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SOME PROBLEMS IN APPLIED KNOT THEORY, 

AND SOME PROBLEMS IN GEOMETRIC TOPOLOGY 

D. W. Sumners 

Modern knot theory was born out of physics in the 

19th century. Gauss' considerations on inductance in 

circular wires gave rise to the "Gauss Integral," a 

formula for the linking number of two simple closed 

curves in 3-space [G]. William Thompson (Lord Kelvin) , 

upon seeing experiments performed by P. G. Tait involving 

colliding smoke rings, conceived the "vortex theory of 

atoms," in which atoms were modelled as configurations of 

knotted and linked vortex rings in the aether [Th]. In 

this context, a table of the elements was--you guessed it-­

a knot table! Tait set about constructing this knot table, 

and the rest is history [Ta]! 

Given the circumstances of its birth, it is not 

surprising that knot theory has, from time to time, been 

of use in science. One can think of 3-dimensional knot 

theory as the study of flexible graphs inR 3 , with 

emphasis on graph entanglement (knotting and linking). A 

molecule can be represented by its molecular graph--atoms 

as vertices, covalent bonds as edges. A large molecule 

can be very flexible. Such a flexible molecule does not 

usually maintain a fixed 3-dimensional configuration. It 

can assume a variety of configurations, driven from one 

to the other by thermal motion, solvent effects, 
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experimental manipulation, etc. From an initial configura­  
tion for a molecule (or set of molecules), knot theory can 

help identify all of the possible attainable configurations 

of that molecular system. It is clear that the notion of 

topological equivalence of embeddings of graphs in lR 3 is 

physically unrealistic--one cannot stretch or shrink 

molecules at will. Nevertheless, the topological defini­

tion of equivalence is, on the one hand, broad enough to 

generate a large body of mathematical knowledge, and, on 

the other hand, precise enough to place useful and com­

putable limits on the physically possible motions and 

configuration changes of molecules. For molecules which 

possess complicated molecular graphs, knot theory can 

also aid in the prediction and detection of various 

spatial isomers [Si]. As evidence for the utility of knot 

theory (and other mathematics) in chemistry and molecular 

biology, see the excellent survey articles [Wa,WC], and 

the conference proceedings [ACG,KR,L]. 

Some of the problems posed below deal with configura­

tions of random walks or self-avoiding (no self-

intersections) random walks on the integer cubic lattice 

. lR 3 • The statistics of random walks on the lattice are 

used to model configurations of linear and circular 

macromolecules. A macromolecule is a large molecule 

formed by concatenating large numbers of monomers--such as 

the synthetic polymer polyethylene and the biopolymer DNA. 

Conversion of circular polymers from one topological state 

(say unknotted and unlinked) to another (say knotted and 

~n 
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linked) can occur through the action of various agents, 

chemical or biological. Given constraints (energetic, 

spatial or temporal), linear polymers can exhibit en­

tanglement (knotting and linking). Moreover, linear 

polymers can be converted to circular polymers in various 

cyclization reactions. If one wants a random samp+.~__ o.L __ 

the configuration space of a macromolecule in_ffi3 , one can 

model the spatial configuration of a macromolecule as a 

self-avoiding random walk in R3, where the vertices 

represent the positions of carbon atoms, and adjacent 

vertices are connected by straight line segments (all the 

same length), representing covalent bonds. A discrete 

version of random walks in R3 is random walks on the 

integer cubic lattice. One studies the statistical 

mechanics of large ensembles of these random walks in 

hopes of detecting physically observable quantities (such 

as phase transition) of the physical system being modelled. 

The problems below are stated in an informal style, 

and addresses of relevant people are included when known, 

in hopes that the interested reader will contact them. 
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PROBLEMS PROPOSED BY: 

J. L. Bryant
 
Department of Mathematics
 
Florida State UnIVersity
 
Tallahassee, FL 32306
 

And 

R. C. Lacher
 
Department of Computer Science
 
Florida State University
 
Tallahassee, FL 32306
 

3Consider random walks on a cubic lattice in m that 

start with 0 < Y < n, n > 1, and end when either y = 0 or 

y n. An L-walk (R-walk) is a walk that starts with 

y 1 (y = n - 1). (Think of an L-walk or R-walk as a 

walk that starts on one of the planes y = 0 ory = nand 

takes its first step into the region between the planes.) 

An L-loop (R-loop) is an L-walk that ends with y = 0 

(y = n). Assume step probabilities are all equal to 1/6 

(pure isotropy). Given an L-walk L and an R-walk R, de­

fine the offset linking number olk{L,R) as follows: If 

each of Land R is a loop, complete it to a closed curve 

by joining its endpoints with an arbitrary path in its 

base plane, offset the lattice for R by the vector 

1 1 1(-2' -2' -2)' and define olk(L,R) to be the homological 

linking number of the resulting (disjoint) closed curves. 

