
Volume 13, 1988

Pages 249–291

http://topology.auburn.edu/tp/

ON THE MAPPING CLASS GROUP OF
THE CLOSED ORIENTABLE SURFACE OF

GENUS TWO

by

Ning Lu

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



249 TOPOLOGY	 PROCEEDINGS Volume 13 1988 

ON THE MAPPING CLASS ,GROUP OF THE 

CLOSED ORIENTABLE SU'RFACE OF GENUS TWO 

NingLu 

The surface mapping class groups are involved in 

different domains of mathematics, E~specially in 3-manifold 

topology. In order to study the mapping class groups, 

choosing a convenient family of generators appears to be 

very helpful. The first finite set of generators was 

given by Lickorish [8J as a family of Dehn twists along 

some simple closed curves in the surface. Later, 

Humphries [7 J found the .mallest gE~nerating set by Dehn 

twists, which consists of 2g + 1 elements for the closed 

surface of genus g. 

The Lickorish's Dehn twist generators have been widely 

studied, since they are so nice in topology. But they 

seem hard to use directly in algebraic discussions, which 

are important in various studies in topology. So here, we 

will give first a family of generators whose algebraic 

description is straightforward, and whose topological in

terpretation is still very clear and strongly related to 

Lickorish generators. Moreover the number of generators 

is minimal. 

In this paper, we will discuss only the case when the 

genus is two, i.e., the first nont.rivial case. In the 

first section, we define some elementary homeotopy classes, 

show their topological and algebraic properties, relate 
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them to Oehn twists, and prove that the mapping class 

group M2 of the closed orientable surface F of genus two2 

is generated by two elements from those elementary classes. 

In the second section we give another proof that those 

two classes generate the group M by giving an algorithm2 , 

to write an arbitrary mapping class in those specific 

classes in a unique (not canonical) way, which certainly 

also solves the word problem for the group M2 . 

In the third section we give a simple presentation of 

the mapping class group M2 of two generators and six 

relators, by using the presentation given by Birman [IJ. 

More precisely, we have 

Theorem 3.2. The mapping cZass group M2 of the 

closed orientable surface of genus two admits a presenta

tion with two generators Land N, and six relations: 

6
N = 1, 

5(LN) = 1, 

(LN)lO = 1, 

L ~ (LN) 5, 

L ~ N3LN3 , 

L ~ N2LN4 . 

Moreover, L = 00 and N = 0001020304' where 00'01' ••• '05 

are Dehn twists along the simple closed curves 

YO,Yl, ••. ,Ys pictured in Figure 3.1, and any five of them 

form a Humphries' system of Lickorish genep~tors. 

Notationally, we do not distinguish between a homeo

morphism and its homeotopy class in the paper. 
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1.	 The Elementary Mapping Classes on the Surface ~ 

Let F
2 

= sl x 5 l #sl x sl be the closed orientable 

surface of genus two, which is embedded standardly in S3 

and bounds a handlebody H2 • 
Let 0 be a chosen point, 

called the basepoint of F and l,et B {a ,bl ,a ,b } be
2

, 1 2 2

a family of simple loops based at 0, called the basecurves 

of F2 , such that a and a are meridian, and b1 and b 2 arel 2 

longitudes of the handlebody H2 , as shown in Figure 1.1. 

Clearly the basecurves B generate the fundamental group 

TI l (F ,0) of the surface F2 . It is well-known that the2

isotopy class of a self-homeomorphism of a closed surface 

is uniquely determined by the hom,otopy classes of the 

image of the basecurves in the fundamental group of the 

surface relative to the fixed basepoint. Therefore, it 

is convenient to denote a homeotopy class f by 

f = (B)f = [[(al)f], [(bl)f], [(a2)f], [(b2)f]]. 

Figure 1.1 Basecurves B on F2 



252 Lu 

Now we will define some eZementary operations in this 

way. 

0) The identity I: F -+ F is given by2 2 

I = [a1 ,b1 ,a2 ,b2 J· 

1) An orientation-reversing mapping, called reversion 

R: F -+ F is given by2
,

2 

R = [bl ,a ,b2 ,a2 J·l 

2) The interchanging handles mapping, called transport 

T: F -+ F is given by2
,

2 

T = [a2 ,b2 ,al ,b1 J· 

Proposition 1.1 

(a) R2 I, 

(b) T2 I, 

(c) TR RT. 

It can be easily proved by a direct verification. 

3) Homeotopy classes called Zinear cuttings, are obtained 

in the following way: on the presentation polygon of the 

surface F 2 relative to the basis 8, we cut some triangle 

formed by two successive edges x and y and glue it back 

along one of the edges, e.g. along x, and get a new poly

gon. If we have a homeomorphism from the old polygon to 

the new one that maps the basepoint and the basecurves 

other than x and y invariantly, and defines a self

homeomorphism of F then, it is unique up to isotopy,2 , 

and we denote it by L(x,YiX) (Figure 1.2). 
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Figure 1.2 Linear cutting L 

More explicitly we have 

L(ai,bii a i ), L(ai,biibi ), L(bi,aiibi ), 

L(b. ,a. ia.), L(a. ,b. ia.), L(a. ,b. ib.),
11111 1 111 

where i = 1,2. 

Among these linear cuttings, 'we will denote 

L = L(a1,b1ial) and M L(bl ,a1 i b1 ), 

and ca.ll them Zongitude cutting and meridian cutting re

spectively, since they are the Dehn twists along the 

longitude and meridian circles of the first handle of H •2
Their expressions in TI 1 (F 2 ,O) are given by 

L = [a1b1,b1,a2,b2]' and M = [a1,b1a1,a2,b2]. 

