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HOMEOMORPHISMS OF A SOLID HANDLEBODY
AND HEEGAARD SPLITTINGS OF THE 3-SPHERE §’

Ning Lu

Let Hg be a solid handlebody of genus g, with
boundary ang = Fg. Let B = {al,bl,az,bz,...,ag,bg} be a
fixed system of basecurves based at a common basepoint O,
such that the ai's are meridian circles of Hg. Let Mg
denote the mapping class group of the closed orientable
surface Fg. And let Kg denote the subgroup of Mg consist-
ing of mapping classes induced by some homeomorphism of
the handlebody Hg. An element of Kg will be called an
extendible mapping class.

The subgroup Kg plays a very important role in
Heegaard splitting of 3-manifolds (Cf.[1] &« [8]). 1In
this paper, we describe this subgroup explicitly by
giving a finite set of generators in the first two sections.
Comparing to Suzuki's generators [7], not only is the
number of generators one less, but also the expressions
in the generators of the mapping class group Mg are quite
easy. In the third section, all Heegaard splittings of
the 3-sphere S3 are explicitly given, this was asked in

Hempel's book ([3] p. 164).

1. Some Extendible Mapping Classes
First we are going to give some extendible mapping

classes, show they generate the group K_, then reduce
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the number by using the technique given in the papers [4]
and [5].

Recall that the mapping class group Mg is generated
by three elements: the linear cutting L, the normal
cutting N and the transport T. Algebraically, they are
given by

L

[albl,az,bz,...,ag,bg],
N = [xEZbl,El,Elxbz,52,a3,b3,...,ag,bg],

where x = [al'bl][aZ'b2]' and

T = [ag’bg'al’bl'""ag-l'bg-l]'
We also denote by M = NLN the meridian cutting, P = LML =
MLM the parallel cutting, Q = TPT = 83PN the parallel

cutting of the second handle, ¢y = [ai,bi] the waist of

the i-th handle, and x = c,c, the waist of the first two

172
handles.
Now we list some elementary extendible mapping
classes.
1) The meridian cutting M, given by
M= [al,blal,az,bz,...,ag,bg].
2) The transport T.
3) The handle rotation ¢, (Figure 1.1), given by
¢ = [clal,blcl,az,bz,...,ag,bg],
is obtained by a 180°-rotation of the first handle along

its waist circle e -
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Figure 1.2 Handle switching

4) The handle switching ¢, (Figure 1.2), given by
Y = [clazcl,clbzcl,al,bl,a3,b3,...],
is obtained by moving the second handle around the first
handle into the position in front of the first one.
5) The handle rounding o, (Figure 1.3), given by
o = [al’blalBlCZblal’alclaZCIal’alcleClal’a3'b3'"']’
is obtained by moving one foot of the first handle around

the second one.
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(apo

Figure 1.3 Handle rounding o

Figure 1.4 Handle crossing ¥

Figure 1.5 One-foot sliding w
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Figure 1.6 Handle knotting

6) The handle crossing X, (Figure 1.4), given by

X = [claz,bz,bzalbz,bzblbz,a3,b3, ... ],
is obtained by sliding the whole first handle along the
longitude circle b2 of the second handle.

7) The one-foot sliding w, (Figure 1.5), given by

w = [al,bzbl,bzclalazalclazbzalclbz,bzclalbzalclbz,
a3,b3,...],
is obtained by sliding one foot of the first handlé along

the longitude circle bz of the second handle.

8) The one-foot knotting 8, (Figure 1.6), given by
8 = [al,azbl,azclalazalclaz,bzalclaz,a3,b3,...],
is obtained by moving one foot of the first handle along

the meridian circle a, of the second handle.

2
9) The handle replacing n, (Figure 1.7), given by
n = [alclaz,azclblaz,azclblazblclaz,1:21>J_cla2,a3,b3,...],~
is obtained by replacing the first handle with the cylinder

between the first and the second handles.
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Figure 1.7 Handle replacing n

Remark. By definition, among all elementary ex-
tendible mapping classes, the operations T, ¢, ¥, 0, X,
w and n can be obtained by an isotopy deformation of 53
(i.e., obtained by moving the handlebody Bg inside of 53
without cutting it open). And the operation ¢ is a combi-
nation of w and meridian twists, which can be obtained in
the following way: pass the left foot of the first handle
along the longitude 52 of the second handle in the anti-

clockwise way, twist the second handle along its meridian,
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pull back the foot of the first handle along the new
longitude, and adjust the longitude bl by a twist along
the meridian of the first handle. Precisely,

8 =w * TMT - o * M.

