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ON THE MAPPING CLASS GROUPS OF THE
CLOSED ORIENTABLE SURFACES

Ning Lu

In the paper [8] we gave a simple presentation of two
generators for the mapping class group M2 of the closed
orientable surface of genus two, and an algorithm to write
an arbitrary mapping class in those generators. Here, we
will generalize them to higher genera, and we will show

that,

Theorem 1.3. The mapping class group Mg of the closed
orientable surface is generated by three elements L, N

and T.

Here L and N are similar to those we gave for the
genus two in [8], i.e., L is a Dehn twist along the longi-
tude of the first handle, and N is a composition of five
Dehn twists along five circles contained in the first two
handles. The generator T rotates the handles.

As applications, we will study explicitly the
abelianization Ab(Mg) of Mg, the Torelli subgroup Ig of

Mg, and the automorphism group Aut(Mg) of Mg.

1. The Elemetary Mapping Classes on the Surface Fg
Let Fg be a closed orientable surface of genus g,
g > 3. Let

B = {al,b

lrazrbz. Iaglbg}



294 Lu

be a fixed system of basecurves on Fg' based at a base-

point O, as pictured in Figure 1.1l

Figure 1.1

Notationally, we will not distinguish between a
homeomorphism and its homeotopy class. As we did for the
case of genus two, first we will list some elementary
operations which will be described by the isotopy classes
of the image of the basecurves -in the fundamental group
ﬂl(Fg;O) of the surface Fg relative to the basepoint O,
i.e., for any homotopy class f we will denote

£= B = [[(ap£], [ (b)) £], [(ay)£], [y £], ...,

(@£l [ ) £1].
And conventionally, we will write the group product as the
right action of basecurves, i.e., for any mapping classes
f and g, for any point X from the surface, the image

(X) (£ - 9) = ((X)f)g.
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0) The identity I:Fg > Fg is given by
I = [al,bl,az.bz, cee laglbg]l

i.e., it is given by an isotopy deformation of the surface.

1) An orientation-reversing mapping, which flips the
surface, called reversion R: Fg > Fg, is given by

R = [bllalrbgragr e lbzraz]-
2) An orientation-preserving mapping, which rotates the

handles, called transport T: F_ + F_, is given by

g9 g

T = [ag’bg’al'bl’""ag-l’bg—l]‘
3) Homeotopy classes Ly = 03717371 ang My = I~y L,
j=1,2,...,9, are called linear cuttings, where L and M
are the longitude cutting and the meridian cutting of the

first handle, which are given by

L

[albl'bl'az'bZ""’ag’bg]'

and M= [al,blEl,az,bz,...,ag,bg].

4) The normal cutting N: Fg - Fg, similar to what we
did in [8], is given by

N = [xazbl,al,alxbz,az,a3,b3,...,ag,bg],

8
% é %2 by
a3

Figure 1.2
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where x = [al,bl][az,bz].

Topologically, this is given

a cutting and sewing process as we draw in Figure 1.2.

Proposition 1l.1l.

(a ™ =1, R = I, T = RIR.
(b) M = RLR = NLN, RNR = TNT, TLT = N3RS,
(c) Nr = LNG, N°R = RTWOT
Proof. All formulas may be verified directly. For
example, (c), since
N = [xazbl,al,alxbz,az,a3,b3,...,ag,bg],
2 _ e e
N¢ = [xbzx,blazx,bl,bzxal,a3,b3,...,ag,bg],
3 - —_
N¥ = [xazx,xbzx,al,bl,a3,b3,...,ag,bg],
and N°® = [xalg,xbli,xazf,beE,a3,b3,...,ag,bg],

the formulas are obvious.

In fact, L leaves the curve

x = [al’bl][aZ'bz] invariant, and R reverses the curve x

-1
to ([ag.bg][al.bl]) .

5)

Finally, we denote P the parallel cutting LNLNL.

Algebraically it is given by

P = [alblal’al’az’bz’""ag’bg]'

Proposition 1.2

(a) P = LML = MIM, i.e.

® (w3 = @0 = nb,

(@) (3mILl = ptlem2),
Proof. (a)

A direct verification.

L & NLNLN.