Proposit'1:on 1.2 

(a) L (x2 ' Y2 i Y2) = T • L (xl ,y1 i Y1 ) • T, 

for any (x,y) E {(a,b), (b,a), (b,a), (a,b) , (a,b) ,(b,a)}. 

(b)	 L(b ,a
l i

a ) RMR E',1 l
 
L(a1 ,b ib ) RLR M,
1 1
L (a ,b i a ) R · L(a1 ,b1 i b1 ) · R1 1 1

(L(a1 , b ib )) -1 ,1 1
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(c) L(al,blibl ) = RLRL. 

These relations may be verified directly. As an 

immediate consequence, we have 

Corollary 1.3 Every linear cutting is a composition 

of the homeotopy classes L,T and R. 

4) A homeotopy class called normal cutting, 

N = N(a,oio) = N(al,b2i02/a2,oliOl)' 

is defined algebraically by 

N = [a2bl,al,alb2,a2]' 

and topologically by cutting two triangles on the presen

tation polygon, one between the edges a and b and thel 2 

other between a and b l , and sewing them along curves b l2 

and b respectively, (Figure 1.3).2 

By a similar discussion as for linear cuttings, we 

may have another normal cutting N(a,bia)·. But this is 

nothing new and is just the inverse of N by the next 

proposition. 

Propositi~n 1.4
 

6
(a) N3 T, N I, 

(b) TN NT, 

(c) (RN)2 = I, 

(d) N(a,E'ia) = RNR N, 

(e) M = RLR = NLN. 
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Figure 1.3 Normal cutting N
 

The proof is again obvious. For example, writing
 

we have 

N2 [ (b
2

a
1 

)a
1 

,b
1

a 
2

, (b
1

a
2

)a
2 

,b
2

a
1 

] 

[b2,b1a2,b1,b2a1J, 

and 

3,Therefore, N 

Remark. From the formulas 1.4. (d) and (e), we have 

that the reversion R conunutes with the subgroup generated 

by the classes Land N in the homeotopy class group M •
2 

5) The last type of homeotopy classes are called 

parallel cuttings, denoted by P(x), x E {a,b,a,b}, de

fined algebraically by 
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Pea) [bl,blalbl,b2,b2a2b2J, 

pea) [bl,b2albl,b2,bla2b2]' 

PCb) [albla2,al,a2b2al,a2]' 

PCb) [alblal,al,a2b2a2,a2]' 

and obtained by cutting the presentation polygon in three 

quadrilaterals (Figure 1.4), such that the center one con

tains the edges xl and x2 ' and gluing them along the 

curves given by xl and x2 • 

Actually, for the convenience of our future discus

sion, we will call paraZZeZ cutting the homeotopy class 

P = LML = MLM = [alblal,al,a2,b2]. 

m2 b1 

Pea) pea)
 

Figure 1.4 Parallel cuttings
 

Proposition 1.5 

(a) Pea) PTPT, 

(b) pea) NLTLT, 

(c) PCb) R . pea) R NMTMT, 
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(d) PCb) = R · Pea) · R = PTPT, 

(e) RPR = P, since RLR = M and &~R L. 

Proof. They can be proved by a direct algebraic 

verification. However, there is topological interpreta

tion hidden inside. Here we show (a) as an example to 

illustrate the tmpological aspect. 

As shown in Figure 1.5, first we do the operation 

01 = L(al,blia~L(a2,b2ia2) = LRLR · TLRLRT, 

and then do the second one 

02 = L(al,blibl)L(a2,b2iD2) RLR · TRLRT. 

Then, as shown in the figure, we have 

Pea) = 02 · 01 L(a ,D ;a )· L(a ,b ;a ) • L(a ,D ;D )1 1 1 2 2 2 1 1 1 

L(a ,b ib )
2 2 2 

L(a ,b ii ) · L(a ,b ib ) · L(i ,b i a ) •1 1 1 1 1 1 2 2 2 

L(a ,b ib )
2 2 2 

RLR · LRLR · TRl.RT . TLRLRT (RLRLRLRT) 2 

(RLMLRT) 2 = RPR'I'RPRT = PTPT, 

since RPR = P and RTR = T by the formulas (l.l.c), (1.5.e). 

All above homeotopy classes are called elementary 

operations, and among them clearly only the reversion R 

is orientation-reversing, and all others are orientation-

preserving and generated by only the operations Land N. 
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+ = 

P(a) 

Figure 1.5 P(a) = 01 • 02 

In the next part in this section, we relate these 

elementary operations to Lickorish generators of Dehn 

twists. 

Considering the surface given in Figure 1.6, the 

Lickorish generators are exactly the five Dehn twists 

along the simple curves aI' a b b and c, we denote2 , 
l

, 2 , 

them by AI' A B B and C respectively. Remembering2 , I , 2 , 

our elementary operations, and we have 

M,Al
 

A TMT,
2 

BI L, 

B2 =·TLT 

For C, write the curve c in the basecurves of B, thus 
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Therefore, 

c [a c,cbl c,ca2 ,b2 ]l 

[ala2b2a2bl,bla2b2a2bla2b2a2bl,bla2b2,b2]' 

Figure 1.6 Twist curves of Lickorish gener.tors 

and then it is not difficult to show 

C = PNLNP = NLNLNLNLNLN. 

By Lickorish's result we have that, 

Theorem 1.6 The surface mapping class group M2 is 

generated by two elements Land N, and the homeotopy class 

group M is generated by three eZements R, Land N.
2 

Finally, it is reasonable to write our generators in 

Lickorish's. 