Theorem 1.1. In the mapping class group Mg’ we have

the following expressions:

(i) o =p%=

(ii) v = 543 = N384,

(iii) s = B(IN) 7 (L) °p5* = (Pow) %%,
(iv) X = T(FL)° (vD) °8° = (onF) °F°,
(v) w = Q3ﬁ62P,

(vi) 6 = Q°NOP = Quo,

(vii) n = BQ’FQ = BoF.

Proof. The expressions are found by using the
algorithm given in [4] and [5], which certainly was not
easy. After the formulas have been discovered, the)proof
is just an immediate verification.

For example, for (iii), we know that,

al,E b,b,c.b,a

5 s o m— =
(ITN)° = [xal,blx,alb c,a.b 195650123,

1727271

a3,b3,...],

thus (N1)° = [3,x,¥5) ,¥a;5,c,3,b a,%,%a;5,5,5,b;a, %,
a3rb3r---]r

and (Lﬁ)5 = [Elcl,§51,iglxgzslalx,iElclszialx,
a3rb3l---]l

then (fN)s(Lﬁ)5 = [xElal,bl,blxazisl,blxbzisl,
a3,b3,...].



332 Lu

Because P = [clbl,El,az,bz,...],

and gt = [al,bl,Ezazcz,Ezbzcz,a3,b3,...],

== 5 — 5 -4 - - - = —
P(IN) 7 (LN) °PQ" = P[xbl,al,alclazclal,alclbzclal,
a3,b3,...]
= [al,alxblal,alclazclal,a clbzclal,aB,b3,...]
= 0.
Also we have,
PON = [al,alxazblal,alclczazclal,bzxal,a3,b3,...]
= 2 - - - - -
and (PQN)© = [al,alxblal,alxazxal,alxbzxal,a3,b3,...],
Clearly, o = 54(FQN)2 = (fQN)264. And similarly we can

prove the other formulas.

2. Generators of the Subgroup Kg
In this section, we are going to prove that,

Theorem 2.1. The extendible mapping class subgroup
Kg of the surface mapping class group Mg 18 generated by

five elements:

M, T, N3, P2, and PNZP,

and also by the five elements:

T, N3, LN, NLsz, and LNLANL.

Regard the handlebody Hg as the down-semispace of the
Euclidean space E3 with g pairs of holes on its boundary
Fg identified (Figure 2.1). Instead of the basecurves

B = {ai,bi} , we will study the basearcs

1<i<g

B = {pi,qi,ri} , where as joining the oriented arcs,

1<i<g

we have
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Figure 2.1

The disk holes, denoted by Di's, will be chosen as
the meridian disks, which form a cutting system of the
handlebody Hg. Their boundary circles, ri's, are the
fixed meridian circles. In the plane in Figure 2.1, the
disks Di and the circles r; are split in two. We will
denote by Di and D; the two copies of Di’ denote by
ri = aDi and r; = BDE the two copies of Ty and call them
the cutting disks and cutting circles respectively. More-
over, we also suppose that ri contains an endpoint of P;
and r; contains one of qy-

We call this new description the planar representation
of Fg. Using it, a mapping class of the surface Fg may be
drawn easily in the plane. For example, the mapping
classes ¢, ¥ and 8 are drawn in Figure 2.2, and it is quite

easy to understand how they move the feet of handles.
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Figure 2.2

Using ¢, ¥, 6 and T, we construct some more ele-
mentary movings of handle-feet. A family of mapping
classes, called the 7-th foot knotting 0; and the 7-th
foot knotting Gé, is defined by moving the foot ri of the
first handle along the meridian circle a; and the meridian

circle bisisi’ i.e. ri and r;, respectively, (see Figure

— i-1,=i-1
2.3). Therefore, @i = ¢i@i¢i’ where ¢i =T ¢T , for

i=2,...,9. Precisely, we have
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8.1
1

Figure 2.3

Proposition 2.2. The i-th foot knotting and T-¢h

foot knotting are generated by the mapping classes T, 9,

Y, and 8. Furthermore, they have the following expressions:

0. = T2 Gm %6 (Tv)

i
Oi = Tl-lﬁ(w—T) 1-29 (Tw)l‘2T¢Tl-l.

