TOPOLOGY PROCEEDINGS

Volume 13, 1988 Pages 137–160

http://topology.auburn.edu/tp/

CONTINUA ARBITRARY PRODUCTS OF WHICH DO NOT CONTAIN NONDEGENERATE HEREDITARILY INDECOMPOSABLE CONTINUA

by

MICHEL SMITH

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT (c) by Topology Proceedings. All rights reserved.

CONTINUA ARBITRARY PRODUCTS OF WHICH DO NOT CONTAIN NONDEGENERATE HEREDITARILY INDECOMPOSABLE CONTINUA

Michel Smith

Let $X = [0, \infty)$, let βX be the Stone-Cech compactification of X, and let $X^* = \beta X - X$. (See [W], [S1] for background information.) The author has shown [S2] that if κ is a cardinal then the topological product $\prod_{\alpha \in \kappa} X^*$ does not contain a nondegenerate hereditarily indecomposable continuum. This result is surprising in view of Bellamy's result [Be] which implies that every nondegenerate subcontinuum of X* contains a nondegenerate indecomposable continuum. Also in the metric case Bing [Bi] showed that every two dimensional continuum contains a nondegenerate hereditarily indecomposable continuum. Therefore every product of two nondegenerate metric continua contains a nondegenerate hereditarily indecomposable continuum.

It is the purpose of this paper to generalize the author's original result. Let X denote a locally compact σ -compact metric space. We define the property of uniformly subdecomposable and show that if compact subsets of X have this property then X* does not contain a hereditarily indecomposable continuum. Futhermore if X is a locally compact σ -compact metric space so that X* does not contain a nondegenerate hereditarily indecomposable continuum then $\prod_{\alpha \in K} X^*$ also does not contain a nondegenerate hereditarily indecomposable continuum.

Definitions and Notation

If X is a space and $H \subseteq X$ then $Cl_{y}(H)$ denotes the closure of H in X and $Bd_{\chi}(H)$ denotes the boundary of H in X. If $Y = \prod_{\alpha \in \mathcal{A}} X$ is a product space and $n \in \kappa$ then $\pi_n: Y \rightarrow X_n$ is the natural projection of Y onto the $n\frac{th}{t}$ coordinate space. The set of positive integers is denoted by N. If X is a metric space then the space βX will be identified with the space of ultrafilters of closed subsets of X [W] and the points of X will be identified with the fixed ultrafilters in βX . If 0 is open in X then $\operatorname{Rgn}_{\beta X}(0)$ denotes the open set in βX defined by $\operatorname{Rgn}_{\beta X}(0) =$ $\{u \in \beta X \mid 0 \text{ contains a set in } u\}$. The subscript βX may be omitted for notational convenience. If X is a locally compact metric space and H is a closed subset of X then the spaces H^{\star} and X^{\star} \cap $\text{Cl}_{\text{RX}}H$ are homeomorphic and are sometimes identified. If G is a collection of subsets of X so that if G' is a finite subcollection of G then some member of q is contained in $\cap G'$ then G is called a filter base of subsets of X.

If X is a space then K(X) denotes the space of compact subsets of X with the standard hyperspace topology (see [N]), and C(X) denotes the subspace of K(X) consisting of the elements of K(X) which are subcontinua of X. If X is compact (metric) then so are K(X) and C(X).

We now wish to define a general class of metric spaces whose remainders will not contain hereditarily indecomposable continua. Definition. The metric space X is uniformly subdecomposable if and only if in each closed (with respect to the Hausdorff metric) collection Z of subcontinua of X a closed collection W of subcontinua can be inscribed so that each member of Z contains a member of W and the members of W admit a decomposition into two subcontinua A(I) and B(I) so that non-empty subcompacta a(I) can be chosen in A(I) - B(I) with $a(I) \cap \bigcup \{B(J) | J \in W\} = g$ and analogous compacta b(I) can be chosen in B(I) - A(I).

Definition. Suppose that G is a set each element of which is a collection of subsets of the space X. Then let $Ls(G) = \bigcap \{Cl_{\beta X}(\cup g) | g \in G\}$. Note that $p \in Ls(G)$ if and only if $p \in \beta X$ and every open set in βX containing p intersects a set in each element of G.

The following lemma follows easily from the definition.

Lemma 1.1. If G is a set of collections of subsets of the space X then Ls(G) is closed in βX .

Assume in the following lemmas that X is a locally compact metric space.

Lemma 1.2. Suppose that K is a subcontinuum of X*, p and q are two points of K and U is an open set in X so that there is an element $H_p \in p$ and an element $H_q \in q$ so that $H_p \subset U$ and $H_q \subset X - Cl_X U$. Then $Cl_{BX}(BdU) \cap K \neq \emptyset$.

Proof. Assume $Cl_{\beta X}(BdU) \cap K = \emptyset$. Let $V = X - Cl_X U$. Then $K \subset Rgn(U) \cup Rgn(V)$ because $Cl_{\beta X}(BdU) \cap K = \emptyset$. But $p \in Rgn(U)$ and $q \in Rgn(V)$, and Rgn(U) and Rgn(V) are disjoint open sets in βX . This contradicts the connectedness of K. Lemma 1.3. Suppose that J is a set of collections of subsets of X which is a filter base and for each $j \in J$, j is a collection of continua. Suppose further that M is a collection of closed subsets of X which is a filter base such that if $j \in J$ then $\cup j$ contains an element of M, and that u is an ultrafilter in βX that extends M. Furthermore for each $j \in J$ and $H \in u$ let $f(j,H) = \{I \in j | I \cap H \neq \emptyset\}$ and let $F = \{f(j,H) | j \in J,$ $H \in u\}$. Then Ls(F) is a continuum in βX which contains u.

Proof. Assume the hypothesis of the lemma and let $j \in J$ and $H \in u$. Then there is a set $\hat{H} \in M$ so that $\hat{H} \subset \cup j$. Then $\hat{H} \cap H \neq \emptyset$ and $\hat{H} \cap H \subset \cup j$. So some element I of j intersects $\hat{H} \cap H$. So $I \in f(j,H)$. Therefore for each $j \in J$ and $H \in u$ we have $f(j,H) \neq \emptyset$.

Assume that $u \notin Ls(F)$. Then there is an open set 0 containing u and an element $f(j,H) \in F$ so that $(\cup f(j,H)) \cap 0 = \emptyset$. Since $u \in 0$ there is an element $H' \in u$ such that $H' \subset 0 \cap X$. By hypothesis there is an element $H' \in M$ so that $H' \subset \cup j$. Therefore $H \cap H' \cap H'' \in u$. But $H \cap H' \cap H'' \subset 0 \cap X$ and $H \cap H' \cap H'' \subset \cup f(j,H)$ which is a contradiction. Therefore $u \in Ls(F)$.