Proposition 1.7 

(1) L A
l

, 

(2) N BIAl(AlBlCBlA1)B2A2
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Proof. Indeed, since (LN)5 I and N6 I, we have 

N N(LN)5N2 

2 2 3 3
NLN · L • NLN . N LN • N LN

BlAl(AlBlCBlAl)B2A2· 

Remark. Later in Section 3 we will give a different 

correspondence between the Lickorish generators and ours, 

which is simpler and nicer, and which is conjugate to 

that given in Proposition 1.7. 

2.	 The Algorithm for Writing Homeotopy Classes "in the Generators 

In this section we give an algorithm to write an 

aribitrary homeotopy class in the generators L, Nand R, 

which gives a direct proof of Theorem 1.6. 

Given a homeotopy class f, since exactly one of f and 

Rf is orientation-preserving, we may suppose that f is a 

mapping class. In fact, the mapping class group M is a
2 

normal subgroup of index 2 of the homeotopy group M2• 

Moreover, 

RL = MR, RM = LR and RN NR. 

As in the last section, let 

f = [ll,ml ,12,m2 ] 

be written in the basis 

B = {a ,b ,a ,b }.
l l	 2 2

i.e.	 11 = (al)f, m = (bl)f, 1 2 = (a2 )f and m2 = (b )fl 2

And suppose all curves intersect transversally. We will 

denote by #CY I n Y ) the geometric number of the2
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intersection points other than the basepoint 0 of- the 

curves Y and Y2 , andl 

#(Y n B) = #(Y 1 n al' + #(Y 1 n b 1 ) + #(Y l n a 2)1 
+ #(Y n b 2).1 

Given f an orientation-preserving self-homeomorphism 

of the surface F2 , we will denote the lexicographically 

ordered multi-index 

# (f) = (# (11 n B), # (m n B) I' # (1 n B), # (m2 n B)).l 2 

Our algorithm is based on the reduction of this multi-

index. 

Now we start our algorithm. 

Step 1. Given f, if m = #(11 n B) ~ a, there is a 

self-homeomorphism h which is a composition of elementary 

operations, such that #((ll)h-1 n B) < m. 

Suppose that 11 n B = {O,Pl, ... ,P }, and denote bym

si' a < i ~ n, the arc between the points Pi and Pi +1 of 

the curve 11' where Po = P + l = 0 by convention. Regardm

ing si as an arc in the presentation polygon with ends in 

the boundary of the polygon, we will say si of the type 

[x: y], and write si E [x: y], if one of its two end points 

is in the edge x and the other is in y, where x,y E 

{al,bl,al,ol,a2,b2,a2,o2}. (Figure 2.1). We will denote 

by #(1 n [x: y]) the number of arcs of the type [x: y].1
 
Now we consider cases.
 

Case	 O. There is an arc s. of the type [x: x], 'for 
~ 

some	 edge x. 

An isotopy of f decreases the number m. (Figure 2.2). 
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Case I. So or srn is of one of the types [a
k

: b ],
k 

[b a ] and [a b ], k = 1 or 2.k : k k : k 

Figure 2.2 Case 0 

Figure 2.3 Case I 



TOPOLOGY PROCEEDINGS Volume 13 1988 263 

Figure 2.4 Case II 

The homeomorphism h will be chosen to be a suitable 

linear cutting. For example, suppose So E Cal: blj and 

#(11 n b l ) > O. Apply h = L(al,bl;b l ), (Figure 2.3), 

and obviously after the cutting and sewing it is easy to 

see #«(11)h- 1 n B) = m - #(11 n Cal: b l ]) < m. 

Case II. There is some si of the type [ak : ak ] or 

[bk : bk ], k = 1 or 2. 

For example, si E Cal: a1 ], (Figure 2.4). Evidently, 

#(11 n b 1 ) = #(11 n [a : b ]) + #(1 n [~1: b ]).1 1 1 1 

We have always #(11 n Cal: b l ]) ~ #(11 n Cal: b l ]), since 

the endpoints of any arc of 1 are disjoint. If1 

#(11 n Cal: bl]) > #(11 n Cal: b 1 ]), let h be the linear 

cutting L(al,bl;al ). 

Clearly 

*((11lh
1 n B) rn - *(11 n a 1 ) + *(11 n h(a1 ll 

m - #(11 n al' + [#(11 n al' 

+ #(11 n b l ) - 2#(11 n Cal: bl]) 
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m + #(11 n Cal: b l ] 

#(11 n Cal: b l ]) < m. 

The other situations are exactly similar. 

Case III. Cases O~ I or II do not occur~ and there 

1 or 2. 

Thus, 

and 

#(11 n a l ) = #(11 n [bl: al ]) + #(11 n Cal: hI]). 

III-i) When #(11 n Cal: b l ]) > #(11 n [bl: a l ]). 

We choose h = L(al,blib ) and the number m is reduced.l 

And analogously, if #(1 n Cal: b ]) < #(11 n [bl: a ]) or1 l l 

#(11 n [bl: al ]) ~ #(11 n Cal: b l ]), we also may choose 

suitable linear cuttings (Figure 2.5). 

Figure 2.5 Case III-(i) 
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Figure 2.6 Case III-(ii} 

III-ii) When #(11 n [a :bl ]) = #(11 n [b l : al ])1 

#(11 n [a1 : h1 ]) = A. 

Then #~11 n all = #(11 n Bl ) = 2A. Denote by Ql' 

Q2' Q3' and Q4 the p-th and (p + l)-th points of 11 on 

the basecurves a and b as shown in Figure 2.6. This
1 l 

produces a closed curve which is a proper subset of the 

simple curve 11' showing the impossibility of this case, 

since it does not contain the basepoint. 