1-251-2,

and

Proof. By Figure 2.3,

= [a 1765--+C3_1233C4. 1"'czbl’a2’b2”"’ai-l’

©
[

by_rC5 -+ +Cp81C 0+ C5125r8

C)C1ayCp---C4_1/P38;5 1+ +C32101C5 -+ +Cy 1
ai+l’bi+1""]'
i- l...c bl,az,bz,...,

WI
Ol

| -
0 = [al'CZ"'cl 151

a ...czclalcz...cl -1 lbl
1.

OI

i-1'P1-1723+31% 1

1+1’b1+l""
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Then, a direct calculation implies the proposition. For
example, let us compute Oi. Let wj = Tj_leJ_l and

z = ¢ eeeC. then

2%3 i-17
Yoeeoby g = [al, 1123 z, zb, z N RN IR -

b

a1 i+l""]’

BYyeeetby g = [al,za.zbl,zaizclalzaizalclzaiz,

zb za,c za; z, a2,b2,... l,b

1€1 -173i+1°

S

and

7 b.

AL PR PR [al,za.zbl,az,b io1f

i-1

2,...,ai_1,
a, zclalza zal lza ,b za.c,za

16173373/ Py
aj410P54700- 1

Now we want to start proving that the elementary
extendible mapping classes generate the group Kg.

Let f be an extendible mapping class, i.e. an element
of Kg. The idea is to find another extendible mapping
class g generated by our generators, such that either gf or
fg becomes "simpler"” than f£. The process will be repeated

until the identity map is obtained.

Lemma 2.3. Let o be an oriented simple arc on the
surface Fg from the basepoint O to the endpoint Q of q, at
I, which does not intersect any of the meridian circles
rifor all i, and does not intersect any of the arcs pj and
qj for 3 > s. Then, there exists a self-homeomorphism g
whose homeotopy class is generated by the classes T, M, ¢,

Y, and 08, such that (ql)g = q, (ri)g =r for any i > 1.

i’
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Furthermore, (pj)g =Py if o N pj = {0}, and (qj)g = qj
if a N ay = {0}, for any j > 1.

Proof. Suppose the arc a intersects ql transversally,
and denote by k the number of points of the intersection
a N q, other than 0 and Q. When k = 0, the union of these

two curves becomes a simple closed curve y = qu.

a
9
TPy

Figure 2.4

If v does not intersect any of the arcs p; and a;
other than q,, we may let g either be an isotopy if y does

not separate the circles r! and r’, or a meridian twist

1 1’
from Mil if the disk area bounded by y includes ri
(Figure 2.4). Otherwise, let P be an intersection point
closest to Q along a. If P € p, we may use the mapping
class ¢ to remove it, and if P € P; or 4. for some i > 2,
we may use the mapping class @i or @i given in Proposition
2.2 to remove it. Actually, g will be the mapping which
moves the cutting circle ri along the curve y, its explicit
expression in mappings ei's, ei's and ¢ may be easily
found from the intersection set y N (U(pi U qi)) along the

curve y. This clearly leaves the unintersected pi' and

qi's unchanged.
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Suppose k > 1, and let P be the intersection point of
o and q; closest to the point O along a. Let
B = a |OP qQ; IPQ’ After an isotopy deformation, we have
the intersection numbers k(ql,B) = 0 and k(B,a) <k - 1.
And clearly B does not intersect other pi's and qi's more
than o does, since we have

g N (U(pi v qi)) = q IOP n(U(pi v qi))

Ca N (Ulp; Yay)),

(Figure 2.5). By induction, we have 9; and 9, generated
by T, M, ¢, ¥, & and n, such that (q;)g; = B and

(B)g2 = a. Then, take g = 919,

Lemma 2.4. Let f be an arbtitrary self-homeomorphism

of the handlebody Hg, such that (ri)f =r for all 1i.

i:
Then, the homeotopy class of £ s generated by the classes

T, M, ¢, ¥, and 8.