Suppose that Ls(F) is not a continuum. Then Ls(F) is the union of two disjoint compact sets A and B, and assume $u \in A$. Let U_A and U_B be disjoint open sets containing A and B respectively. Then Ls(F) $\subset U_A \cup U_B$. For each point $x \in \beta X - U_A \cup U_B$ there is an open set 0_x and an element $f(j_x, H_x)$ of F so that $(\cup f(j_x, H_x)) \cap 0_x = \emptyset$. Some finite subcollection 0_{x_1} , 0_{x_2} , \cdots , 0_{x_n} of $\{0_x | x \in \beta X - U_A \cup U_B\}$ covers $\beta X - U_A \cup U_B$. Let \hat{H} be an element of u with $\hat{H} \subset U_A$, let \tilde{j} be an element of J which is a subset of $j_{x_1} \cap j_{x_2} \cap \cdots \cap j_{x_n}$, and let $\tilde{H} = \hat{H} \cap H_{x_1} \cap \cdots \cap H_{x_n}$. But then $(\cup f(\tilde{j}, \tilde{H})) \cap (\bigcup_{i=1}^n 0_{x_i}) = \emptyset$ and so each element of $f(\tilde{j}, \tilde{H})$ intersects \hat{H} and cannot intersect $\bigcup_{i=1}^n 0_{x_i}$ and hence cannot intersect $\beta X - U_A \cup U_B$. Furthermore each element of $f(\tilde{j}, \tilde{H})$ is connected and intersects U_A . There-

1988

fore \cup f(j,H) \subset U_A. Therefore Ls(F) \subset U_A which is a contradiction.

Theorem 1. Let X be a locally compact o-compact space so that every compact subspace of X is uniformly subdecomposable. Then X* does not contain a nondegenerate hereditarily indecomposable continuum.

Proof. Let $K \subseteq X^*$ be a nondegenerate continuum. Let $p \in K$, U be an open set in X so that $p \in Rgn(U)$, $K \not\subseteq Cl_{\beta X}U$, and let $H \in p$ be such that $H \subseteq U$. Since X is σ -compact there exists be a sequence of compact sets H_1, H_2, \ldots with $H_i \cap H_j = \emptyset$ if $i \neq j$, $\bigcup_{i=1}^{\infty} H_i \subseteq H$, and $\bigcup_{i=1}^{\infty} H_i \in p$. Let U_1, U_2, \cdots be a sequence of open sets in X so that $H_i \subset U_i \subset Cl_X U_i \subset U$ and $Cl_X (U_i)$ is compact for all i and $Cl_X U_i \cap Cl_X U_j = \emptyset$ if $i \neq j$. Let \hat{U} denote $\bigcup_{i=1}^{\infty} U_i$ and let \hat{H} denote $\bigcup_{i=1}^{\infty} H_i$.

Let $Q = Cl_{g_X}Bd(\hat{U})$. By Lemma 2, $Q \cap K \neq \emptyset$.

Let G be the set to which the collection g belongs if and only if g is an open set in βX which contains K. If $g \in G$ then let Tg be the collection to which I belongs if and only if I is a subcontinuum of $\operatorname{Cl}_{X}(\widehat{U})$ which intersects both Q and \widehat{H} and which lies in $\operatorname{Cl}_{Y}(X \cap g)$.

Claim 1. Tg $\neq \emptyset$ for all g \in G.

Proof. Suppose $g \in G$ and $Tg = \emptyset$. Let d be an open set in βX such that $K \subseteq d \subseteq Cl_{\beta X} d \subseteq g$. Let $W = X \cap d$. Let $H' \subseteq \hat{H}$ be such that $H' \subseteq W$ and $H' \in p$. Let $H_i' = H_i \cap H'$. Then by assumption no subcontinuum of $Cl_X W \cap Cl_X U_i$ intersects both H_i' and Q. So $Cl_X W \cap Cl_X U_i$ is the union of two disjoint compact sets A_i and B_i with $H_i \subseteq A_i$ and $Q \cap (Cl_X W \cap Cl_X U_i) \subseteq B_i$. Furthermore since $BdU_i \subseteq Q$ we have $A_i \subseteq U_i$. Then $A_i \cup B_i \subseteq g$ for all i. Let U_A and U_B be disjoint open sets in X so that $Cl_X U_A \cap Cl_X U_B = \emptyset$, $\bigcup_{i=1}^{\infty} A_i \subseteq U_A \subseteq Cl_X U_A \subseteq \widehat{U}$ and

 $\begin{array}{c} \cup_{i=1}^{\infty} B_{i} \subset U_{B} \subset g. \\ \text{so } \text{cl}_{X} W \cap \text{cl}_{X} U_{i} \subset U_{A} \cup U_{B}, \text{cl}_{\beta X} (W \cap \hat{U}) \subset \text{cl}_{\beta X} U_{A} \cup \text{cl}_{\beta X} U_{B}. \end{array}$

Let K' be the closure in βX of the component of $K \cap \operatorname{Rgn}(\widehat{U})$ which contains p. By construction $\operatorname{Cl}_{\beta X} U_{A} \subset \operatorname{Rgn}(\widehat{U})$ and $\operatorname{Cl}_{\beta X} U_{A} \cap Q = \emptyset$. However $Q \cap K \subset d \subset g$ and K' must intersect $\operatorname{Bd}(d \cap \operatorname{Rgn} \widehat{U})$. But $K' \subset d$ so K' intersects $\operatorname{Bd}(\operatorname{Rgn}\widehat{U})$, hence $K' \cap Q \neq \emptyset$. By Lemma 1.2, $\operatorname{Cl}_{\beta X}(\operatorname{Bd} U_{A}) \cap K' \neq \emptyset$. Let $q \in \operatorname{Bd}_{\beta X}(\operatorname{Rgn}(U_{A})) \cap K'$. There exists $J \in q$ so that $J \subset \widehat{U}$ and $J \subset W$, so $J \subset \operatorname{Cl}_{X} \widehat{U} \cap \operatorname{Cl}_{X} W$, so $\bigcup_{i=1}^{\infty} A_{i} \cup \bigcup_{i=1}^{\infty} B_{i} \in q$, so either $J \cap (\bigcup_{i=1}^{\infty} A_{i}) \in q$ or

 $J \cap (\bigcup_{i=1}^{\infty} B_i) \in q$. In either case $q \notin Bd(Rgn(U_A))$ which is a contradiction and Claim 1 is verified.

Claim 2. {Tg $| g \in G$ } is a filter base.