Case IV. There is some si of the type [ali a 2 ], 

[bl : b 2 J, Cal: i 2 J or [hI: 52 J. We let h P(a), P(b), 

P(a) or P(b), respectively, and obviously 

#«ll)h-1 n B) = m - #(11 n [xl: x 2 ]) < m, 

where x = a, b, a, or 5. (Figure 2.7). 

The remaining cases will be discussed in another way. 

Consider the starting point Po of So in the presentation 

polygon (Figure 2.8), since the standard operations T and 

R leave the intersection numbers unchanged, it is suffi

cient to consider/the cases Po A, B, and C. 
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Figure 2.7 Case IV 

A H 

B G 

c 

Figure 2.8 Presentation polygon
 

Case v. A.
Po 

V-i) When PI E aI' b2 , b 1 or a
2

, So is of the types 

in Case I. 

V-ii) When PI E b b or a is of the typesaI' 2
, 

1
, 

2 , So 

in Cases II or III. 

Case VI. B.Po 

VI-i) When b is of the typesPI E aI' 1
, aI' or ° 1 , So 

from Cases O-III. 
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VI-ii) When PI E a or b 2 , So is of the types in2 

Case IV. 

VI-iii) When P E a 2 ,1 

(a) If #(11 n [a
2 

: hI])' = 0, there is no arc crossing 

the parallel band between b 1 and b 2 . Do PCb), creating a 

situation as in Case I, without changing the intersection 

number. (Figure 2.9). 

(b) If #(11 n [a2 : hI]) = 0, (Figure 2.10). Then, 

of course #(11 n [a2 : b ]) = 0, i.e. there is no arc cross
1 

ing the band between a 1 and a2 , similarly we have Case I 

after doing P(a). 

VI-iv) When PI E h 
2

, 

(a) If #(11 n [a2 : hI]) =o. We do PCb) as in 

Case VI-(iii-a), and the situation becomes Case V, 

(Figure 2.11). 

(b) If #(11 n [a : hI]) ~ 0 and #(1 n [a : b ]) o.2 1 2 1 

Analogously, do PCb), obt~ining Case I, (Figure 2.12). 

(c) If not (a), not (b), and #(1 n [a : b J) >
1 2 2 

#(1 n [a : h J), let h = L(a ,b :b ), (Figure 2.13), and
1 2 1 2 2 2

obviously 

1
#«11)h- n B) m - #(1 n b ) + #(1 n h(b »

1 2 1 2 

m - #(11 n [a2 : b 2 ]) + 

#(11 n [a2 : hI]) < m. 

(d) If not (a), not (b), and #(11 n [a
2

: b
2 

J) ~ 

#(1 n [a : hi]). Then we have always #(1 n [a : b ]) = 0
1 2 1 1 1 

< 1 ~ #(1 n Cal: h 2 ]), let h = N(a,hib) be a normal1 

cutting, (Figure 2.14). Clearly 
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Br---...............................~~~
 

b, 

Figure 2.9 Case VI-(iii)-(a) 

Figure 2.10 Case VI-(iii)-(b) 
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Figure 2.11 Case VI-(iv)-(a) 

Figure 2.12 Case VI-(iv)-(b) 
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Figure 2.13 Case VI-(iv)-(c) 

Figure 2.14 Case VI-(iv)-(d) 

#(ll)h-
1 n 5) = m - #(11 n b ) - #(11 n b 2 ) +1


#(11 nCb1)h) + #(11 n 'Cb2 )h)
 

m - #(11 n [a1 : b ]) +2
 

#(11 n [a : b ]) 
2 2
 

#(1 n [a : b ]) < m.

1 2 1
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Case VII. P C. 

VII-i) When PI E aI' b l , a l or b l , So is in Cases 0-11. 

VlI-ii) When PI E a2 or b 2 , So is in Case IV. 

~wzzwwzu~,,~·~ 

v,,,,!~~~~b...--£21111 
8 2 

Figure 2.15 Case VII-(iii) 

VII-iii) When PI E a 2 , obviously there is no arc crossing 

the parallel band between b and b 2 • Do the parallel
1 

cutting P(b), which does not change the intersection 

number ro, and produces the situation as in Case VI-(iv), 

(Figure 2.15). 

VlI-iv) When PI E b2 , apply the reversion R to obtain 

Case VII-(iii). 

Step 2. Given f with m = #(1 n B) = 0, then there1 

exists a self-homeomorphism h which is a composition of 

elementary operations, such that (1 1 )h-1 a •
l 

By the first step, we may suppose #(11 n B) = 0, 

where 11 = (a1)f. Consider the curve 11 in the presenta

tion polygon of F We will denote by XY the arc with ends
2

. 
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at the vertices X and Y of the presentation polygon, for 

X, Y E {A,B,C,D,E,F,G,H}. 

i) If 11 AB, it is done already. 

ii) If 11 AH, let h = T P(a). 

iii) If 11 AC or AG, we may choose h to be a 

linear cutting. 

iv) If 11 = AD or AG, we may choose h to be a 

parallel cutting. 

v) Clearly 11 ~ AE, since 11 in not null

homologous. 

vi) If 11 = EX, where X = B,C,D,F,G and H, we 

do first a transport T, and the case becomes 

one of the first four cases. 

vii) If 11 BC, let h P(a). 

viii) If 11 BO, let h L(bl,alial). 

ix) If 11 BF, let h PCb) L(bl,a1ial). 

x) If 11 BG, let h PCb) • 

xi) If 11 BH, let h N. 

xii) If 11 DX, do first a reversion R, producing 

the case of 11 = BY. Denote by h' the map 

given by that case, let h = Pea) · Rh'R. 

xiii) If 11 = FX or HX, apply the transport T, 

producing the cases of 11 = BY or DY. 

xiv) If 11 = CG, let h = T · PCb) · L(a1,b1ia1). 