Otherwise, set olk{L,R) = O. We say L links R if 

olk{L,R) ~ O. 

Problem 1. Given an L-walk L and a family n of R-walks 

with density of starts d, what is the probability Plink(n) 

that L will link a member of 'R? 
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Problem 2. Compute lim Plink(n). 
n+~ 

Problem 3. Find the expected value· Dlink(n) of the number 

of members of ~ that L links. 

Problem 4. Compute lim Dlink(n). 
n+~ 

Problem 5. Find the expected sum Wl(n) of the absolute 

values of the offset linking number of L with the members 

of ~. 

Problem 6. Compute lim Wl(n). 
n+~ 

Problem 7. Find the expected sum W (n) of the squares of
2 

the offset linking number of L with the members of ~. 

(Comment: W (n) should be easier to deal with than Wl(n).)2 

Problem 8. Compute lim w (n).
2 

n+~ 

Given an L-loop that starts at (0,1,0), define its 

reach to be its maximum y-value, its range to be its 

maximum x- or z-value, and its breadth b = range/reach. 

By analogy, define the breadth of any loop. 

Problem 9. Compute the expected value of b as a function 

of n and its asymptotics. (Comment: Simulation statis­

tics seem to indicate that b = 1.19. See [BL].) 

Represent a loop by an isosceles triangle parallel 

to the y axis having its base on the base plane for 
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the loop. Its "breadth" b = a1titude/2·base. Analogs of 

Dlink(n) and Plink(n) for these simplified loops are 

P(n)= 1 - lin - En'_-11d1,	 rr~-l , [1-2b 2d(i+j+1/2-n)2d ,].1 J=n-1	 ] 

Asymptotics for D(n)	 are given in [BL]. 

Problem 10. Compute	 lim P(n). 
n-+oo 

(Comment: We conjecture that n·(P(n) ~ O(log(n».) 

Problem 11. Show that	 lim P{n) lim Plink(n), and that 
n-+oo n-+oo 

lim D(n) lim Dlink(n). 
n-+oo n-+oo 

PROBLEMS PROPOSED BY: 

D. W. Sumners
 
Department of Mathematics
 
Florida State University
 
Tallahassee, FL 3-2306
 

There exist naturally occurring enzymes 

(topoisomerases and recornbinases) which, in order to 

mediate the vital life processes of replication, tran­

scription and recombination, manipulate cellular DNA in 

topologically interesting and nontrivial ways [we, 51]. 

These enzyme actions include promoting writhing (coiling 

up) of DNA molecules, passing one strand of DNA through 

another via an enzyme-bridged break in one of the strands, 

and breaking a pair of strands and recombining to 
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different ends. If one regards DNA as very thin string, 

these enzyme activities are the stuff of which recent 

combinatorial knot theory is made! Moreover, relatively 

new experimental techniques (rec A enhanced electron 

microscopy) [KS] make possible the unambiguous resolution 

of the DNA knots and links produced by reacting circular 

DNA with high concentrations of a purified enzyme in vitro 

(in the laboratory). The experimental protocol is to 

manufacture (by cloning techniques) artificial circular 

DNA substrate on which a particular enzyme will act. As 

experimental control variables, one has the knot type(s) 

of the substrate, and the amount of writhing (supercoiling) 

of the substrate molecules. The product of an enzyme 

reaction is an enzyme-specific family of DNA knots and 

links. The reaction products are fractionated by gel 

electrophoresis, in which the molecules migrate through a 

resistive medium (the gel) under the forcing of an elec­

tric field (electrophoresis). Molecules which are "alike" 

group together and travel together in a band through the 

gel. Gel electrophoresis can be used to discriminate 

between molecules on the basis of molecular weight. 

Given (as is the case here) that all molecules are the 

same molecular weight, it then discriminates between 

molecules on the basis of average 3-dimensional "shape". 

Following electrophoresis, the molecules are fat~ened with 

a protein (rec A) coating, to enhance resolution of 

crossovers in an electron micrograph of the molecule. In 

this manner, the knot (link) type of the various reaction 
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products is an observable. This new observational power 

makes possible the building of knot-theoretic models 

[WC,WMC,ES] for enzyme action, in which one wishes to 

extract information about enzyme mechanism from the DNA 

knots and links produced by an enzyme reaction. 

Problem 1: Build new models for enzyme action. The 

models now existing involve signed crossover number [WC], 

polynomial invariants [WMC], and 2-string'tangles [ES]. 

The situation is basically this: as input to a black box 

(the enzyme), one has a family of DNA circles (of known 

knot type and degree of supercoiling). The output of the 

black box is another family of DNA knots and links. THE 

PROBLEM: What happened inside the box? 