Figure 2.5

Proof. This is a direct consequence of Proposition
2.2 and Lemma 2.3. Inductively, suppose we have

(pi)f = P; and (qi)f =q; for i < s - 1, for some s.
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Rotate the handles until (ps,qs) is in the first position,
switch Pg and d by ¢, simplify Py by using Lemma 2.3,
then switch back to simplify qg in the same way, and
finally rotate it back. Again by Lemma 2.3, all pi‘s and

qi's for i < s - 1 are unchanged.

OO 0OQOQO

2 | T2 ry ry

x(ry)

Figure 2.6

(ry)x = ry, (ry)x = ry for i >3

By Lemma 2.4, from now on, it is sufficient to
study the image of the cutting system ri's of an extendible
class. Thus, we first discuss some extendible mapping
classes which change the cutting system. For example, the
images of the cutting system of the mapping classes ¥, w

and n are drawn in Figures 2.6-8.

Lemma 2.5. Let y be an oriented simple closed curve
on the surface Fg, which does not intersect any of the
meridian circles res and whose homology elass in Hl(Fg,Z)
relative to the meridian ecircle ry is nontrivial (i.e.,

Y separates ri and r; in two sides in the planar repre-

sentation). Then, there exists a self-homeomorphism g
whose homeotopy class is generated by the classes T, M, ¢,

Y, 0 and n, such that (y)g = r and (ri)g = r,

1° i? fOP any
i> 2.
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w(ry)

Figure 2.7

(ri)w =r; for i # 2

&

72(r,)

Figure 2.8

(ri)n =r, for i > 2

Proof. Denote by k the number of cutting circles in
the disk area A bounded by v in the planar representation
of Fg. The lemma will be proved by induction on k.

For k = 1, the cutting circle in A must be either
ri or ri. If y is oriented in the same way as this
cutting circle, we may let g be an isotopy deformation,
which deforms y into r,. If vy is oriented in the oppo-
site way, follow the isotopy by the operation ¢, which
reverses the orientation of r,.

For k = 2, by some handle switchings and rotations,

i.e. a mapping class generated by ¢, ¥y and T, we may
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suppose that the two cutting circles in A are ri and ré.

Connecting the point P = P, N ré and the point Q = q; N r{

by a simple arc § in A which intersects neither g, nor p,

(Figure 2.9).

Figure 2.9

If § does not intersect any other pi's and qi's,
the disk A is isotopic to a neighborhood of rI Usgsu ré
whose boundary is exactly the circle (rl)n as shown in
Figure 2.9. Thus, the lemma is done.

If § does intersect some pi's or qi's, we may simplify
the intersection by the method we did in Lemma 2.3.
Actually, letting o = pzd, apply Lemma 2.3 to reduce to
the previous case.

For k > 3, by some handle switchings and rotations,
i.e. a mapping class generated by ¢, ¥ and T, we may sup-

pose again that the cutting circles rI and ré are in the
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Figure 2.10

domain A. Connecting the point P = P, N ré and the point
Q= q; N ri by a simple arc § in A which intersects neither
q; nor p, (Figure 2.10), we may choose a disk neighborhood
A' of ri U Gré contained in the interior of A but including
no other cutting circles. Applying the case of k = 2 to
the disk A', the original A will be reduced to the case of

k - 1.

Applying Lemma 2.5 repeatedly, we have the following

immediate consequence.
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Lemma 2.6. Let f be an arbitrary self-homeomorphism
of the handlebody Hg, with the property that,
(ri)f N rj =@, for all i,3 =1,2,...,9. Then, there
exists another self-homeomorphism g whose homeotopy class

is generated by the classes T, ¢, ¥, 8 and n, such that

(ri)g = (ri)f, for i=1,2,...,9.