This completes Step 2. 
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From now on we may. suppose that 11 = (a1 ) f = a l • 

We will simplify the curve IDl = (b1)f by using the ele

mentary operations, and at the same time leave the curve 

11 unchanged. 

Step 3. Given f with (a1)f = al~ then there is a 

self-homeomorphism h which is a composition of elementary 

operations~ such that (a1 )h = a and #«(ffi1)h-1 n B) = o.
l 

Since 11' ml , 12' m2 forms a family of basecurves, 

and 11 = a l , we have 

#(m n a ) = O.l l 

So, we have fewer cases. As in the last step, we denote 

now m = #(m n B), and successively ml n B = {O,P ,P2 , ••• ,P },l l m

and si the arc on ml between Pi and Pi +l , i = O, •.• ,m, where 

Po = P +l = a by convention.m

Cases O-IV. The~e is some si belonging to one of the 

f 0 l low ing t Ypes: [ xk : x kJ, [a 2: b 2 J, [b2: a2 J, [a2: b2 J, 

[a : a J, [bk : bkJ, [a : b J, [bk : bkJ, whe~e x = a,b,a O~
2 2 2 2 

band k = 1,2. 

We can do the same operation as in Step 1, which 

leaves 11 = a l unchanged. 

The other cases will be studied by considering the 

arc sO' as we did in Step 1. 

Case V. Po A or E. 

Do the same as in Case V of Step 1. 
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Case VI. Po = F, and not Cases a-IV. We have only 

the following two possible situations. 

i) PI E b l • Then let h = PCb). 

ii) PI E bls. Then let h = N(a,b,b). 

Case VII. Po G~ and not Cases a-IV, and 

i} b • Let h P (b) • PI E l 
ii) b andPI E 

l , 

(a)	 #(rn n [a2 : b ]) < #(rn n [a2 : bl]) • Let hl 2 l
 

N(a,b;b) •
 

(b) #(rn n [a b ]) > #(rn n [a b ]). Let hl 2 : 2 l 2 : l 

L(a2,b2 ;b2)· 

(c)	 #(rnl n [a2 : b2 ]) = #(rnl n [a2 : hI]) • Apply 

L(a2 ,b2;b2} to obtain Case IV. 

Case VIII. Po = H, and not Cases a-IV, and 

i) PI E b • Apply L(al,bl;bl } to obtain Case IV.l 

ii) hI. Proceed as in Case IV.PI E 

Case	 IX. Po = B, and not Cases a-IV, and 

PI Ei) b • Let h P (b) • 2
ii) PI E a 2 • Since none of Cases O-IV occurs, then 

#(rnl n b ) #(rnl n [b2 : a ]) + #(rn n [b2 : a ])2 2 l 2
# (ffi1 n [b2 : a ] ) , 

2 

and 
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for P1 E a Therefore, we can not have
2

. 

#(m
1

n [b
2

: a ]) = #(m n [b : a ]) = #(m n [b2 : a ]).
2 1 2 2 1 2 

If either #(m n [b : ba ]) ~ #(m n [b : a ]) or
1 2 2 1 2 2 

#(m n [b : ba ]) ~ #(m n [b2 : a ]), a suitable linearl 2 2 l 2 

cutting reduces the intersection number m. 

iii) P E b The discussion is similar to what we did2 .l 

in Case VI-(iv) of Step 1, in which a was left unchanged.1 

iv) P1 E a
2 

. Evidently #(m n b ) #(m n [a2 : b ]),
1 2 1 2 

doing L(a ,b ,b )it becomes the above situation (iii).
2 2 2

Case X. Po = D, and not Cases a-IV, and 

i) P E a and
2

,
1 

(a) #(m n [a : b ]) ~ #(m n [a : b ]). Do a1 2 2 1 2 2 

linear cutting. 

(b) #(ml n [a2 : b ]) = #(m n [a2 : b ]) = ~ 2 l 2 

~*{ml n b 2l. We do first the operation 
2

h = LN LN as pictured in Figure 2.16. Clearly 

#(m n h(B» = #(m n B) - #(m n b ) - #(m n a ) +1 1 l l l 2


#(m n h(a + #(m n h(b »
l »1 1 2

= m - ~a - ~b + ~c + ~d' (*) 

since h(a2 ) = a 1 and h(b1 ) = b 2 , where we write 

~a #(ml n a 2 ), ~b = #(ml n bl)' ~c = #(ml n h(al » and 

~d #(ml n h(b 2»· If we suppose P +l = D or C, (otherm 

wise, we may consider first sm instead of sO') and denote 

~l #(ml n [bl : a 2 ]), ~2 = #(ml n [bl: a ]) and2 

~3 #(ml n [b b ]), then1 : 2 
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lJ a 

llb 

# (ml n [01 : a 2 J) + lJ l 

= E: + llb + lJ 1 
+ ll, 

e: ' + lJ l + ll2 + lJ 3 ' 

+ lJ 

llC II + 112 + 113' 

and 

where e: 

lld Ill l - ll21 + ll3' 

= #({Pl,Pm} n a 2 ) E {1,2} and e:' = #(Pm +l n C) E 

{O,l}. Therefore, the formula (*) becomes 

# (m n h (8) ) = m - (e: - e:' + 3ll l + ll2 l 

Ill l - ll2 1), (**) 

which is strictly less than m except when e: e: ' 1 and 

III = O. 

