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HOMEOMORPHISMS OF A SOLID HANDLEBODY 

AND HEEGAARD SPLITTINGS OF THE 3-SPHERE 53 

NingLu 

Let H be a solid handlebody of genus g, with 
g
 

boundaryaH F . Let B = {al,bl,a2,b2, •.. ,ag,bg} be a
g g
 

fixed system of basecurves based at a common basepoint 0,
 

such that the a. 's are meridian circles of H. Let Mg 
~ g 

denote the mapping class group of the closed orientable
 

surface F. And let K denote the subgroup of M consist ­g g g
 

ing of mapping classes induced by some homeomorphism of
 

the handlebody H . An element of Kg will be called an g 

extendib Ze mapping" cZass. 

The subgroup K 
g 

plays a very important role in 

Heegaard splitting of 3-manifolds (Cf.[IJ & [8J). In 

this paper, we describe this subgroup explicitly by 

giving a finite set of generators in the first two sections. 

Comparing to Suzuki's generators [7J, not only is the 

number of generators one less, but also the expressions 

in the generators of the mapping class group M are quite
g 

easy. In the third section, all Heegaard splittings of
 

the 3-sphere 53 are explicitly given, this was asked in
 

Hempel's book ([3J p. 164).
 

1. Some Extendible Mapping Classes 

First we are going to give some extendible mapping
 

classes, show they generate the group K , then reduce
 
9 
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the number by using the technique given in the papers [4J 

and [5]. 

Recall that the mapping class group M is generatedg 

by three elements: the linear cutting L, the normal 

cutting N and the transport T. Algebraically, they are 

given by 

L [albl,a2,b2, .•• ,ag,bgJ, 

N [xa2bl,al,alxb2,a2,a3,b3, ... ,ag,bgJ, 

where x [a ,b ][a ,b ], andl l 2 2 

T = [a ,b ,al,bl,···,a l,b lJ.g g g- g-

We also denote by M = NLN the meridian cutting, P = LML 

MLM the parallel cutting, Q = TPT = N3PN3 the parallel 

cutting of the second handle, c. = [a.,b.] the waist of 
1. 1. 1. 

the i-th handle, and x = c l c the waist of the first two2 

handles. 

Now we list some elementary extendible mapping 

classes. 

1) The meridian cutting M, given by 

M = [al,blal,a2,b2,···,ag,bgJ. 

2) The transport T. 

3) The handle rotation <P, (Figure 1.1) , given by 

<P = [clal,blcl,a2,b2,···,ag,bg]' 

is obtained by a laDo-rotation of the first handle along 

its waist circle c l . 
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Figure 1.1 Handle rotation 

Figure 1.2 Handle switching 

4) The handle switching ~, (Figure 1.2), given by 

~ = [cla2cl,clb2cl,al,bl,a3,b3,···J, 

is obtained by moving the second handle around the first 

handle into the position in front of the first one. 

5) The handle rounding a, (Figure 1.3), given by 

a = [al,blalblc2blal,alcla2clal,alclb2clal,a3,b3, ... J, 

is obtained by moving one foot of the first handle around 

the second one • 
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Figure 1.3 Handle rounding a 

Figure 1.4 Handle crossing X 

o 

Figure 1.5 One-foot sliding w 
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o 

Figure 1~6 Handle knotting 

6) The handle crossing X, (Figure 1.4), given by 

X = [cla2,b2,b2alb2,b2blb2,a3,b3'···]' 

is obtained by sliding the whole first handle along the 

longitude circle b of the second handle.
2 

7) The one-foot sliding w, (Figure 1.5), given by 

w = [al,b2bl,b2clala2alcla2b2alclb2,b2clalb2alclb2' 

a 3 ,b3 ,···], 

is obtained by sliding one foot of the first handl~ along 

the longitude circle b of the second handle.
2 

8) The one-foot knotting 8, (Figure 1.6), given by 

8 = [al,a2bl,a2clala2alcla2,b2alcla2,a3,b3' •.. ]' 

is obtained by moving one foot of the first handle along 

the meridian circle a of the second handle.2 

9) The handle replacing n, (Figure 1.7), given by 

n = [alcla2,a2clbla2,a2clbla2blcla2,b2blcla2,a3,b3' •.• ]'. 

is obtained by replacing the first handle with the cylinder 

between the first and the second handles. 
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t 

o o 

Figure 1.7 Handle replacing n 

Remark. By definition, among all elementary ex­

tendible mapping classes, the operations T, ~, W, a, X' 

wand n can be obtained by an isotopy deformation of s3 

(i.e., obtained by moving the handlebody B inside of 53 
9 

without cutting it open). And the operation a is a cornbi­

nation of wand meridian twists, which can be obtained in 

the following way: pass the left foot of the first handle 

along the longitude b of the second handle in the anti­2 

clockwise way, twist the second handle along its meridian, 
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pull back the foot of the first handle along the new 

longitude, and adjust the longitude b l by a twist along 

the meridian of the first handle. Precisely, 

e = w • TMT · w• M. 