Problem 2: Explain gel electrophoresis experimental 

results. Gel electrophoresis is a race for molecules-­

they a~l start together, and the total distance travelled 

by a molecule when the electric field is turned off is 

determined by its gel mobility. At the finish of a gel 

run, the molecules are grouped in bands, the slowest band 

nearest the starting position, the fastest band farthest 

away. When relaxed (no supercoils) DNA circles (all the 

same molecular weight) run under certain gel conditions, 

the knotted DNA circles travel according to their cross­

over number [DS]1 What is it about crossover number (an 

artifact of 2-dimensional knot projections) that deter­

mines how fast a flexible knot moves through a resistive 
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medium? The theory of gel mobility of molecules (linear 

or circular) is rather difficult to work out. See [LZJ 

for some results on the gel mobility of unknotted circular 

molecules under pulsed field electrophoresis. 

Problem 3: What are the properties of a random knot (of 

fixed length)? Chemists have long been interested in the 

synthesis of molecules with exotic geometry; in particular, 

the synthesis of knotted and linked molecules [WaJ. One 

can imagine such a synthesis by means of a cyc1ization 

reaction (random closing) of linear chain molecules [FW]. 

Let N represent the number of repeating units in such a 

linear chain. ·A unit may represent a monomer of the sub­

stance, or the equivalent statistical length of the sub­

stance. For example, the equivalent statistical length 

for polyethylene is about 3.5 monomers, and for duplex 

DNA, about 500 base pairs. A randomly closed chain of 

length N is a random piecewise linear embedding of sl, 

with all the I-simplexes the same length. See [Rl,R2J for 

a discussion of the topology of the configuration space of 

such PL ernbeddings. In order to make predictions about 

the yield of such a cyclization reaction, one needs 

answers to the following mathematical questions [52J: 

A. For random simple closed curves of length N (as above) ,
 

what is the distribution of knot types, as a function of
 

N?
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B. What is the probability of knotting, as a function of 

N? One can show that, for simple closed curves of length 

N inscribed on the cubical lattice in R3 , the knot 

probability goes to one exponentially rapidly with N [SW]. 

PROBLEMS PROPOSED BY: 

R. F. Williams
 
Department of Mathematics
 
University of Texas
 
Austin, Texas 73713
 

~.	 EXPANSIVE VS. PSEUDO-ANOSOV 

The references here are two preprints: [H] by 

K. Hiraide, Department of Mathematics, Tokyo Metropolitan 

University, Fukasawa 2-1-1, Setagaya, Tokyo 158, Japan, 

and [Le] by Jorge Lewowicz, Instituto de Mathematica, 

Casilla de Correo 30, Montevideo, Uruguay. In [H] and 

[Le], the authors independently prove that the concepts 

"expansive" and "pseudo-Anosov" coincide for surfaces. 

A.	 What is the situation for 3-manifolds? 

B. Find a good example of a 3-manifold (such as 

53) which does not support an Anosov diffeomorphism. 

c. Prove some of the beginning lemmas of 

Lewowicz-Hiraide for 3-manifolds. 

II.	 DYNAMICAL SYSTEMS 

A. The two topics of zeta functions in dynamical 

systems	 and Alexander polynomials in knot theory are 

S 3 ° dOcase1	 1y re d see ] For ows on1ate: [M. fl ,per1o 1C 

orbits are knots; thus there should be a combination 
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such as a 2 variable polynomial, combining knot theory 

(e.g., the degree of the Alexander polynomial) and 

dynamical systems (the length of the orbit). See [BW]. 

B. Branched surfaces can support Anosov endo­

morphisrns. However, all that are known are shift equiva­

lent to linear maps on the 2-torus, such as that induced 

by the 2x2 matrix (i i)· 
Conjecture. Given an Anosov endomorphism g: K ~ K, 

there is a linear map f: T ~ T, T the 2-torus, such that 

f is shift equivalent to g. See the Northwestern thesis 

of Lan Wen, Department of Mathematics, Beijing University, 

P~. 

Definition. f: X ~ X and g: Y ~ Yare shift equiva­

lent provided that there exist maps r: X ~ Y and s: Y ~ X 

and an integer m such that rf = gr, sg 

and rs = gm. 

Definition. g: K ~ K is Anosov, provided there is 

a sub-bundle E of the tangent bundle TK, such that dg 

leave~ E invariant and contracts vectors, and such that 

the map induced on TK/E by dg expands vectors. 

C. Hassler Whitney gives an example which is dear 

to the heart of all continuum theorists that know it-­

both of us! It is a carefully constructed arc A in the 

plane and a smooth function f: A ~ Reals with grad f = 0 

(both partials are 0), yet f has different values at A's 
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endpoints. Contact Alec Norton, Boston University for 

his preprints and ideas on this subject. (Don't be 

afraid of smooth functions on manifolds. They have 

beautiful pathology and are crying out for continuum 

theorists to look at them. And they are really and truly 

easy	 to get the hang of.) 
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