(c) When e: = e:' 1 and lJ 0, we have P +l Cl m

and Pm ~ a 2 • And 

(1) if Pm E b or a let h be the parallel cutting PCb)2 ,2 

or pea) respectively. 

(2) if Pm E b2 , then III = ll2 = 0, (Figure 2.17), and a 

discussion similar to that in Case III-(ii) of the first 

step leads to a contradiction. 

ii) PI E b 2 , and 

(a) t(ml n [a2 : hlJ) > t(ml n [a2 : b2 J). Let 

h N(a) • 

c 

Figure 2.16 Case X-(i)-(b) 
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Figure 2.17 Case X-(i)-(c)-(2) 

(b) #(rn n [a hI]) ~ #(rn n [a b 2 ]). First let1 2 : 1 2 :
 

h = L(a2 ,b2;b2), which either reduces the intersection
 

number or produces case (i) above. 

iii) Pl E a2 , and 

(a) #(rnl n [a2 : SI]) > #(rn1 n [a2 : b2 ]). Let 

h N(a). 

(b) #(rn1 n [a2 : hI]) < #(rn1 n [a2 : b 2 ]). Let 

h L(a2 ,b2 ;b2). 

Case XI. Po C. Applying L(a ,bl i b ) yields1 l 
Case x. 

Step 4. Given f with (a )f and m = # (m n B)1 = a l l 

= 0" then" there is a self-homeomorphism h which is a 

composition of elementary operations" such that (a l ) h = a

and (m l ) h 
-1 

=b •l 

The proof of this step is quite different from the 

above. It is more topological. 

1 
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First, we c6nsider two based simple closed curves 1 

and m, and we say they are cobasic, if there are other 

curves l' and m' such that the set 1, m, 1', m' forms a 

system of basecurves on the surface F •
2 

Proposition 2.3. The curves 1 and mare cobasic, 

if and onZy if 

2
F2 - {l,m} =F 2 - {a1 ,b1 } =F1 - B . 

Proof. If 1 and mare cobasic, the formula 

obviously holds. 

If F - {l,m}~ Fl - B2 , we consider its boundary2 

circle Sl which obviously may be written in a wor.d of 1 

b,
• i 

i tala~ 
I 

• j 

b, 

for some integers i l ,jl,i2 ,j2, ••• ,ik ,jk E Z. Since the 

orientable surface F2 is obtained from this surface by 

gluing along the curves 1 and m, we have that 

k k k k 
E ~ I = E b I = 2 and E i E j o. 

p=l P p=l P p=l P p=l P 
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Thus, the only possibilities $1 = lmlm and sl = lmlm 

determine the surface F and in the both cases I and m2 , 

are cobasic. Morover, for orientation-preserving homeo

morphisms, only the first one is possible, and the 

orientation-reversing operation 

RP = [al,bl,alb2al,ala2al] 

interchanges these two situations. 

By the previous proposition, this step can be done 

easily in the following way. It is enough to find ele

mentary operation h such that (a1)h = aI' and (m1)h = btl. 
We show it by listing all possible cases under the assump

tion #(m n B) = o.
l 

i) First we claim that m can not be one of the
l 

following types: AA, AB, AE, AF, AG, AH, BB, BE, BF, 

BG, BH CC, CD, CF. CG, CH, DD, DF, DG, DH, EE, EF, EG, 

EH, FF, FG, FH, GG, GH or HH, since the curve m is not
l 

null-homologous, is not homotopic to any power of aI' and 

is cobasic with a (i.e. F - m must be homeomorphic to
l 2 1 

the bounded surface in Figure 2.19. 

ii) If ml is of the type BC or DE, a small isotopic 

deformation of F 2 may turn ml into b l 

iii) If m is of the type AC, BD or CE, we need onlyl 

one more linear cutting. 

iv) If m is of the type AD, just do the parallel
l 

cutting P(b). 

Step 5. Given f wi~h (a1)f = a and (b1)f = b therel ,l 

is a setf-homeomorphism h which is a composition of 
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eZementary operations, such that (a1)h 

and (12 1 h -1 = a •
2 

Figure 2.19 F - m2 l 

Denote m #(1 n B), where 12	 2 

Case I. m > O. 

We do the same thing as in the first step to reduce 

the number m. 

I-i) If an arc of 1 in the presentation polygon is2 

of the types in Cases a-III of the first step, do the same 

operations as there. Since all possible situations in

volve only the second handle, the operations leave the 

basecurves a and b unchanged.l l 

Therefore, from now on we will suppose that Case I-(i) 

does not occur for any arc of 1 • We will denote
2
 

A #(1 n a )
a 2 2

#(1 n [b 2 : a ] ) + #([{B,C,D}: a ] ) 
2 2 2

#(1 n [b a ]) + #(1 n [b : a ]) +2	 2 : 2 2 2 2 

#([{B,C,D}: a ])
2 

and 
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Ab #(1 2
n b )

2
#(1 2 n [a2 : b J) + ~ ([{B,C,D}: b2 J)

2 
#(1 2 n [a b J) + #(1 2 n [a b J) +2 : 2 2 : 2 

#([{B,C,D}: b 2 J) , 

where #([{B,C,D}: c
2 

J) is the number of arcs of 1
2 

in the 

presentation polygon with one endpoint from the set 

{B,C,D} and the other on the edge c • Obviously2 

#([{B,C,D}: a 
2 

J) + #([{B,C,D}: b 2 J) + #([{B,C,D}: 

a2 J) + #([{B,C,D}: b
2 

J) < 2. 