Lemma 2.7. Let f be an arbitrary self-homeomorphism
of the handlebody Hg, then there exists another self-
homeomorphism g whose homeotopy class is generated by the
classes T, ¢, Y, 8 and n, such that

(

i

N Ca

(e, ) £)N(
1t i

[ ate]

)9 = 0.

i.e. none of the circles (ri)Ef‘s intersects a meridian
eitrele of ri's.
Proof. Denote by ki’ for i = 1,2,...,9, and k the

numbers of intersection points given by

ky = #((r)f 0|

et

rj)) and

j=1

k = g k. = #¢( é r.)gf N ( 6 r.)).
j=1 * i=1 * j=1 3
For k = 0, take g to be the identity.
For k > 1, we may suppose kl # 0, i.e. (rl)f N (Ujrj)
# 0. Consider the meridian disks Di bounded by the r; in
the solid handlebody Hg, which have nonempty intersection

with the disk (Dl)f. By an isotopy deformation, we can

suppose the set (Dl)f N (Uij) is a collection of disjoint
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arcs in (Dl)f. Thus, there is a disk component of

(Dl)f - (Uij) whose boundary circle is formed exactly by
one arc o from (rl)f and one arc B from (Dl)f N DS for
some s (Figure 2.11). In the planar representation of Hg,
the disk Dy and the arc 8 have two copies Dé, D;, and R’
and B" for each of them, and one of the arcs R' and B",
e.g. B', together with the arc a forms a simple closed

curve.

Figure 2.11

Consider the two boundary circles of an annular
neighborhood of Dé U a in the representation plane, there
is one and only one of them, denoted by Yy, separating D;
and Dg in two parts. By Lemma 2.5, we may replace ry by
y without changing other ri's by composing some mapping
classes generated by M, T, ¢, ¥, 8 and n. Since
$#(y N (rl)f) < #(rs N (rl)f) - 2, and #(y N (rj)f) <
#(rs a (rj)f), for j > 2, the number k has been reduced

by at least two. This completes our lemma.

From Lemmas 2.4, 2.6 and 2.7, we conclude that,
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Theorem 2.8. The subgroup Kg is generated by M, T,

¢, ¥, 6 and n.

Proof of Theorem 2.1. All we need is to give the re-
lations between the generators claimed in Theorem 2.1 and
the mapping classes M, T, ¢, ¥, 6 and n. By Theorem 1.1
and using some relations from the paper [5], we have the

following equations:

M = NLN,

p2 =M . LNL2NL - M,

¢ = p°,

v = p'n?,

8 = TPF . (PQN)"T . p2,

n = 0%T . (onp) 1,

PQN = 5 . pNp . B2 . PNPN,

onp = N3p2 . (en%m)T1 . P2,

PN?p = LNLNLN’LNINL = LNLN LNLNLNL = LﬁLN3LN3§ﬁiﬁ =
= N°LNIN = wREntiy = voen®D) Tt . N,

and

PNPN = M - LNLNLNLNLN® = M . LN2INDN?LN? - N° =

M . LNLN - N° . NLN°L.

By Theorem 2.8 and by the above formulas, Theorem 2.1

is obvious.

Remark. The topological explanation of the generators
of Kg is very clear. M is the 360°-twist along the

meridian circle a P2 and N3 are the 180°-twists along the

ll
circles [al,bl] and [al,bl][az,bz] respectively, T totates
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=3_..2 =3_.3 —_ . cos
the handles, and N"PN"P = N"LN~ - NLN . M is a composition
of Dehn twists along the curves al, blalblazbza2 and b2,
and is also obtained by sliding one foot of the first
handle around the longitude b2 of the second handle

(Figure 2.12).