(b) Actually,
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LN = [xazblal,al,alxbz,az,a3,b3,...],

2 = - - = - ==
(LN)© = [xb2 a,bja,x,a;bja,x,a,b;,byxa,;,a, b3,...],

a3 = [xb,&,%b,%,X3,b 3, xb,¥,Xa,b; ,b &) ,a5,bg, ... 1,

5 el — o = = = _ 6
(LN)~ = [xalx,xblx,xazx,xbzx,a3,b3,...] =N,

and

LN = [xbzblal,al,alxbz,az,a3,b3,...],

N — e - — -
(IN)© = [xbzazblal,alblazx,albl,szal,a3,b3,...],

-3 _ — - — - =
(IN)~ = [xazbzazblal,alﬁlazbzx,alblazxal,blal,a3,b3,
R
=5 = o — o —  — - -
(IN)° = [xal,blx,blalxazblal,alﬁlazﬁzazblal,a3,b3,...],
(@10 = [xa,x,xb,X,xa X,xb,X,a,,b ] = n®
l ’ l ’ 2 ’ 2 ’ 3’ 3".. .

(c) Since

3. _ - — - —
N°T = [cgclalclcg,cgclblclcg,ag,bg,az,b2,...,
ag_llbg_l]l
3y 9-1 _ g-1_ =g-1-= — g-1, —g-1=
(N~T) = [CZ"'Cgcl 8)C] TCge+:CpsCp.s.CCy b,cy Cgrr

cz,az,bz,...,ag,bg], and cz...cgc1 = 1.

Remark. For the case of genus g > 3, the normal
cutting N is no longer periodic. But the mapping class
N6 is still quite easy to deal with, since it is exactly
the Dehn twist along the null-homologous circle

X = [al,bl][az,bz].

Now we can state our main theorem.
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Theorem 1.3. The mapping class group Mg of the

closed orientable surface of genus g, g >
by three elements: the linear cutting L,

cutting N and the transport T.

In the next section, we will give an
write an arbitrary homeotopy class in our
certainly gives a direct proof of Theorem
3, we will relate them to Lickorish's set
generators; that produces another proof.

As a consequence, we have,

Theorem 1.4. The homeotopy group Mg

Pg’ g > 3, is generated by four elements:

Furthermore,
Mg*<R>

3, is generated

the normal

algorithm to
generators. It
1.3. In Section

of Dehn twist

of the surface

L, N, T and R.

M =
9 {RL = NINR, RN = TNTR, RT = TR,

2. Writing a Homeotopy Class in the Generators

Let £ be an element of the mapping class group Mg

given by the expression

f = [(al)fr (bl)fr (az)fl (bz)f'---l (ag)fl (bg)f]-

We are going to find an algorithm to write £ in the

generators introduced in the last section

existence of such an algorithm for genera

by assuming the

less than g.

At first, we need two special kinds of mapping

classes:

a) The handle crossing X, (Figure 2.1), given by

X = [claz,bz,b a,b,,b_b.b a3,b3,...],

27172727172
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is obtained by sliding the whole first handle along the

longitude circle b2 of the second handle. And

NANS Y

Figure 2.1

b) the handle switehings wj’ j=1,2,...,9, (Figure

2.2), given by

= pi=1y3m3-1 _ z z
wj = T °N°T = [""aj-l'bj-l’xaj+1x’ij+lx’

aj.bj,aj+2,bj+2,---],

where x

[aj ’bj ][aj""l'bj"’l]'

By a direct verification, it is easy to show that,
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(3 + 1)-th handle j-th handle

Figure 2.2

Proposition 2.1. The handle crossing and the handle
switchings are generated by the elements L, N and T.
Moreover,

x = (F)° (D) °%°,
and

vy = eI I397L 5 2 1,2,...,0.

The parallel cutting P2 = TLNLNLT maps the circle
b, to 52. Then, the mapping class fziPz is obtained by
sliding the whole first handle along the meridian circle

a, of the second handle. Since we may switch the second
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handle with any other handles by mapping classes wj, the
mapping classes obtained by sliding the whole first
handle along some basecurve of B - {al,bl} are generated

by L, N and T. Therefore,

Proposition 2.2. The mapping classes obtained by
sliding the whole first handle along a closed curve in

the surface F - (al V) bl) are generated by L, N and T.
Now we can start to show our algorithm.

Step I. 1If for some 1 < i <g, (a;)f = a; and
(bi)f = bi' then f is generated by L, N and T.
Composing the handle switchings, we may let i = g.

Since (ag)f = a_and (bg)f = bg, we assume that the re-

g
striction of f in the last handle is the identity map, in

particular f leaves the waist curve c_ = [ag,bg] fixed.

g
Thus, letting F' be a closed surface of genus g - 1 ob-
tained by cutting off the last handle of F along the
circle cq and filling by some disk D so that 3D = cg, the
mapping class f induces a unique mapping class f' of Mg_1
of the surface F', which will be called the restriction

of £ in F'. Clearly,

Proposition 2.3. Let fl and f2 be two elements of
Mg’ such that both leave the waist curve cg = [ag,bg]
fixed. Then, their composition flf2 also leaves cg fized,
and the restriction of their composition in F' is equal to
the composition of their restrictions in F', Z.e.