Theorem 1.1. In the mapping class group M 3 we have g 

the following expressions: 

(i) <P =p2= (LM)4, 

(ii) p4N3 = N3Q4, 

(iii) o = P(LN)5(LN)5p04 = (PQN,)2Q4, 

(iv) x L(NL)5(NL)5N3 = (QNP)2N3, 

(v) w = Q3 NQ 2p , 

(vi) e Q2NQP QWQ, 

(vii) n pQ2NQ pep. 

Proof. The expressions are found by using the 

algorithm given in [4] and [5], which certainly was not 
) 

easy. After the formulas have been discovered, the proof 

is just an immediate verification. 

For example, for (iii), we know that, 

(LN)5 = [xal,blx,alblc2a2blal,alblb2c2blal' 

a 3 ,b3 ,···], 

thus (NL)5 = [alx,xbl,xalblc2a2blalx,xalblb2c2blalx, 

a 3 ,b 3 ,··· ], 

and (LN)5 = [alcl,xbl,xalxa2clalx,xalclb2xalx, 

a 3 ,b3 ,···], 

then (LN)5(LN)5 = [xclal,bl,blxa2xbl,blxb2xbl' 

a 3 ,b3 ,··· ]. 
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Because P = [clbl,al,a2,b2' .•• ]'
 

and ~ [ - - ]
Q = al,bl,c2a2c2,c2b2c2,a3,b3'··· , 

P(LN)5(LN)5pa4 = p[xbl,al,alcla2clal,alclb2clal' 

a 3 ,b 3 , • • • ] 

[al,alxblal,alcla2clal,alclb2clal,a3,b3'···] 

= 0. 

Also we have, 

PQN = [al,alxa2blal,alclc2a2clal,b2xal,a3,b3' .•• ] 

and (PQN)2 = [al,alxblal,alxa2xal,alxb2xal,a3,b3, ••• J, 
Clearly, 0 = Q4(PQN)2 = (PQN)2Q4. And similarly we can 

prove the other formulas. 

2.	 Generators of the Subgroup "g 
In this section, we are going to prove that, 

Theorem 2.1. The extendible mapping class subgroup
 

Kg of the surface mapping class group M is generated by
g 
five elements: 

3 2M, T, N , P , and 

and also by the five elements: 

T, N3 , -NLN, NLN2-L, and L-NL2NL. 

Regard the handlebody H as the down-semispace of the 
9 

3Euclidean space E with 9 pairs of holes on its boundary 

F identified (Figure 2.1). Instead of the basecurvesg
 

B {ao,bo}l<o<, we will study the basearcs
 
J. J.	 _J._g 

B {Pi,qi,ri}l~i~g' where as joining the oriented arcs,
 

we have
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a i ~ PiriPi' b i ~ qiPi' 

for i 1,2, ..• ,g. 

/
/ 

Figure 2.1 

The disk holes, denoted by Di'S, will be chosen as 

the meridian disks, which form a cutting system of the 

handlebody H . Their boundary circles, ri's, are the g 

fixed meridian circZes. In the plane in Figure 2.1, the 

disks D. and the circles r. are split in two. We will 
l. l. 

denote by D! and D~' the two copies of °i' denote by
l. l. 

r! = aD! and r~' = aD~' the two copies of r and call themi
,

l. l. l. l. 

the cutting disks and cutting circZes respectively. More­

over, we also suppose that ri contains an endpoint of Pi 

and ri contains one of qi. 

We call this new description the pZanar representation 

of F • Using it, a mapping class of the surface F may be g g 

drawn easily in the plane. For example, the mapping 

classes ~, ~ and e are drawn in Figure 2.2, and it is quite 

easy to understand how they move the feet of handles. 
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e 
Figure 2.2 

Using ~, ~, e and T, we construct some more ele­

mentary movings of handle-feet. A family of mapping 

classes, called the i-th foot knotting 8 i and the i-th 

foot knotting 81, is defined by moving the foot r 1 of the 

first handle along the meridian circle a and the meridiani 

circle biaio i.e. ri and ri, respectively, (see Figurei , 

2.3). Therefore, 01 = ~i0i~i' where ~i = Ti-l~Ti-l, for 

= 2, .•• ,g. Precisely, we have i 
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e. ,
1 

Figure 2.3 

o
 

Proposition 2.2. The i-th foot knotting and I-th 

foot knotting are generated by the mapping cZasses T, ~, 

~, and e. Furthermore, they have the foZZowing expressions: 

and 

8. 
1 

8! 