The assumption m > o implies that A + Ab > O. Thus, we a 

may suppose A > 0 (or Ab > 0 similarly) . Then,a 
I-ii) if #(1 n [a : > #([{B,C,D}: a J) or2 2 ~2 J) 2 

#(1 n [a : b J) > #([{B,C,D}: b J) , a suitable linear2 2 2 2 

cutting on the second handle makes m smaller. 

I-iii) if not (ii) and #([{B,C,D}: b2 J) = 0, then 

Ab = 0, and this implies that 

A = #([{B,C,D}: a ]) 1.a 2 

C and P2 = D B 

Figure 2.20 Case I-(iii) 
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(Figure 2.20 shows two of the possible situations.) We 

will show that this is impossible. 

In fact, we consider the presentation annulus of the 

surface F bounded by the basecurves {a ,b
l 
,a }, whose one2 1 2

boundary circle is a containing one basepoint and the2 

other is alblalbla2 containing five basepoints, (Figure 

2.21). Under the given homeomorphism, for the basecurves 

{a ,b ,12,m }, the presentation annulus of F bounded by
l l 2 2 

the system {a ,b ,12} also has one boundary circle conl l 

taining .five basepoints and the other containing only 

one. 

o 

o 

In the case Po = C and P = D we have one circle2 

with four basepoints and the other with two (Figure 2.22). 

The same thing happens for the case Po = Band P2 = c. 

When Po = Band P = 0, both circles have three basepoints.2 

All these cases are impossible. When Po = P = B (or C2 

or 0, similarly), the circle boundedrby five basepoints 

is blalblal12' which can not be given by a homeomorphism 

keeping a and b fixed, (Figure 2.23).
l l 
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8, 0

ltl2 

0 

12 

b, 

0 

~b~O 
0 

b 
9 

' 
SO~O 0 

o 

b, 

~ 
"', 

0 

Figure 2.22 Case I-(iii) for Po C and P2 D 

81~ 

0 
I 

0 } 

I 

12 0
0 

0 
b1 

Figure 2.23 Case I-(iii) for Po P B2 

Figure 2.24 Case I-(iv) 



284 Lu 

I-iv) if #([{B,C,D}: b
2 

J) #([{B,C,D}: a 
2 

]) 1, 

then we have #([{B,C,D}: a
2 

J) #([{B,C,D}: b 
2 

J) O. The 

only case is when #(1 n [a : b J) ~ #(1 2 n [a : b J),2 2 2 2 2 

which can be simplified by a linear cutting. Indeed, if 

#(1 n [a : b ]) = #(1 n [a : b ]) = #(1 n [a : b J) (= 1,
2 2 2 2 2 2 2 2 2 

if not (ii», the curve 1 is homotopic to a word of a2 1 

and b (Figure 2.24), which is impossible.
l 

Case II. If m = O. An if one endpoint is one of 

B, C or D, the discussion similar to Case I-(iii) shows 

the impossibility. All remaining cases except AE, may be 

done easily by the linear cuttings. 

Step 6. Given f with f(a ) = al~ feb!) = b andl l 

f(a ) = a2~ then there exists a seZf-homeomorphism h which
2

is a composition of eZementary operations~ such that 

heal) = a h(b ) = b h(a2 ) = a and h
-1 

(f(b2 » = b 2 .l , l ,l 2 

This is the last step of the algorithm. 

i) If m = #(m n B) > 0, then one of the cases
2 

pictured in Figure 2.25(a) & (b) must occur. Their inter

section number m can be reduced by the linear cuttings 

L(a2,b2ib2) and L(a2 ,b2 ;b2 ) respectively. 

ii) If m = 0, at least one endpoint must be F, G or 

H, by considering the homotopy class of m And it is2 

sufficient to discuss when PI = H (Figure 2.26), since F 

is symmetric with H, and since the linear cutting 

L(a2 ,b2 ;b2 ) transfers the case PI = G to that of PI H. 
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(a)	 (b) 

Figure 2.25 Step 6-(i) 

(a)	 (b) 

Figure 2.26 Step 6-(ii) 

By a discussion as before, listing all possible cases of 

·p and cutting along m and gluing along b the only
2

,o 2 

cases that may happen are Po = A and Po = F, which can be 

done either by some isotopic deformation or by the linear 

cutting L(a ,b ;b }. This completes our algorithm.2	 2 2



286	 Lu 

3. A Presentation of the Mapping Class Group M
2 

The presentation of the group M
2 

first was given by
 

Birman ([lJ) in Lickorish's generators.
 

Theorem 3.1. (Birman) The mapping class group M of
2 

the closed orientable surface of genus two is presented
 

by five Dehn twists 01' 02' 03' 04 and 05 as generators,
 

and following relations:
 

(l.a) 0. ~ 0., for Ii - j I ~ 2;
1. J 

(l.b)	 0iOi+lOi = 0i+10iOi+1' for 1 < i < 4;
 
6
(l.c) (0102030405) = 1; 

(l.d) (D1D2D3D4DSOSD4D3D2D1) 
2 = 1; 

(l.e) (D1D2D3D4DSDSD4D3D2Dl) ~ Di , for i = 1,2,3,4,5. 

Where D = Bl , D2 = Al , 03 = C, 04 = A2 and DS = B2 arel
 

Dehn twists along the curves b 1 , a 1 , c, a 2 and b 2 re


spectively. 

Now we will write a simple presentation in the
 

generators Land N.
 