(flfz)' = fifé.
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Denote by (97D (971 4ng 0971 pe elementary

generators of the group Mg-l’ it is obvious that,

(97D o v, x0971) o yr, ang o097 - W D).
Thus, by induction f' can be written as a word in them,
i.e.,

f' = F'(L',N',(q)gT)').
Let's define

% = F'(L,N,q)gT).
Clearly, it is an element of Mg generated by L, N and T,
and its restriction in F' is equal to that of £, i.e.

Ly oot oy,

£ = £ by Proposition 2.3. Since (££”
we may consider fg_l instead of £, or equivalently, we
may assume f' = 1 from now on.

Let f be a self-homeomorphism of F, such that
(ag)f = ag, (bg)f = bg and £f' = 1, i.e. its restriction in
the last handle is the identity map, and its restriction
in F' - D extends to some f' which is isotopic to the
identity map in F'. 1If the isotopy between f' and the
identity map leaves the disk D fixed, then the map £
itself must be isotopic to the identity map of F. 1In
general, the isotopy of f£' can be decomposed into two
operations. One is to slide the disk D around some
closed curve vy in FP' - D, and the other is to do some Dehn
twists along the boundary of D. Thus f is obtained from
the identity map of F by sliding the last handle along the

same curve y in the inverse way, and by doing some Dehn

twists along the waist circle cg = [ag,bg] of the last
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handle. The first one is generated by the elementary
generators L, N and T according to Proposition 2.2. And
so is the second one, since the Dehn twist along cg has
the following expression:

=4

TP'T T(LNLN)GT =

1]

= [al’bl""'ag-l’bg-l’c 34%q,¢ 1.

949 gngg
Step II. 1If for some 1 < i, j < g, (ai U bi) N
((aj)f U (bj)f) = f, then f is generated by L, N and T.
Indeed, we may assume i = j = 1 by composing the
transport T. Since (a; Ub,) N ((a;)f U (by)f) = g, we
may construct a system of basecurves
B' = {al,bl,(al)f,(bl)f,aé,bi,...,aé,bé} ’
for some suitable circles aé,bé,...,aé,bé. Since between
any two systems of base curves B and B' there always
exists a unique mapping class h such that (B)h = B',
among the systems B, B' and (B)f of basecurves we have two

mapping classes fl and f, such that (B)fl = B' and

2
(B')f, = (B)f, furthermore f = £,£,.
Since (al)fl = a; and (bl)fl = bl' by Step I, the

mapping class fl is generated by L, N and T. Since

(ay) (W £5£5) = (a)£,8, = ((2)6) £y a,
and (bz)(wlfzfl) = (bl)fzfl = ((bl)f)fl = b2

again by Step I, the mapping class Wlfzfl is generated by
L, N and T. Thus also the mapping class f2 is generated

by L, N and T by Proposition 2.1. Then clearly the

mapping class f = flf2 is too.



304 Lu

Step III. For any self-homeomorphism f of F, there
is a self-homeomorphism h whose mapping class is generated
by L, N and T, such that

(al U bl) n ((al)fh U (bl)fh) = g.

Denote by m, the number of arc components of the
circle (al)f located in the first handle, and denote by
my the number of arc components of the circle (bl)f loca-
ted in the first handle. First let y = (al)f, thus the
intersection number between the circles y and ¢y = [al,bl]
is equal to 2ma. Suppose m, > 0. Let Yo T YlOP be an arc
starting from O and ending at P in y N cy- Let Y, = Y|PQ
denote the arc of y from the point P to the next point Q

of y N¢ (where Q = O when m, = 1). And let c c

ll
be the three arc components of c

10’ "11

and c - {o,P,Q} start-

12 1
ing at O, P and Q and ending at P, Q and O respectively,

(where €y = g when m, = 1), (Figure 2.3).

Considering the circle § = ¢ 1r we choose arbi-

117
trarily a self-homeomorphism hl of F which leaves the
first handle fixed and has the property that (6)h1 N

(ag U bg) = @g. In fact, if § is not null-homologous we
may choose h1 so that (6)h1 = a, since g > 3, if § is
null-homologous we may choose hl so that (G)h1 = CyCy...Cpy
where k < g is the genus of the component F - § which

contains the first handle and ¢y = [aj,bj] for j = 1,...,k.

