability has been shown to
play an important role in the study of weakly B-refinable

spaces introduced in [7].

Definition 3.1. A space X is B(D,))-refinable

provided every open cover ( = (Uyz Yy €T} of X has a
refinement § = U{és = {E(B,Y):y € T¥: B < A} where satis-~
fies

(i) E(B,y) € UY for each Yy €T, B < A,

(ii) {qu: B < A} partitions X,

(iii) for each B < ), 68 is a closed discrete

collection in X - U{U éu; u < B}, and

(iv) for each 8 < 1, U{Ufu: u < B} is cleosed in X.
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In [7] the author has shown that every space which
is B(D,w)-refinable is weakly f8-refinable and that every
weakly ©-refinable space is B(D,(w)z)—refinable.

Throughout this paper A will denote a countable ordinal.

Definition 3.2, Let J be an ideal of closed subsets

of a space X. We say that J is discretely additive if

(i) J is closed under discrete unions, and
(ii) when F € ¢J and ) C J such that J is discrete

inX-F, then H=F U {U} € ¢ 7T,

Theorem 3.3. If a space X has a B(D,\) - J cover for
some countable ordinal X and J is discretely additive,
then X € oJ,

Proof. Let { = U{ész 8 < X}, where 68 = {E(B,Y):
Y €T}, be a B{(D,A) - J cover of X such that J is discretely
additive. The proof is by induction on A. It is easy
for A = 1; since J is closed under discrete unions, so
X € J. Let B < ) and assume true for all vy < 8. If

B=oa, +1, define F = U{Uéu: u < g} so that F € aJ.

0
Now 68 is discrete in X - F and 68 C J, and hence Hg =
F U {U,} €EcJ. IfB is a limit ordinal, let a; < B

such that a, < a4 and sup{ai} = B. Now for each i,

i
H, = U{éu: u < ai} € aJ, so Hp = U:___lHi € ¢J. Therefore

We now consider the ideal of closed nowhere dense

subsets of a space X.
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Lemma 3.4. Let J be the ideal of closed nowhere
dense subsets of a space X. Then J is discretely additive.

Proof. Clearly, J is closed under discrete unions.
Let F € ¢J and J = {Da: o € A} € J such that J is discrete
in X - F. Let W be any non-empty open subset of X such
that WC H =F U {UJ}., If U = int(F), then W C U; other-
wise, W N Da # ¢ for some o € A. Thus Da fails to be
nowhere dense in X. Therefore, U{(Da -U): a €AY E T;

and hence H € oJ.

Corollary 3.5. Let X be a space with B(D,A)-cover by
novhere dense sets. Then X is 15¢ category.

Proof. Let J be the ideal of closed nowhere dense
subsets of X. Then J is discretely additive by Lemma 3.4,

and hence X € ¢J by Theorem 3.3.

Corollary 3.6. If a space X has a special c-p cover

by nowhere dense sets, then X is 15t category .

4. Applications to Dimension Theory

In [24] the author obtained the following result
which also can be found using a technique similar to that

of Theorem 2.4 above.

Theorem 4.1. [24]. Let X be a normal space. If X
has a c=p cover (( by countably compact sets such that

dim(C) < n for C € (, then dim(X) < n.
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To obtain the special closure-preserving sum theorem
for covering dimension as an application of Theorem 3.6

above, we need the following result found in [24].

Lemma 4.2. Let X be a normal space and F a closed
subset of X with dim(F) < n. For each finite open cover

U= {Ui: i

in

m} of X, there exists an open refinement

Y = {Vi: i

in

m} of U, and an open set G O F such that
(1) Vi - Ui for each 1 < m, and

(ii) ord(x,Y) < n + 1 for each x € G.

Lemma 4.3. Let X be a normal space and F a closed
subset of X with dim(F) < n. Let 0 = {D,: « € A} be a
family of closed subsets of X such that

(i) dim(Da) < n for each o € A, and

(ii) D is discrete in X - F.

Then dim(F U {UJ})

| A

n.

)

Proof. Let U

{Ui: i < m} be a finite open (in X)
cover of H = F U {U)}., By Lemma 4.2 there exists an open
refinement V = {Vi: i < m} of { and an open set G 2 F such
that ord(x,l)) < n + 1 for all x € G. Now {Da - G: a € A}
is a discrete closed collection in X with dim(D,Z - G} < n
for each a € A. Therefore dim(VU J - G) < n and hence V
has a partial open refinement # = {Wi: i < m} covering
{U)-q), such that W, C Vv, and ord(x,#) < n + 1 for

x € (U)- G). Define W§ =W, U(V, - G) for i < m. It is
easy to show that W* = {W;: i < m} is an open refinement
of (/ covering H and ord(#,W*) < n + 1 for x € H. Therefore

dim(H) < n.
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We now obtain the desired c-p sum theorem for cover-

ing dimension.

Theorem 4.4. Let X be a normal space which has a
B(D,)\) cover £ such that dim(E) < n for each E € (. Then
dim(X) < n.

Proof. Let J be the ideal of closed subsets of X
such that dim(J) < n for J € J. Since covering dimension
satisfies the countable sum theorem for normal spaces,

J = 6J. Therefore J is discretely additive by Theorem 4.3
above. Now from Theorem 3.3 it follows that X € ¢J = J.

Hence dim(x) < n.

Corollary 4.5. Let X be a normal space. If X has a
special c-p cover C} such that dim(C) < n for each C € C,

then dim(X) < n.

For totally normal spaces similar results hold for
large inductive dimension using the lemma below. The
proofs are straightforward and left for the reader.
Yajima [18] has obtained a o-closure-preserving sum

theorem for Ind.

Lemma 4.6. Let X be totally normal and F a closed
subset of X such that Ind(F) < n. If Ind(K) < n for each

closed subset K of X such that K N F = ¢, then Ind(K) < n.

Theorem 4.7. Let X be a totally normal space. If
X has a special c-p cover C‘such that Ind(C) < n for C € C,

then Ind(X) < n.
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