Proof. Let g_1 and g_2 be elements of G and let $g \in G$ be $g_1 \cap g_2$. Then

Tg \subset Tg₁ \cap Tg₂. So the claim is easily verified by finite induction.

Claim 3. Tg is a closed subset of C(X) for all $g \in G$.

Proof. Suppose that Tg is not closed in C(X) and that I_1 , I_2 , \cdots is a sequence of elements of Tg which converges to a point $I \in C(X)$ and $I \notin Tg$. Without loss of generality we may assume that there is an integer k so that $I_n \subset Cl_X U_k$ for all n. Therefore I must also lie in $Cl_X U_k$; furthermore since $I_n \subset Cl_X (X \cap g)$ for all n we have $I \subset Cl_X (X \cap g)$. Since \hat{H} and Q are closed and $Q \cap I_n \neq \emptyset$ and $\hat{H} \cap I_n \neq \emptyset$ for all n then $I \cap \hat{H} \neq \emptyset$ and $I \cap Q \neq \emptyset$. Therefore $I \in Tg$ and so Tg is closed.

Note that since each element of Tg intersects both Q and \hat{H} it follows that each element of Tg is nondegenerate.

Let $\tilde{g} \in G$. Let $T^n = \{I \in T\tilde{g} | I \in Cl_X(U_n)\}$. Then $\tilde{Tg} = \bigcup_{n=1}^{\infty} T^n$ and $T^n \in C(Cl_XU_n)$. So by hypothesis for each n there exists a subset W^n of T^n and mappings A^n , B^n : $W^n \neq C(Cl_X(U_n))$; a^n , b^n : $W^n \neq K(Cl_X(U_n))$ which satisfy the definition of uniformly subdecomposable. Let $W = \bigcup_{n=1}^{\infty} W^n$ and let A, B: $W \neq C(X)$; a, b: $W \neq K(X)$ be defined by $A = \bigcup_{n=1}^{\infty} A^n$, $B = \bigcup_{n=1}^{\infty} B^n$, $a = \bigcup_{n=1}^{\infty} a^n$, and $b = \bigcup_{n=1}^{\infty} b^n$. These are well-defined maps since the domains of the unioned maps are disjoint compact sets.

Let S: W \rightarrow K(X) be defined by S(I) = A(I) \cap B(I). It is not difficult to verify that S is also continuous. Let $\tilde{G} = \{g \in G | g \subset \tilde{g}\}$. For each $g \in \tilde{G}$ let Wg = $\{J \in W |$ there exists I \in Tg so that J \subset I $\}$ and let Eg = $\cup\{S(J) |$ J \in Wg $\}$. Thus Eg is a closed subset of X. Let $\mathcal{E} =$ $\{Eg | g \in \tilde{G}\}$. Since $\{Tg | g \in \tilde{G}\}$ is a filter base then so is $\{Wg | g \in \tilde{G}\}$ and hence so is \mathcal{E} . Therefore there is an ultrafilter u \in X* which extends \mathcal{E} , so $\mathcal{E} \subset$ u.

For each $g \in G$ and $L \in u$ let

$$\begin{split} &\ell_{A}(g,L) = \{A(I) \mid I \in Wg \text{ and } I \cap L \neq \emptyset \} \\ &\ell_{B}(g,L) = \{B(I) \mid I \in Wg \text{ and } I \cap L \neq \emptyset \}. \end{split}$$

Claim 4. $l_{A}(g,L) \neq \emptyset$ and $l_{B}(g,L) \neq \emptyset$.

Proof. Let $g \in G$ and $L \in u$. Then since u extends Ewe have $L \cap Eg \neq \emptyset$. So there is an element $I \in Wg$ so that $S(I) \cap L \neq \emptyset$, but $S(I) \subset A(I) \subset I$, so $I \cap L \neq \emptyset$. Thus $A(I) \in \ell_A(g,L)$. So $\ell_A(g,L) \neq \emptyset$ and similarly $\ell_B(g,L) \neq \emptyset$.

Define FA = $\{\ell_{A}(g,L) | g \in \widetilde{G}, L \in u\}$ FB = $\{\ell_{B}(g,L) | g \in \widetilde{G}, L \in u$.

Then by Lemma 1.3 Ls(FA) and Ls(FB) are continua in βX which contain u.

Claim 5. Ls(FA) \subset K and Ls(FB) \subset K.

Proof. If $z \notin K$ then there is an element $g \in G$ so that $z \notin Cl_{\beta X}(g)$. Let $L \in u$. But $Ls(FA) \subseteq Cl_{\beta X}(\cup l_A(g,L)) \subseteq Cl_{\beta X}(g)$ which is a contradiction. Similarly $Ls(FB) \subseteq K$.

Let $\mathbf{a} = \mathbf{a}(\mathbf{W}) = \bigcup \{\mathbf{a}(\mathbf{I}) \mid \mathbf{I} \in \mathbf{W}\}, \text{ and}$ $\tilde{\mathbf{b}} = \mathbf{b}(\mathbf{W}) = \bigcup \{\mathbf{b}(\mathbf{I}) \mid \mathbf{I} \in \mathbf{W}\}.$

Claim 6. Ls(FA) $\cap Cl_{\beta X}(\tilde{a}) \neq \emptyset$ and Ls(FB) $\cap Cl_{\beta X}(\tilde{b}) \neq \emptyset$. *Proof.* If Ls(FA) $\cap Cl_{\beta X}(\tilde{a}) = \emptyset$ then there is a covering $0_1, 0_2, \cdots, 0_n$ of $Cl_{\beta X}\tilde{a}$ and a set of elements of FA, $\{l_A(g_i, L_i)\}_{i=1}^n$ so that

 $\{0_i\}_{i=1}^n$ covers $Cl_{\beta X}^{a}$ and

 $\begin{array}{cccc} 0_{i} & \cap & (\cup \ \ l_{A}(g_{i},L_{i})) \ = \ \ \emptyset.\\ \text{Let } \hat{g} \ = \ \ \bigcap_{i=1}^{n} \ \ g_{i} \ \ \text{and } \ \ \text{let } \hat{L} \ = \ \ \bigcap_{i=1}^{n} \ \ L_{i}. \end{array} \text{ Then }\\ \hat{l_{A}(g,L)} & \cap \ \ (\cup_{i=1}^{n} \ \ 0_{i}) \ = \ \ \emptyset \ \ \text{but this is a contradiction since}\\ \text{by the definition } \ \ \ l_{A}(\hat{g,L}) \ \ \ \ (\bigcup_{i=1}^{n} \ \ 0_{i}) \ = \ \ \emptyset \ \ \text{but this an element which intersects } \hat{a}. \ \ \ \text{Similarly } Ls(FQ) \ \ \cap \ \ \ Cl_{\beta X}(\hat{b}) \ \neq \ \ \emptyset. \end{array}$

Claim 7. Ls(FA) $\cap \operatorname{Cl}_{\beta X} \widetilde{b} = \emptyset$ and Ls(FB) $\cap \operatorname{Cl}_{\beta X} \widetilde{a} = \emptyset$. Proof. If $\ell_A(g,L) \in FA$ then $\cup \ell_A(g,L) =$ $\cup \{A(I) \mid I \in Wg\} \subset \{A(I) \mid I \in W\}$ and by condition 3 in the definition of uniformly subdecomposable we have $\widetilde{b} \cap (\cup \{A(I) \mid I \in W\}) = \emptyset$. So Ls(FA) $\cap \operatorname{Cl}_{\beta X} \widetilde{b} = \emptyset$. Similarly Ls(B) $\cap \operatorname{Cl}_{\beta X} \widetilde{a} = \emptyset$.