By Step I, h1 is generated by L, N and T.
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(b) m_ > 1

Figure 2.3

If m, = 1, we have either (Y)hl = a'a2 when § is not

null-homologous, or (y)hl = a'clcz...ck otherwise, where

a' is some word in a; and bl and k < g. Hence (Y)h1 N

(ag U bg) = @ for g > 3. Therefore, there is some self-

homeomorphism h2 of F which leaves the last handle (a ,bg)

fixed so that
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(Y)(hlhz) = ((Y)hl)h2 = a4.
By Step I, h2 is generated by L, N and T. Thus, we have

reduced to the case m, = 0.

If m, > 1, let c¢' be a circle whose homotopy class

is equal to €10Y1S12Y0C11Y1Yo @S pictured in Figure 2.4.

Figure 2.4

Thus, we have the following properties: (c')hl N (ag U bg)
= @, c' is null-homologous, c' separates the surface F in
two components, the component that does not contain the
last handle has genus one, the cardinality of the set

c' N y is less than Zma, and moreover if the intersection
point (@)} n (bl)f is not contained in the arc YlOQ = YY1
the cardinality of the set c' N (bl)f remains unchanged.
Therefore, there exists a self-homeomorphism h2 of F, which
leaves the last handle so that

(CI)(hlhz) = ((C')hl)hz = cl.
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By Step I, the mapping class of h2 is generated by L, N
and T. Instead of f we are going to study fhlhz' and
clearly the cardinality of the set (al)fhlh2 N ¢ is the
same as the set (al)f N ¢', which is less than Zma.

If m, = 0 and my > 1, we may do the same process by
taking y = f(bl) as we did for m, > 1. Since m, > 1, i.e.
there is more than one component of y in the first handle,
we may choose the points O, P and Q such that the inter-
section point (a;)f N (b)) £ is not located in YlOQ' As

we mentioned before, the number m, = 0 remains unchanged.

If m, = 0 and m, = l, and if (al)f is contained in
the first handle, we may let y = (bl)f and construct the
same h; as we did before. Since y; = YIPQ must be the
only part of the set (al v bl)f outside of the first
handle, we have ((al V] bl)f)hl N (ag V) bg) = g. Therefore

fhl is generated by L, N and T by Step II.

If ma = 0 and mb =1, and if (al)f is not contained
in the first handle, let y = (bl)f and construct the same
circle § as we did before. Then § intersects (al)f
transversally at one point. Thus, § is not null-
homologous, and we may choose h1 such that (G)hl = a, and

((a;)£)hy

b2' Again, we have ((a1 U.bl)f)h1 &l (ag U bg)
= @ since g > 3. Therefore fhl is generated by L, N and

T by Step II.

Finally, if m, =m = 0, we may apply Step II

directly.
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3. Relation with Lickorish’s Generators

Lickorish [7] found a finite set of generators of the
mapping class group Mg' which are Dehn twists along the
simple closed curves ai's, bi's and zi's, i=1,2,...,9,
as pictured in Figure 3.1. They will be denoted by Ai's,
Bi's and Zi's respectively. Humphries [6] reduced the set
of generators to only 2g+l of them. They are related

to our generators L, N and T in the following way:

Figure 3.1 Lickorish's generators

Theorem 3.1.

(a) A, = Tl—lMTl-l, where M = NLN,
(b) B, = ri-lpgFi-l,
(c) 3z, = 127"l yhere z = WONLNLM,

for i =1,2,...,9.
Proof. The only expression we need to prove is the
last one Z1 = 2. Indeed,

zy = [alzl,zlblzl,zlaz,bz,a3,b3,...],
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1= a2b2a2b1‘ And

MLNLNLM = MLNLN - [alblal,blal,az,bz,...]

where 2z

Z

lbl,bzxalblal,bz,xalslaz,...],

]

MINL - [a

x = [a;,by][a,,b,]

MIN - [alblbzczbl,bzczbl,bz,xalb a2,...],

c, = [az,bz].

ML - [c;b,y,b czbzblal,blazbz,bz,...],

c; = [al’bl]'

= [a,b,c.,b,,b,c,b,b.b.,c.,b,,b,a.b b2...] = 2.

1727271717272 717272 1717272
Reciprocally, we also may write L, N and T in

Lickorish's Dehn twists.

Theorem 3.2.

(a) L =B

ll
(b) N = Al ' Bl BlAlZlAlBl A2 B2,
_ =4.3=4 3 =4 3 4
(¢) T = PINIPN;...Bo_No_ Pg
_ s4(g9-2),3,.3 3
=P NNy. . Ny
where
_ il _mzi-1 _ _
Pl T PT A BiAi = BiAiBi,
and
_ omi=l. . i-1 _ . . A.B. -
Ni =T NT = Ai Bi BiAiziAiBi Ai+l
for i =1,2,...,9.
Proof. (a) It is obvious.
(b) Since (LN)5 = NG, we have
N=NIN * L - NLN - N°LN? - N°LES

Therefore, the formula is immediate.