First we observe that, for any given mapping class f, 

we may replace the family of generators {Oil by the family 

{fDif} in Theorem 3.1. i.e., we may suppose that where 01' 

D D D and D are Dehn twists along five arbitrary
2

, 
3

, 
4 S 

curves and YS which may be identified withY1' Y2' Y3' Y4 

b c, a and b by some mapping class f (Figure 1.6) •l , aI' 2 2 

Considering r i = NiLN'i, i = 0, 1, 2, 3, 4, 5. They 

are Oehn twists along	 the curves Yi = Ni(b ), i = 0, 1, 2,l
 

3, 4, 5, which are b l , aI' b1a 2 , b 2 , a 2 and b2a as
1 
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pictured in Figure 3.1. By the observation, any five of 

them may be chosen as a family of generators in Theorem 3.1. 

Therefore, it is natural to choose that D = r - = i i l 
i-I -i-l ;N LN ,. = 1, .•• , 5, and then to substitute them in 

the formulas (l.a) - (I.e). Using this idea, a presenta

tion of M in the generators Land N will be nicely given.2 

Figure 3.1 Twist curves of r. 's 
~ 

Theorem 3.2. The~surface mapping class group M is2 

finitely presented by a family of two generators Land N, 

and six relators: 

6(2.a) N = 1, 

(2.b) (LN)5 = 1, 

(2.c) (LN)10 = 1, 

(2.d) L ~ N2LN4 , 

(2.e) L ~ N3LN3 , 

(2.f) L ~ (LN)5. 

The relations in Theorem 3.2 were certainly not easily 

found. But the proof is just a straightforward verifica

tion. As useful facts, we show some of the calculations 

below. 
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[a b 1 , a 1 , a 1b 2 , a ],2 2 

[b b b b ],
2

, 
1

a 2 , 
1

, 2a
1 

[a
2

, b
2

, a
1

, b ],
1 

[a
1

b a a
2

b a
1 

],
2

,
2

, 
1

, 

[b b b b ],
1

, 2a
1

, 
2

, 
1

a 
2 

LN [a b a a b a ],
1

a
1

, 
1

, 2 ,
2 1 2
 

(LN)2 [b b a b a b b ],

2

a
l

a
2

, 
l

a 2 , 
1

, 2a
1 1 1 1 

(LN)3 [b a b 2 , a b
1

a b 2 , a b
1

, b a ],
1 1 2 1 2 l 1 

(LN)4 [b b b b b ],
1

, 
2

a
1

, 
2

,
1

a
1 2 

LN [b b 2a l , b 2a 1 , b2 , b
l

a ],
l 2 

(LN) 
2 

[a1b2a2b2a1' a2b 2a 1 , a2b1 , a1 ], 

(LN) 3 [a1b2b1a1b1' b 2a 2b 2a 1 , a l , al b 2b l ], 

(LN) 4 [a2b2b1a2b2a2' b2albla2b2a2' b2a1b1~ a 2 ], 

(LN) 5 
[b2a2a1b2a2' a2b2bla2b2' a 2 , b 2 ], 

We will prove the theorem, after several lemmas. 

Lemma 3.3. The following relations may be obtained 

by the formulas (2.a) - (2.f): 

2,3,4, 

i -i i(b) L ~ N LN LN , for i = 1,5. 

Proof. (a) When i = 2, it is the formula (2.d). 

When i = 3, it is (2.e) . And when i = 4, we have 

N4LN2 . L N4 . L . N2LN4 . N2 , by (2.a) , 

N4 . N2LN 4 . L . N2 , by (2 .d) , 

L . N4LN2 , by (2.a) . 
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(b) This is obtained from (2.b), (2.d) and (2.e). 

Indeed, 

-2 2NLNLN N LNLNLN , by (2.b), 

(N4LN4)-l(N3LN3)-1(N2LN2)-1. 

This implies the case i = 5. The case when i = 1 is 

equivalent to that i 5, since 

LNLNLN N· NLNLN • LN. 

Lemma 3.4. The reZations (l.a) and (l.b) are conse

quences of the formuZas in Lemma 3.3. 

Proof· Since D. Ni-lLNi - l , this lemma is evident. 
~ 

Theorem 3.5. 

(a) N = DlD2D3D4DSi 

- - 5(b) DSD4D3D2Dl = N(NL) i 

(c) D1D2D3D4DSDSD4D3D2Dl = (NL)S. 

Proof· The proof is straightforward, since 

Similarly, we can easily prove the formula (b), and the 

formula (c) is just a product of the formulas (a) and (b). 

Conjugating the formula (a) by a power of N, it 

follows that, 

N riri+lri+2ri+3ri+4' 

for any i 0, 1, ••• ,5, where r 6+ r. by convention.
j J 
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Proof of Theorem 3.2. Since we have Lemma 3.3, 

Lemma 3.4 and Theorem 3.5, our relations imply those in 

the Birman1s theorem. 

In fact, the relations of (l.a) and (l.b) have been 

shown in Lemma 3.3, and (I.e) is exactly N6 = I by 

Theorem 3.5(a). Relations (l.d) and (I.e) are equivalent 

to the other two formulas since we have the formula in 

Theorem 3.5(c). As a useful fact, we give here two more 

relations: 

Proposition 3.6. 

(a) L2 = (NLNLN)4; 

(b) T * p4~ 
3 4where T N and P = LNLNL, and moreover p 

The proof is straightforward.
 

As a consequence, for the homeotopy group M we have
2 

the theorem: 

Theorem 3.7. The homeotopy group M2 is finitely 

presented by three generators: the linear cutting L, the 

normal cutting N, and the reversion R, and nine relations: 

six from Theorem 3.2 and three more 

(3.g) R2 I, 

(3.h) NR RN, 

(3.i) LR RNLN. 

An interesting observation is the following. 
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Corollary 3.8. Both the mapping class group M and2
 

the homeotopy group M are generated by some periodic
2 

elements. Actually~ the elements N, LN, and R are periodic 

of orders 6, 5, and 2 respectively. 
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