So Claims 5, 6, and 7 show that Ls(FP) and Ls(FQ) are two intersecting continua neither one of which is a subset

of the other. Therefore $Ls(FA) \cup Ls(FB)$ is a nondegenerate decomposable subcontinuum of K.

It is not difficult to verify that locally compact subspaces of some nice spaces such as the sin $\frac{1}{x}$ continuum, the Knaster U continuum, or a solenoid satisfy the hypothesis of Theorem 1. For example if Y is a solenoid and X is a proper subspace of Y which is locally compact and Z is a compact subset of C(X) then let W = Z and define A, B, a, and b as follows. Let Y be embedded in R³ with the standard embedding with a "clockwise" orientation assigned to it. Then for each I \in W, I is a rectifiable arc in \mathbb{R}^3 , let C_I denote the midpoint of I and let P_I and Q_I be the end points of I with $[P_I, Q_I]$ having a clockwise orientation. Then let A(I) be the arc $[P_I, C_I]$, B(I) be the arc $[C_j, Q_I]$, a(I) = $\{P_I\}$, and b(I) = $\{Q_I\}$. Then it can be seen that X is uniformly subdecomposable.

Also included among locally compact spaces which are uniformly subdecomposable are those which have finite rim type.

A theorem due to H. Cook [C] is needed for Theorem 2. Although the theorem was first proven in the metric case it is also true in the non-metric setting.

Definition. If X and Y are topological spaces and F: X + Y is a function then f is said to be confluent provided that if C is a continuum in Y then every component of $f^{-1}(C)$ is mapped onto C by f. TOPOLOGY PROCEEDINGS Volume 13 1988

Theorem C [C]. Suppose that X and Y are continua, f: $X \rightarrow Y$ is a mapping of X onto Y and Y is hereditarily indecomposable. Then f is confluent.

Definition. The space X satisfies condition C means that for each nondegenerate subcontinuum E of X we have: $L = H \cup K$ is a subcontinuum of E where H and K are proper subcontinua of L, points $P \in H - K$ and $Q \in K - H$, open sets U, R, S, and V in X, a hereditarily indecomposable continuum M, an open set D in M, and mappings h: X + M and g: X + M such that:

1) $H \subset U$ and $K \subset V$,

2) $P \in R$ and $Cl_x R \subset U - V$,

- 3) $Q \in S$ and $Cl_{x}S \subset V U$,
- 4) $h(P) \in D$ and $g(Q) \in D$,
- 5) $h^{-1}(D) \subset R \text{ and } g^{-1}(D) \subset S$,
- 6) $h(U) \cap h(S) = \emptyset$ and $g(V) \cap g(R) = \emptyset$.

Observe that if X is a nondegenerate continuum which satisfies condition C then X does not contain a nondegenerate hereditarily indecomposable continuum.

Theorem 2. Suppose that X is a compact Hausdorff space which satisfies condition C. The if κ is a cardinal, no nondegenerate subcontinuum of $\prod_{\alpha \in \kappa} X$ is hereditarily indecomposable.

Proof. Suppose that the theorem is not true and that X is a compact Hausdorff space which satisfies the hypothesis of the theorem, that $Y = \prod_{i \in J} X$ and that I is a nondegenerate 147

hereditarily indecomposable subcontinuum of Y. Let $n \in J$ be chosen so that $\pi_n(I)$ is nondegenerate. Let $E = \pi_n(I)$. Then there exists $L = H \cup K$ as described in they hypothesis and there exists points $P \in H - K$ and $Q \in K - H$, open sets U, V, R, and S in X, a hereditarily indecomposable continuum M, an open set D in M and mappings h and g satisfying conditions 1 - 6.

Let $a \in I$ be a point such that $a_n = \pi_n(a) \in H \cap K$. By Theorem $C, h|_{\pi_n(I)} \circ \pi|_I$: $I \neq M$ and $g|_{\pi_n(I)} \circ \pi|_I$: $I \neq M$ are confluent. Let $\hat{h} = h|_{\pi_n(I)}$, $\hat{g} = g|_{\pi_n(I)}$, and $\hat{\pi} = \pi_n|_I$. Let C_H denote the component of $(\hat{h} \circ \hat{\pi})^{-1}(h(H))$ that contains a and let C_K be the component of $(\hat{g} \circ \hat{\pi})^{-1}(g(K))$ that contains a.

Claim. $\hat{\pi}(C_{H}) \cap R \neq \emptyset$.

Proof. By condition 5, $h^{-1}(D) \subseteq R$ and by confluence $\hat{h} \circ \hat{\pi}(C_{H}) = \hat{h}(H)$. Since $h(P) \in D$ we have $h(H) \cap D \neq \emptyset$, so there is an element $x \in C_{H}$ so that $\hat{h} \circ \hat{\pi}(x) \in D$. But $h^{-1}(D) \subseteq R$ so $\hat{\pi}(x) \in R$.

Similarly we have $\hat{\pi}(C_K) \cap S \neq \emptyset$. Let $x_H \in C_H$ be a point so that $\hat{\pi}(x_H) \in R$ and let $x_K \in C_K$ be such that $\hat{\pi}(x_K) \in S$. Suppose $x_H \in C_K$ then $\hat{\pi}(x_H) \in \hat{\pi}(C_K)$ and since $\hat{g}(\hat{\pi}(C_K)) = g(K)$ we have $\hat{g}(\hat{\pi}(x_H)) \in g(K)$. By condition 6, $g(V) \cap g(R) = \emptyset$ and $K \subset V$. So $g(K) \cap g(R) = \emptyset$ which contradicts $\hat{\pi}(x_H) \in R$. Therefore $x_H \notin C_K$. Similarly $x_K \notin C_H$. Therefore $C_K \notin C_H$, $C_H \notin C_K$, and $C_K \cap C_H \neq \emptyset$; so $C_H \cup C_K$ is a decomposable subcontinuum of I. This establishes the theorem. We need the following lemma which was proven in [S2]. We include the proof of the lemma for completeness.