309

i+l’



(c) Since

P° = [clalcl,clblcl,az,bz,aB,b3,...],

PN- = [clazcl,clbzcl,al,bl,a3,b3,...],

3 3

and since P,NY = NI P the formula is easy. 1Indeed,

i+l’
this is a consequence of the formulas (l.l.a) T = 1 and

(1.2.c) (N?’T)g'l _ P4(g-2).

A new presentation of the mapping class group Mg can
be found by plugging our generators into the presentation
given by Hatcher-Thurston [5] and Wajnryb [11]. Now we

recall their result.

Theorem 3.3. ([51]1 & [11]) The mapping class group
Mg has a presentation with 2g+l generators AjsBAyseen,

A 'Bl’BZ’zl’ZZ""’Z -1’ and the following relations:

g9 g

(a) (1) AiAj = Ain, (2) BiBj = BjBi' (3) ZiZj = iji'
(4) AB; =BA;, if § #4, (5) A;BjA; = BAB,,
(6) A;Z; = ZA;, if 3 #i,i- 1,
(1) Az A, = Z,A;25, if § = i,0+1
(8) Bizj = ZjBi’ for all i,3 = 1,2,....

4 _ 2
(B) (BlAlzl) = BZAZZlAlBlAlZlAZBZAZZlAlBlAlzlA2'

(C) B, - t,B,t, * t,;t,B,t,t -zz-'z' . B, =

A3Z2A2Z1A1uVuA1ZlA2Z2A3,

where

tl = AlBlzlAl, t2 = A2ZlZZA2' u = ZZA3tZBZt2A3Z2'

and

v = BlAlzlAszAzzlAlBl.
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2
(D) By ® AjZy 1A _1.--Z)A1BIAIZ . Ay 120 1AL,
where
Bg = ug_l...uzulBluluz...ug_l, t, = AlBlzlAl, v, = B,
b R R R A L L Rl i LT B R B L L
Vi T bVttt
and
u, = AiZiAi+lvizi—lAiziAi+l' for i = 2...,9 - 1.

Now we begin to simplify these relations by using our

new generators.

Proposition 3.4.

(a) L * TiLTi, i=1,2,...,9 - 1.
(b) Lo oiNt, i =1,2,...,9 - 2.
(c) e rint, i=2,3,...,9 - 2.
(a) TMT = N°ME> = N2LEZ.

(e) L < NTZTN.

(£) TNSTNTNST = NOTNTN-.

(9) L e NZLNZ, N3Lﬁ3, NiLEd.

(h) L < NLNLN, NLNLN.

Proof. The main part of the proposition is proven

by direct calculation of the image of basecurves.

Remark. Among the above relations, the formulas (g)

and (h) are consequences of

L e N6, L ¢ TNLNT = NzLﬁz, L ¢ TLT = NLN-.
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Indeed, the formulas of (g) are evident, and thos of (h)

can be read from the following equality:

2INININ?, by (1.2.b),

33 " (w21w?)

NLNLN = N

viEd) Tt 1

i

In our later calculation, the formulas (g) and (h) will be

used very frequently.

Proposition 3.5. The relation (A) of Theorem 3.3 is

a consequence of the relations inm Propositions 1.1 and 3.4.
Proof. Without loss of generality, we assume i = 1.
(a-1) If j # 2 and g, tﬁis is clear from (3.4.a) and

(3.4.b). If j = 2,

2.=2 2.=3

A, = MTMT = NLN-N“LN“ = NLTLTN = NTLTLN = N°LN’LN = A

271’
by (1.1.b), (3.4.a) and (3.4.d). And if j = g,

AlAg =T - A2A1 T =T - A1A2 - T = AgAl.

(A-2) It is equivalent to (3.4.a).

(A-3) If j # 2 and g, it is obvious from (3.4.a-c).
and if j = 2 or g, it is a consequence of (3.4.e).

(A-4) If j # 2, it is obvious from (3.4.a) and
(3.4.b). And if j, = 2, it follows from (3.4.c) and the

result for the case j # 2, indeed,

3.3 3 =3 _ .3 =3 _
Ale = MN"LN™ = N AZBlN = N TAlBgTN =

3 =3 _
NTB A TN = B,A,.

(A-5) It is exactly the formula (l.2.a), or equiva-
lently (3.4.h).