Figure 2.12

3. Heegaard Splitting of the 3-Sphere § !

Let Fg be the closed orientable surface of genus g
embedded unknottedly in 53 and bounding two handlebodies
Hg and Hé. Let B = {al,bl,az,bz,...,ag,bg} be a system of
basecurves on the surface Pg based at a basepoint O, such
that ai's are meridians of the handlebody Hg, and bi's are
meridians of the handlebody Hé. Let Kg and Ké denote the
subgroups of the group Mg formed by the mapping classes

which can extend to the solid handlebodies Hg and Hé
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respectively. For any mapping class f of Mg, we will
denote by

Mf = H

] U H
9 ¢ g

the closed 3-manifold associated by £, formed by identi-
fying each point X of aHé with the point (X)f of BHg. It

is easy to see,

Proposition 3.1. For any mapping classes £ € Mg’

h € K and h' € K,
g g

Mg = Mpigp-

In particular, Waldhausen ([8]) proved that,

Theorem 3.2. Any genus-g Heegaard splitting of the
3-sphere is an element of the semiproduct of subgroups,

K'! «K_.
g g

We obtained a specific description of Kg in the last
section, now we need one for Ké. In fact, if ¢ is a
homeotopy class induced by a homeomorphism from the’/handle-
body Hé onto the handlebody Hg, then Ké = ngE. We will
call such a homeotopy class a transfer operation. For

example,

Examples 3.3.
(1) the reversion map R is a transfer operation,
since

(ai)R =b and (bi)R =

g-i+2(mod g)’ ag-i+2(mod g)’

for any i = 1,2,...,9.
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(2) the homeotopy class m = (PT)gTg = Ple...Pg is a

transfer operation, where P, = 117"l since
(ai)n = aibiai, and (bi)ﬂ = a;,
for any 1 = 1,2,...,9.

Using the homeotopy class 7, we have,

Proposition 3.4. The subgroup Ké = ngF 18 generated

by the mapping classes T, N3, Pz, PN2P and L.

Proof. The proposition is an obvious consequence of

the following formulas:

T™T = PMP = LPP = L,

TTr = P1P2...PgTPg...P2Pl = Ple...Pg ng...P3P
3= 3= = _ .3 =3 3-—3=3 3
TN"T = PlPZN PlP2 = PN"PN N"PN"PN™ = N7,
%% = p. - P2 . P. = pz,
1
2= _ 2, 535 _ o2 . 25
and T7®PN°PT = P1P2 PN®P P2Pl = P P2N P2
= p%x3 . pn?p . BRC.

Denote by N the subgroup of Mg generated by the
2 3

2

T

T,

elements T, P“, N~ and PN2P, which obviously is a subgroup

of Ké N Kg. Using a result of Powell [6] that the sub-

2

group Ké n Kg is generated by T, N3, P®, w and n, we have

the following consequence:

Corollary 3.5.

N =K' K.
gnN’g
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Theorem 3.6. The assoctiated 3-manifold M of a map-
ping class £ is the 3-sphere 53 if and only if £ is an
element of the set

(L,N) - (N,M),

Before we end this section, we discuss some more
relations among the mapping classes in those subgroups.

Let L, = pi-lri=l, ana M, = iivritl, for i =
1,2,...,9. Let L and M denote the abelian subgroups of

rank g generated by the Li's and Mi's respectively.

Proposition 3.7. For any i =1,2,...,9,

(a) LiT = TLi-l' MiT = TMi-l'
2 .2 2 _ .2
(b) LiP = P Li' MiP = P Mi'
3 3 3 .
(@ N =wn, wmn=nm, fori#l,2,
3.3 3.3
LlN = N L2, MlN =N M2,
3.3 3.3
L2N = N Ll, M2N = N Ml,
2 2 2 2 .
(d) L;PNP = PN°PL;, M,PN°P = PNPM,, for i # 1,2,
2. 2 20 .2
and LlPN P = PN PLZ' MZPN P = PN PMl.
Proof. Since
T = [a ’bg’al’bl’""ag—l’bg-l]'
N3 =

= [xazi,xbzi,al,bl..a3,b3,...,ag,bg],

v}
[

2
= [C llb l,azlbzp-..,ag,bg],

and PNZP

[xb xal 2bs x,xbzx, l'b2°2bl'a3’b3"'"ag’bg]’

the proposition is clear.
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Proposition 3.8. L NN =1, and M N N = 1,
Proof. Consider the image of L and N in Siegel's

leaves the

modular group ([2]). For any element £f € N - f
¥ 229

subspace z9 generated by the al's in Hl(Fg;Z) in-

variant, by looking at the expressions in the proof of
the last proposition. But the only element of L having
this property is the identity. Therefore L N N = 1. And

analogously, M N N = 1,
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