Lemma 3.1. Suppose $X = [0, \infty)$, M is a pseudo-arc in the plane and A is a piecewise linear ray disjoint from M that limits down to M, H is a nondegenerate subcontinuum of X*, P \in H and Q \in X* - H. Suppose that U, R, and S are open sets in βX so that $H \subset U$, P \in R, Q \in S, $Cl_{\beta X}R \subset U$, $Cl_{\beta X}U \cap Cl_{\beta X}S = \emptyset$. Suppose further that $p \in M$, $q \in M$, D_p and D_q are closed circular discs in the plane with p and q in their respective interiors so that no vertex of A intersects $Bd(D_p \cup D_q)$, and $D_p \cap D_q = \emptyset$. Then there exists a mapping h: X* \rightarrow M so that:

- 1. $h(P) \in D_p$,
- 2. $h(S \cap X^*) \subset D_{a}$
- 3. $h^{-1}(D_p \cap M) \subset R$, and
- 4. $h(U \cap X^*) \cap h(S \cap X^*) = \emptyset$.

Proof. Suppose that X, H. P. etc. are as in the hypothesis. We will construct a mapping h: X + A so that the extension to β X when restricted to X* will have the desired properties. Let Y denote M \cup A. Since A is piecewise linear, no vertex of A intersects Bd(D_p \cup D_q) and D_p and D_q are discs then no component of A \cap (D_p \cup D_q) is degenerate and these components can be listed in order along A. Let B₁, B₂, \cdots be the components of A \cap D_p listed in order along the ray A. Let C₁, C₂, \cdots be the components of A \cap D_q listed in order along A. Since Cl_{gX}U \cap Cl_{gX}S = Ø, there exist countable sequences $\{V_i\}_{i=1}^{\infty}$ and $\{S_i\}_{i=1}^{\infty}$ of open intervals in X so that

$$Cl_{X}(X \cap U) \subset \bigcup_{i=1}^{\infty} V_{i}, Cl_{X}(X \cap S) \subset \bigcup_{i=1}^{\infty} S_{i},$$

$$Cl_{X}(\bigcup_{i=1}^{\infty} V_{i}) \cap Cl_{X}(\bigcup_{i=1}^{\infty} S_{i}) = \emptyset, \text{ and } V_{1} < S_{1} < V_{2} < S_{2} <$$

$$along X. Let $\{V_{n_{i}}\}_{i=1}^{\infty}$ denote the subsequence of $\{V_{i}\}_{i=1}^{\infty}$

$$each element of which contains a component of $R \cap X.$

$$Without loss of generality we can assume V_{n_{1}} = V_{1}, \text{ and } B_{1} < C_{1} along A.$$

$$Let \{B_{i}\}_{i=1}^{\infty} \cup \{C_{i}\}_{i=1}^{\infty} be \text{ listed in order along } A:$$

$$B_{1}, B_{2}, \ldots, B_{a_{1}}, C_{1}, C_{2}, \ldots, C_{b_{1}}, B_{a_{1}+1}, B_{a_{1}+2}, \ldots,$$

$$B_{a_{2}}, C_{b_{1}+1}, C_{b_{1}+2}, \ldots, C_{b_{2}}, \ldots. \text{ Thus } \{a_{i}\}_{i=1}^{\infty} \text{ and }$$

$$\{b_{i}\}_{i=1}^{\infty} \text{ are increasing sequences of integers so that }$$

$$every element of $\{B_{n}\}_{n=a_{i}+1}^{a_{i}+1} \text{ follows } C_{b_{i}} \text{ and } \text{ precedes }$

$$C_{b_{i}+1} \text{ along } A \text{ and every element of } \{C_{n}\}_{n=b_{i-1}+1}^{b_{i}} \text{ follows }$$

$$B_{a_{i}} \text{ and precedes } B_{a_{i}+1} \text{ along } A. Let L_{p} \text{ and } L_{Q} be$$

$$elements of the ultrafilters P and Q respectively so that$$

$$L_{Q} \subset \bigcup_{i=1}^{\infty} S_{i}.$$$$$$$$

We wish to indroduce some notation. Let M_1 and M_2 be two closed intervals in X. Then let $[M_1, M_2]$ denote the set $\{x | y < x < z \text{ for all } y \in M_1 \text{ and } z \in M_2\} \cup M_1 \cup M_2$ and let (M_1, M_2) denote the set $\{x | y < x < z \text{ for all } y \in M_1$ and $z \in M_2\}$. Note that with this notation $[M_1, M_2]$ is a closed interval and (M_1, M_2) is an open interval in X. The sets $[M_1, M_2]$ and (M_1, M_2) are similarly defined for open intervals M_1 and M_2 in X, but in this case $[M_1, M_2]$ is h

open and (M_1, M_2) is closed in X. We use the same notation if M_1 and M_2 are intervals in A.

We will construct h: X \rightarrow A inductively. Suppose that h has been defined for all points of V $n_1 \cup (v_n, v_n)_k$

so that:

1.
$$h(S_{n}) \subset \bigcup_{i=1}^{D_{k-1}} C_{i} \text{ for } n < n_{k},$$

2.
$$h(V_{n}) \cap \bigcup_{i=1}^{\infty} C_{i} = \emptyset \text{ for } n < n_{k},$$

3.
$$h^{-1} (\bigcup_{i=1}^{a_{k-1}} B_{i}) \subset R \cap (V_{n_{1}} \cup (V_{n_{1}}, V_{n_{k}})), \text{ and}$$

4.
$$h(L_{p} \cap (V_{n_{1}} \cup (V_{n_{1}}, V_{n_{k}}))) \subset \bigcup_{i=1}^{a_{k-1}} B_{i}.$$

Now we will construct h for $[v_{n_k}, v_{n_{k+1}}]$. Notice by con-

struction that

$$(B_{a_i+1}, B_{a_i+1}) \cap D_q = \emptyset$$
 and
 $(C_{b_i+1}, C_{b_i+1}) \cap D_p = \emptyset$ for all $i \in z^+$.

Map V_{n_k} into $(C_{b_{k-1}}, C_{b_{k-1}+1})$ so that each B_i for $a_{k-1} + 1 \leq i \leq a_k$ is the image of a subset of $R \cap X \cap V_{n_k}$, $[B_{a_{k-1}+1}, B_{a_k}]$ is in the image of V_{n_k} , and if $L_p \cap V_{n_k} \neq \emptyset$ then $h(L_p \cap V_{n_k}) \subset \bigcup_{i=a_{k-1}+1}^{a_k} B_i$. Map (V_{n_k}, V_{n_k+1}) onto (B_{a_k}, B_{a_k+1}) so that $h(S_{n_k}) \subset \bigcup_{i=b_{k-1}+1}^{b_k} C_i$.