(a-6) 1If j # 2, again it is evident. If j = 2,

2 2,222, =2
A1Z2 LN°T®ZT™)T

MTZT = T(TMT-T22T%)T = T(N
T(TzzszzLﬁz)T = TZTM = Z,A

1°
by (3.4.a-d).
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(A-7) If j = 1, we have

2,12 = MLNLNLM +« M + MLDNLNLM = MLMNLNMLMLMNLNMLM

= LMLNLNLNLNLML = LMLNLMLNLML = LMLNMLMNLML

= DMNLELZML 2 2JLNL = DNLN2ENLNLNLNLN

= DNLNLNL2N

LNL

- 2
LNLNLM™ = AlZlAl'

by using the relations (3.4.g) and (3.4.h).

LNLN

If j = g, we have

TMLNLNLMT - M . TMLNLNLMT = TMLNLNLNLNLMT

2 2 3.=2 2Lﬁ3LNT

2 A.Z
g'l%

LNLNT = TNLN LN“LNLNLN
3LN2y

TNLNLN“LNLNLN

2.=3

1]

TN“LN”LNLNLNLNLN
2

2

LE%T . TNLNDNLNLNLNT - TNZ

LﬁzT

]

TN

=M. TZT - M= Alngl'

(A~8) If j # 1 and g, it is easy from the relations

of Proposition 3.4. If j = 1,

B2, = LMDNLNLM = LMIMNLNMLM = MLNLNMLM = Z,B;-

by (1.2.a) and M ¢ NLN. And if j = g,

3N MINLNLMT = TMLNSLNZLNLMT

3.3,
LN°T = ZgBl.

LTMLNLNLMT = TN-LN

2.=3

Blzg

TMLNLN“LN~LMT = TMLNLNLMN

Actually, we have more interesting relations:

Proposition 3.6. The following formulas are the con-
sequences of the relations given in Propositions 1.1, 1.2
and 3.4:

(a) (veNLELN) 4 = N3L2 (Ew) (L) °F3.
(b) (Fonr®)? = (D)3 (Fo) OF2.
(c) L e (EN)°(ND)>.

(d) TLT & (IN)>, and TMT © (IN)>.
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Proof. (d)
TLT(LN)® = §°N® ¢ L - NLN - NPLNLN . N°LN? - §°
= LNLNLNLNLN - N2LN? . ®°
= LNLNLNLNL + N2IN? + ®° = (¥ 3nii® =
(L) °TLT.

And similarly we may obtain the other one.

(b) & (c) We show both at the same time. Since

(ﬁLNLﬁ)4 = (EL)NL(ﬁzLNz)ﬁLﬁzLﬁ(NzLﬁz)LN(Lﬁ)

(ﬁL)2N2LﬁL(ﬁ2LﬁLN3)ﬁ(Lﬁ)2

(VL) 282 (R h) § i) 3

(L) v ) ¢

E(LE)SNG(EL)SE

T(NL)° (L) °T, by (1.2.b),

since L ¢ NLNN by (1.2.a), the formula (c) is evident.
And the above calculation together with (c) shows directly
the formula (b).

(a) By the formula (b), it is enough to show that,

(NLﬁLﬁLN)4 = N3(NLNLN)4ﬁ3.

Actually,

N3 (NINDN) 4F3 = N3 (Fononoe?) 4R
= NLNLNLN2LNLNLN?LNLNLE2LNLNLN
= NLNLNLN?LNLNLN?LRNLNLN2LELNLE
= MLM(NLﬁLﬁLN)3ﬁEN2Lﬁ
= MLM(NLﬁLﬁLN)3NLﬁsz

= MLM(NLﬁLﬁLN)4MLM

= (NLNLNLM) %4, by (1.2.a) and (3.4.a - c).
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Proposition 3.7. The relation (B) of Theorem 3.3 is

a consequence of the relations in Propositions 1.1, 1.2

and 3.4.
Proof. Since BjA;Z; =L - M - MINLNLM = NLNLNLN, and
2 = 3 _3 MT N- . . 2 . 3 MT. N .
A,2,A,BJA;Z,A, = N"MN® . MINLNLM - M - L M - MLNLNLM
N3Mﬁ3
= ML - N°LN? -+ NL¥ - 1ML - NLN - N°LN?

LM, by (3.4.4)

2

= HE(NZLﬁLﬁLﬁL NLNLNLﬁz)LM

=T - N (EL YT - WM, by (3.4.a-c)

= T - N3 ((Fp) 4FEn®)®3 - M, by () = 6

= ML - N3((ﬁL)SEZ)ﬁ3 R CLI Y

= N3 (FL) °T3N3, by (3.6.4).