Map $V_{n_{k}+1}$ into $(C_{b_{k}}, B_{a_{k+1}})$, S_{nk}+1 into C_{bk}, V_{n_k+l into (C_{b_k},B_{a_{k+1})}} Snk^{+l} into Cbk . s_{n_{k+1}-1} into C_{b_k}. Map $V_{n_{k+1}}$ into (C_{b_k}, C_{b_k+1}) so that each B_i for $a_k + 1 \leq i \leq a_{k+1}$ is the image of a subset of $R \cap X \cap V_{n_{k+1}}$, $[B_{a_k+1}, B_{a_{k+1}}]$ lies in the image of $V_{n_{k+1}}$, n_{k+1} and if $L_p \cap V_n \neq \emptyset$ then $L_p \cap V_n$ is mapped into n_{k+1} $\bigcup_{i=a_{L}+1}^{a_{L}+1} B_{i}$. Furthermore require that: $Cl_{A}(h(V_{i})) \cap Cl_{A}(h(V_{i}))$ $Cl_{A}(h(S_{i})) = \emptyset, Cl_{A}(h(V_{i})) \cap C_{i} = \emptyset, and B_{i} \cap Cl_{A}(h(S_{i}))$ = \emptyset for all positive integers i and j. Then extend the map linearly over $[V_{n_k}, V_{n_k+1}] - \bigcup_{i=n_k}^{n_{k+1}} s_i \cup V_i$. It is not difficult to verify that h as defined above on $[V_{n_1}, V_{n_{k+1}}]$ satisfies conditions 1 - 4 with k replaced by k + 1.

Therefore by induction there exists a mapping h: X \rightarrow A so that

II:
$$h(\bigcup_{i=1}^{\infty} S_i) \subset \bigcup_{i=1}^{\infty} C_i$$

I2: $h(\bigcup_{i=1}^{\infty} V_i) \cap (\bigcup_{i=1}^{\infty} C_i) = \emptyset$
I3: $h^{-1}(\bigcup_{i=1}^{\infty} B_i) \subset (R \cap X)$

I4: $h(L_p) \subset \bigcup_{i=1}^{\infty} B_i$

Thus h extends to a mapping $\hat{h}: \beta X \rightarrow Y$ so that $\hat{h}|_{X}^{*}: X^{*} \rightarrow M$ and from the above conditions we have:

 $\texttt{J1:} \quad \hat{h}(\texttt{s} \cap \texttt{x}^{\star}) \subset \texttt{Cl}_{\texttt{Y}}(\cup_{i=1}^{\infty} \texttt{C}_{i}) \cap \texttt{M} \subset \texttt{D}_{\texttt{q}} \cap \texttt{M},$ $J2: \hat{h}(U \cap X^*) \subseteq Y - D_{q},$ J3: $\hat{h}^{-1}(D_{D}) \subseteq R$, and

$$J4: \hat{h}(L_{p}) \subset Cl_{Y}(\bigcup_{i=1}^{\infty} B_{i}) = D_{p} \cap Y$$

Conditions Jl, J2, and J4 follow easily from conditions Il, I2, and I4 respectively. Suppose that condition J3 is not satisfied. Then there exists a point $z \in \beta X$ - Rso that $\hat{h}(z) \in D_{p}$. By condition I3, $z \notin X$.

So $z \in X^*$ and then there is a closed set L in z so that $L \cap (R \cap X) = \emptyset$. But then $h(L) \cap (\bigcup_{i=1}^{\infty} B_i) = \emptyset$ so $h(L) \cap (Cl_{Y}(\bigcup_{i=1}^{\infty} B_{i})) = \emptyset$ and hence $\hat{h}(z) \notin D_{p}$ which is a contradiction. Let $g = \hat{h}|_{X}^{*}$. By condition J4, $g(P) \in D_{p}^{-}$. By condition J1, $g(S \cap X^*) \subset D_p$. By condition J3, $g^{-1}(D_{D} \cap M) \subset R$. And $g(U \cap X^{*}) \cap g(S \cap X^{*}) = \emptyset$ follows from conditions J2 and J1. Then g is the required mapping and the lemma is established.

Theorem 3. Let X be a locally compact σ -compact metric space so that X* does not contain a non-degenerate hereditarily indecomposable continuum. Then X* satisfies condition C.

154

Proof. We wish to show that X* satisfies

condition C. Let $z \in X^*$ be a point which lies in a subcontinuum E of X^{*}. Let B_1, B_2, \ldots be a sequence of open sets so that if $n \in N$,

- 1. $Cl_{X}(B_{n})$ is compact, 2. $Cl_{X}(B_{n}) \subseteq B_{n+1}$, and
- 3. $\bigcup_{n=1}^{\infty} B_n = X.$

Let $C_n = Cl_X(B_n) - B_{n-1}$ for all $n \in N$. Either $\bigcup_{n=1}^{\infty} C_{2n} \in z$ or $\bigcup_{n=1}^{\infty} C_{2n-1} \in z$. Without loss of generality let us assume that $\bigcup_{n=1}^{\infty} C_{2n} \in z$. For each $n \in N$ let $L_n \subset C_{2n-1}$ be a closed separator so that $X - L_n$ is the union of two disjoint open sets X_n^1 and X_n^2 containing $\bigcup_{i=1}^{2n-2} C_i$ and $\bigcup_{i=2n}^{\infty} C_i$ respectively. Let $D_n = X_{n+1}^1 \cap X_n^2$, thus $C_{2n} \subset D_n$. Let O_n be an open set in X containing C_{2n} such that

 $c_{2n} \subset o_n \subset cl_x o_n \subset D_n$.