The proposition is clear by comparing with (3.6.a).

a,b,d20,

Q:E;Esbz

Figure 3.2
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Now we introduce a notation. We denote the conjugate
T simply by <B>a. The relation (C), called the
lantern law, 1s a special relation for the mapping class
group Mg of genus g > 3, and is a composition of seven
Dehn twists, which can be chosen arbitrarily up to con-
jugacy. Here, we let the seven twist curves be the follow-
ing:

b

17 3pPpa5bys a3bjasb,, by, by, agbjasasba,,
b a azbla bz,

as pictured in Figure 3.2. Since
—_— = 42
NT (NLM) N P(bl) = a3b3a3a2bla2,
and
NTNP (b;) = a353 33,b13,b,,
the formula (C) is equivalent to
<T>L- <BN? (ML) 3TN>L+ <PNTN>L =

L'<§N>L-<T§N>L-<T2>L.

Since P = LML commutes with TLT, TZLTZ, TMT and TNT by
the formulas (3.4.a-d), and since PLP = M = NLN, con-

jugating the above formula by P, we have

Proposition 3.8. The lantern law (C) is equivalent to
<T>L-<N? (MLF) 3TN>L- <NTN>L =

<N>L+<N>Le+<TPN>L-<T2>L.

According to Wajnryb's work ([11]), the relation (D)
is special for a closed surface. Moreover, we may con-
sider L, N and T as mapping classes of the orientable

surface Fg 1 of genus g with one boundary component
’
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B = ¢ 2...c , as pictured in Figure 3.3, which form a
system of generators of the group Mg,l’ and relations (A),
(B) and (C) give a complete presentation of it. There-
fore, we may replace (D) by any relations which generate

the kernel of the quotient map from Mg 1 to Mg'
’

Figure 3.3

The Dehn twist along the curve B is clearly equal to
19, and sliding B along some nonseparating curve, e.g. bl'
is given by (@n3L3 (NN 4 97L, since

N3 (NE)S(ﬁL) L = TN3L3(NLNLN)

llb b ]I

= [byc,bya),bysa5,bgs .0 sa b ,Brasby byboby
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(oL (T 4 97t

[5 c ...c2 1albl'b bla bl'blb bl""’blagbl’

byb b, ].
These two classes form a set of normal generators for the
kernel of the quotient map from Mg,l onto Mg, since all
mapping classes obtained by sliding B along some non-
separating simple closed curve are conjugate each other,
and since all mapping classes obtained by sliding B along
some separating simple closed curve are composed by those
along nonseparating curves, in particular along the
basecurves, it is enough to replace the formula (D) by
the formulas
09 = 1, and (TN (Fone®) 4971 = 1.
Putting all together we have a new presentation of

the surface mapping class group in our generators:

Theorem 3.9. The mapping class group Mg of the
closed orientable surface of genus g, g > 3, has a pre-
sentation of three generators: the linear cutting L, the
normal cutting N and the transport T, and 3g + 4 relations:
(I) L"’<Ti>L,i=l,2,...,g-—l,

L & <Ti >N, i=1,2,...,9 - 2,
LenNt, Lo <FNEm? > L,
(II) N 0<Ti >N, i=2,3,.0.,9 - 2,

(III) <T>L =<N3>L, <IR>L = <N® > L,

(Iv) N = N8, @00 = NE,
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(V) <T>L'<N2(ﬁLNLﬁ)3TN > L+ <NTN > L =

= <E>L'<N>L°<Tﬁ(fN)2 N L'<T2>L,
(VI) 9 =1, 9! = (uE6(9-2),
and (FnoL3 (W) 497t - 1.

All above formulas are collected from earlier dis-
cussions, though they may be slightly different, in fact,
<NTR(IN) >L = <NTMIN > L,

and M = NLN.

4. Some Applications

By using the new system of generators, some of the
properties of the mapping class group Mg can be easily

shown.

i) Abelianization Ab(Mg) of Mg

Denote by Ab(Mg) the abelianization of the mapping
class group Mg, for g > 1, which was determined first by
Birman [1] and Powell [10]. Here we may reprove their

result easily from the relations we have got.

Theorem 4.1. Ab(Ml) ’ Ab(Mz) =Zq4 and

Zy,
Ab(Mg) = 0, for g > 3.

Proof. When genus g 1, the mapping class group

M, = SLZ(Z) has a presentation

M

1

1= (L,N; LN = sz, and N6 =1.0,

where the operation N is slightly different, defined as
N = [bl,blil], since we do not have the second handle.

Thus,

= . 12 _ 6 _ =
Ab(Ml) =(L,N; L“ = N, and N = 1.) = 212'
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When g = 2, we recall the presentation of M2 given

in [8],
W=y, @2 =1, @m® =1, x® =1, ana,
2 7’ some commutativity relations. °
Then,
Ab(Mz) =(L,N; L ¢ N, L5 = N5, L10 = Nlo, and N6 =1.)

(L,N; L5 = N, and N2 =1.) =1Z

10°

And for g > 3, the formula (LN)5 = N6 implies N = L5

in Ab(M ), the formulas 19 = 1 and w3971 = (wEn) g - 2

15(g-1)-12(g-2) _ L39-9

imply T = L in Ab(Mg), and the

lantern law (3.9.V) implies L = 1 in Ab(Mg). Thus

Ab(M ) = 1.
( g)
Similarly, for the homeotopy groups, we have that,

Ab(Hy) =Zy, g > 3,

by using the relations RLR = NLN, RNR = TNT and R% = 1.

ii) The Torelli subgroup Ig of Mg

¥

Let X: Mg Sp(2g,Z) be the natural homeomorphism

defined so that, for each mapping class f of Mg, the ele-
ment A(f) is the automorphism of the group Hl(Fg;Z) = ZZg
induced by f. We will call the normal subgroup Ig = kera
the Torelli subgroup of Mg.

The first set of normal generators of the group Ig
was given by Birman [2] in Lickorish's Dehn twists.
Powell reduced to three maps: a Dehn twist along a null-

homologous curve which splits one handle from the others,

a Dehn twist along a null-homologous curve which splits
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two handles from the others, and twists along a pair of
disjoint homologous (not homotopic) curves in which none
of them is null-homologous in the surface.

Here we may write them easily in our generators.

Theorem 4.2. The Torelli group 1_ is a normal sub-

4 (LﬁLN)G, N6, and (NE)S(N‘L)S.

group generated by P
Proof. The mapping classes P4 and N6 are exactly the
Dehn twists a;ong the curves c, = [al,bl] and
X = [al,bl][az,bz]. And we may write the last one in the
following way,
(ND)2(FL)° = L - (EN)°L(FL)>,
and clearly it is a composition of the Dehn twists along

the circle b, and the circle (fN)s(bl) = Eli.

iii) The automorphism group Aut(Mg) of Mg

Let Aut(Mg) and Aut(&g) denote the automorphism
groups of the mapping class group Mg and the homeotopy
group kg respectively. Let Inn(Mg) and Inn(&g) denote
their corresponding inner-automorphism. normal subgroups.

And let Out(Mg) and Out(Mg) be their quotients. McCarthy

and Ivanov [9] proved that,

Theorem 4.3. The short exact sequences
1-»1I M Aut (M + Out (M 1
nn ( g) + Aut( g) ut ( g) - 1,
and
1~ Inn(Mg) - Aut(Mg) - Out(Mg) +~ 1,

are split, and
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]

1) out(M) =1Z,, and Out(&g) =1, for g > 3,

and Out(&z) =%, x%Z.,.

Z., X % 2 2

ii) Out(Mz) 2 27

1]

Here we give those outer-automorphisms explicitly.

Proposition 4.4. i) The group Out(M,) is generated
by,

RLR = M, and p(N) = RNR = N,

p: M2 - Mz' o (L)

and K3 M2 > MZ’ k(L) = LK, and k(N) = NK, where K = T?ZTPZ.

(Remark: L ¢ K, N K, and K2 = 1.)
ii) The group Out(Mz) 18 generated by,

Ky M2 > @2, Kl(L) = LK, Kl(N) = NK, and Kl(R) = R,

and

Kyt M2 > M2’ Kz(L) = LK, KZ(N) = NK, and KZ(R) RK.
iii) The group Out(Mg)q for g > 3, is generated by,
0t Mg > Mg, p(L) = RLR = M, p(N) = RNR = N, and

p(T) = RTR = T.

The idea to prove Theorem 4.3 is to show that, any
automorphism of the mapping class group Mg maps a Dehn
twist to a Dehn twist, for g > 3, by using the result of
Birman-Lubotzky-McCarthy [3] about abelian subgroups of
Mg. Thus, we can have only one nontrivial outer auto-
morphsm p (modulo inner automorphisms) which maps a Dehn
twist to some Dehn twist with reversing twist orientation,
in particular p can be chosen as in Proposition 4.4.

When g = 2, it is slightly different, we have one

352,.3,2

element of order two K = N°P“N°P° € [Mz,Mz] commuting with

all mapping classes. Since Ab(Mz) = Zlo' multiplying K to
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the mapping classes whose image in the abelianization is
odd, we obtain a nontrivial outer automorphism k. Since
Ab(Mz) = zz ® Z2 and RK = KR, we have two different ex-

tensions Ky and Ky of k as shown in Proposition 4.4.

According to McCarthy and Ivanov, there is no more.
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