Let $0 = \bigcup_{i=1}^{\infty} 0_n$ and let $\hat{0} = \operatorname{Rgn}_{\beta X}(0)$. Note that $\operatorname{Cl}_X 0_n \cap \operatorname{Cl}_X 0_m = \emptyset$ for $n \neq m$, and $\operatorname{L}_n \cap \bigcup_{i=1}^{\infty} \operatorname{CL}_X 0_i = \emptyset$ for all n. Then $z \in \hat{0}$. Let L be a decomposable subcontinuum of $\hat{0}$ which is a subset of E. Let H and K be proper subcontinua of L so that $L = H \cup K$. Let $P \in H - K$ and let $Q \in K - H$. Let U, V, R, and S be open sets in βX so that

$$H \subset U \subset Cl_{\beta X}^{u} \subset 0,$$

$$K \subset V \subset Cl_{\beta X}^{v} \subset \hat{0},$$

$$P \in R \subset Cl_{\beta X}^{R} \subset U - Cl_{\beta X}^{v}, \text{ and}$$

$$Q \in S \subset Cl_{\beta X}^{s} \subset V - Cl_{\beta X}^{u}.$$

For each $n \in N$ let

$$U_{n} = U \cap 0_{n},$$

$$V_{n} = V \cap 0_{n},$$

$$R_{n} = R \cap 0_{n}, \text{ and}$$

$$S_{n} = S \cap 0_{n}.$$

For each n \in N, let h_n be a mapping h_n : $L_n \cup D_n \cup L_{n+1} \rightarrow$ [n,n+1] so that

1.
$$h_n^{-1}(n) = L_n'$$

 $h_n^{-1}(n+1) = L_{n+1}'$ and
2. $h_n(CL_X(U_n) \cup Cl_X(V_n)) = n + \frac{1}{2}$

Let J^P ϵ P be such that $J^P \subseteq R \subseteq X$ and let J^Q ϵ Q be such that $J^Q \subseteq S \cap X$. Let $J_n^P = J^P \cap 0_n$ and $J_n^Q = J^Q \cap 0_n$ for all n \in N. If n \in N let g_n : $Cl_X V_n \rightarrow [0,1]$ be a map such that

$$g_{n}^{-1}(0) = Bd_{X}V_{n} \cup Cl_{X}(V_{n} \cap U_{n}),$$

$$g_{n}^{-1}(\frac{1}{2}) = Bd_{X}S_{n},$$

$$g_{n}^{-1}((\frac{1}{2}, 1]) = S_{n}, \text{ and}$$

$$g^{-1}(1) = J_{n}^{Q}$$

(where g is not onto whenever $S_n = \emptyset$ or $J_n^Q = \emptyset$). If $n \in N$ let $f_n: Cl_X U_n \neq [0,1]$ be a map such that:

$$f_{n}^{-1}(0) = Bd(U_{n}) \cup Cl_{X}(V_{n} \cap U_{n})$$

$$f_{n}^{-1}(\frac{1}{2}) = Bd(R_{n}),$$

$$f_{n}^{-1}((\frac{1}{2},1]) = R_{n}, \text{ and}$$

$$f_{n}^{-1}(1) = J_{n}^{P}.$$

Let
$$Z \subseteq E^2$$
 be defined as follows: $Z = \{(x,y) | y = 0$
and $x \ge 0$ or $x = n + \frac{1}{2}$ for some $n \in N$ and $-1 \le y \le 1\}$.
Let h: $X + Z$ be defined as follows:

$$h(t) = (h_n(t), 0) \text{ if } t \in L_n \cup D_n \cup L_{n+1} \text{ and } t \notin U_n \cup V_n$$
$$= (h_n(t), f_n(t)) \text{ if } t \in U_n$$
$$= (h_n(t), -g_n(t)) \text{ if } t \in V_n.$$

Since $f_n(Cl_X(U_n \cap V_n)) = g_n(Cl_X(U_n \cap V_n)) = 0$ then h: $X \neq Z$ is continuous. Note that $R \cap X = h^{-1}(\{(x,y) \in z | \frac{1}{2} < y\})$ and $S \cap X = h^{-1}(\{(x,y) \in z | y < -\frac{1}{2}\})$. Let $A = [0,\infty)$.

Let j: $Z \rightarrow A$ be defined by

$$j(x,y) = x \text{ if } y = 0$$

= n + $\frac{1}{4}$ + $(1-y)\frac{1}{4}$ if $x = n + \frac{1}{2}$ and $y \neq 0$.
Then j is continuous. Therefore j ° h: X \Rightarrow A extends to

a function F: $\beta X \rightarrow \beta A$ and since $(j \circ h)^{-1}([0,n])$ is compact, F maps X* into A*.

For each $n \in N$ let

$$U_{n}^{A} = \{ \mathbf{x} \in A \mid n + \frac{1}{16} < \mathbf{x} < n + \frac{1}{2} + \frac{1}{16} \},\$$

$$R_{n}^{A} = \{ \mathbf{x} \in A \mid n + \frac{1}{8} < \mathbf{x} < n + \frac{3}{8} \},\$$

$$V_{n}^{A} = \{ \mathbf{x} \in A \mid n - \frac{1}{16} < \mathbf{x} < n + 1 - \frac{1}{16} \},\$$

$$S_{n}^{A} = \{ \mathbf{x} \in A \mid n + \frac{5}{8} < \mathbf{x} < n + \frac{7}{8} \}.\$$

Let $\mathbf{U}^{\mathbf{A}} = \bigcup_{n=1}^{\infty} \mathbf{U}_{n}^{\mathbf{A}}$, $\mathbf{R}^{\mathbf{A}} = \bigcup_{n=1}^{\infty} \mathbf{R}_{n}^{\mathbf{A}}$, $\mathbf{V}^{\mathbf{A}} = \bigcup_{n=1}^{\infty} \mathbf{V}_{n}^{\mathbf{A}}$, $\mathbf{S}^{\mathbf{A}} = \bigcup_{n=1}^{\infty} \mathbf{S}_{n}^{\mathbf{A}}$, and $\hat{\mathbf{U}} = \mathbf{F}^{-1} (\mathbf{Rgn}_{\beta \mathbf{A}} \mathbf{U}^{\mathbf{A}})$, $\hat{\mathbf{R}} = \mathbf{F}^{-1} (\mathbf{Rgn}_{\beta \mathbf{A}} \mathbf{R}^{\mathbf{A}})$, $\hat{\mathbf{V}} = \mathbf{F}^{-1} (\mathbf{Rgn}_{\beta \mathbf{A}} \mathbf{V}^{\mathbf{A}})$ and $\hat{\mathbf{S}} = \mathbf{F}^{-1} (\mathbf{Rgn}_{\beta \mathbf{A}} \mathbf{S}^{\mathbf{A}})$.

Then \hat{U} , \hat{R} , \hat{V} , and \hat{S} satisfy properties 1 - 3 of condition C with respect to L, H, K, P, and Q.

Furthermore by Lemma 3.1 there exists a pseudo-arc M in the plane and functions α and γ with α , γ : A* \rightarrow M and a disc D in the plane so that:

i1.
$$\alpha(F(P)) \in D \cap M_A$$

i2. $\alpha(Rgn_{\beta A}(S^A) \cap A^*) \subset D$
i3. $\alpha^{-1}(D \cap M) \subset Rgn_{\beta A}(R)$
i4. $\alpha(Rgn_{\beta A}(U^A) \cap A^*) \cap \alpha(Rgn_{\beta A}(S^A) \cap A^*) = \emptyset$.
j1. $\gamma(F(Q)) \in D \cap M$
j2. $\gamma(Rgn_{\beta A}(R^A) \cap A^*) \subset D$
j3. $\gamma^{-1}(D \cap M) \subset Rgn_{\beta A}(S^A)$
j4. $\gamma(Rgn_{\beta A}(V^A) \cap A^*) \cap \gamma(Rgn_{\beta A}(R^A) \cap A^*) = \emptyset$.

Then by letting $h = \alpha \circ F$ and $g = \gamma \circ F$ conditions 4 - 6 of condition C are satisfied.

Corollary 3.1. If X is a locally compact σ -compact metric space so that X* does not contain a nondegenerate hereditarily indecomposable continuum, then if κ is a cardinal $\prod_{\alpha \in \kappa} X^*$ does not contain a nondegenerate hereditarily indecomposable continuum.

Theorem 4. Suppose that X is a continuum which satisfies condition C and Y is a continuum which does not contain a nondegenerate hereditarily indecomposable continuum. Then $X \times Y$ does not contain a nondegenerate hereditarily indecomposable continuum.

Proof. Suppose that X and Y satisfy the hypothesis and that I is a nondegenerate hereditarily indecomposable continuum which lies in $X \times Y$. Then since Y does not contain a hereditarily indecomposable continuum $\pi_1(I)$ is nondegenerate. Let π denote the projection $\pi_1: X \times Y \rightarrow X$ and let $E = \pi(I)$. Then by condition C there exists $L \subset E$ so that L is decomposable $L = H \cup K$ and there exist points $P \in H - K$ and $Q \in K - H$, open sets U, V, R, and S in X, a hereditarily indecomposable continuum M, and open set D in M, and mappings h and g satisfying 1-6 of condition C.

There is a point $a \in I$ such that $a = (a_1, a_2)$ and $a_1 = \pi(a) \in H \cap K$. From theorem C:

 $\begin{array}{c|c} \mathbf{h}_{\pi(\mathbf{I})} & \mathbf{\sigma}_{\mathbf{I}} & \mathbf{I} & \mathbf{I} & \mathbf{M} & \mathbf{M} \\ \end{array}$ $\begin{array}{c|c} \mathbf{g}_{\pi(\mathbf{I})} & \mathbf{\sigma}_{\mathbf{I}} & \mathbf{I} & \mathbf{I} & \mathbf{M} \\ \end{array}$

are confluent. Let \hat{h} , \hat{g} , and $\hat{\pi}$ denote $h|_{\pi(I)}$, $g|_{\pi(I)}$, and $\pi|_{I}$ respectively. Let C_{H} and C_{K} denote the components of $(\hat{h} \circ \hat{\pi})^{-1}(h(H))$ and $(\hat{g} \circ \hat{\pi})^{-1}(g(K))$ respectively that contain a.

By (5) of condition C, $h^{-1}(D) \subseteq R$ and by confluence we have $h \circ \pi(C_H) = \hat{h}(H)$. Since $h(P) \in D$ we have $h(H) \cap D \neq \emptyset$, so there is a point $x_H \in C_H$ so that $\hat{h} \circ \hat{\pi}(x_H) \in D$. Since $h^{-1}(D) \subseteq R$ we have $\hat{\pi}(x_H) \in R$. Similarly there is a point $x_K \in C_K$ so that $\hat{\pi}(x_K) \in S$. Suppose $x_H \in C_K$ the $\hat{\pi}(x_K) \in \hat{\pi}(C_K)$, so since $\hat{g}(\hat{\pi}(C_K)) = g(K)$ we have $\hat{g}(\hat{\pi}(x_K)) \in g(K)$. But by (6) of condition C, $g(V) \cap g(R) = \emptyset$ and $K \subseteq V$, so $g(K) \cap g(R) = \emptyset$ which contradicts the fact that $\widehat{\pi}(\mathbf{x}_{\mathrm{H}}) \in \mathbb{R}$. Therefore the assumption that $\mathbf{x}_{\mathrm{H}} \in \mathbb{C}_{\mathrm{K}}$ is false so $\mathbf{x}_{\mathrm{H}} \notin \mathbb{C}_{\mathrm{K}}$. Similarly $\mathbf{x}_{\mathrm{K}} \notin \mathbb{C}_{\mathrm{H}}$. Therefore $\mathbb{C}_{\mathrm{K}} \not \subset \mathbb{C}_{\mathrm{H}}$, $\mathbb{C}_{\mathrm{H}} \not \subset \mathbb{C}_{\mathrm{K}}$, and $\mathbb{C}_{\mathrm{H}} \cap \mathbb{C}_{\mathrm{K}} \neq \emptyset$. So $\mathbb{C}_{\mathrm{H}} \cup \mathbb{C}_{\mathrm{K}}$ is a decomposable subcontinuum of I. This establishes the theorem.

Corollary 4.1. If $A = [0, \infty)$ then $\beta A \times \beta A$ and $\beta (A \times A)$ are not homeomorphic.

Proof. The space β (A × A) contains a nondegenerate hereditarily indecomposable continuum by Theorem 7 of [S3] which is non-metric. However $\beta A \times \beta A = A \times A \cup A^* \times A \cup$ A × A* \cup A* × A* and by Theorem 4 none of these spaces contain a nondegenerate non-metric hereditarily indecomposable continuum.

Question. What conditions on the space X guarantee that X* does not contain nondegenerate hereditarily indecomposable continua for X locally compact metric.

Bibliography

- [Be] D. P. Bellamy, A non-metric indecomposable continuum, Duke Math. J. 38, (1971), 15-20.
- [Bi] R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. A.M.S. (1951), 267-273.
- [C] H. Cook, Continua which admit only the identify map onto nondegenerate subcontinua, Fund. Math. LX (1967), 241-249.
- [N] Nadler, Hyperspace of sets, Marcel Dekker, Inc., New York, NY 1978.
- [S1] M. Smith, β([0,∞)) does not contain non-degenerate hereditarily indecomposable continua, Proc. A.M.S. 101, No. 2 (1987), 377-384.

- [S2] M. Smith, No arbitrary product of $\beta([0,\infty)) [0,\infty)$ contains a nondegenerate hereditarily indecomposable continuum, Topology and its Applications, 28, (1988), 23-28.
- [S3] M. Smith, $\beta(x \{x\})$ for X locally connected, Topology and its Applications, 26 (1987), 239-250.
- [W] R. C. Walker, The Stone-Cech compactification, Springer-Verlag, New York, Heidelberg, Berlin, 1974.

Auburn University

Auburn, Alabama 36849