Ti-2(~T)i-2e(T~)i-2Ti-2, 

Ti-1~T(~T)i-2e(T~)i-2T~Ti-1. 
1 

Proof. By Figure 2.3, 

0i	 [al,c2···ci_laici_l···c2bl,a2,b2,···,ai-I' 

bi_I'Ci_I···c2alclc2···ci-lai,ci-I··· 

c2clalc2···ci_l,biCi_l···c2alclc2···ci-l' 

ai+l,bi +l ,···]· 

8i	 [al,c2···ci_Iciaici_I···c2bl,a2,b2'···' 

a. l,b. l,a.,a.c. 1···c2cl a l c 2 ···c. la.b.,
1- 1- 1 1 1- . 1- 1 1 

ai+l,bi +l ,···]· 
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Then, a direct calculation implies the proposition. For 

_ -j-l
example, let us compute 81.'. Let~. - T. l~T and

J J ­

ai+1,bi +1 ,···], 

e~2···~i-l = [al,zaizbl,zaizclalzaizalclzaiz, 

zbizalclzaiz,a2,b2,···,ai_l,bi_l,ai+l' 

b i +1 ,···], 

and 

~i-l···~2e~2···~i-l = [al,zaizbl,a2,b2,···,ai_l,bi_l' 

aizclalzaizalclzai,bizalclza2,a2,b2' 

ai+l,bi +l ,···]· 

Now we want to start proving that the elementary 

extendible mapping classes generate the group Kg. 

Let f be an extendible mapping class, i.e. an element 

of Kg. The idea is to find another extendible mapping 

class g generated by our generators, such that either gf or 

fg becomes "simpler" than f. The process will be repeated 

until the identity map is obtained. 

Lemma 2.3. Let a be an oriented simple arc on the 

surface F from the basepoint 0 to the endpoint Q of ql at g 

ri, which does not intersect any of the meridian circles 

rifor aZZ i, and does not intersect any of the arcs Pj and 

q.	 for j > s. Then, there exists a self-homeomorphism g
J -

whose homeotopy class is generated by the classes T, M, ~, 
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Furthermore~ (Pj)g = p. if a n p. {oJ , and (qj) 9 q.
] ] ] 

if a n q. = {oJ, for any j > 1. 
] 

Proof· Suppose the arc a intersects ql transversally, 

and denote by k the number of points of the intersection 

a n ql other than 0 and Q. When k 0, the union of these 

two curves becomes a simple closed curve y = aql. 

Figure 2.4 

If Y does not intersect any of the arcs Pi and qi 

other than ql' we may let 9 either be an isotopy if y does 

not separate the circles ri and ri, or a meridian twist 

from M~l if the disk area bounded by y includes r 1 
(Figure 2.4). Otherwise, let P be an intersection point 

closest to Q along Ct. If P E we may use the mappingPl 

class <P to remove it, and if P E Pi or qi' for some i > 2, 

we may use the mapping class 8! or 8i given in Proposition 
~ 

2.2 to remove it. Actually, g will be the mapping which 

moves the cutting circle ri along the curve y, its explicit 

expression in mappings 8i 'S, 8i's and ~ may be easily 

found from the intersection set y n (U(Pi U qi)) along the 

curve y. This clearly leaves the unintersected Pi' and 

qi's unchanged. 
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Suppose k ~ 1, and let P be the intersection point of 

a and ql closest to the point 0 along a. Let 

S = a lop ql IpO · After an isotopy deformation, we have 

the intersection numbers k(ql'S) = 0 and k(S,a) < k - 1. 

And clearly S does not intersect other Pi's and qi's more 

than a does, since we have 

6 n (U(Pi	 U qi» = a lop n(u(Pi U qi»
 

Can (U(Pi U qi»'
 

(Figure 2.5). By induction, we have gl and g2 generated 

by T, M, ~, ~, 8 and n, such that (ql)gl = Sand 

(6)g2 = a. Then, take 9 = glg2. 

Lemma 2.4. Let f be an arbitrary self-homeomorphism 

of the handlebody H ~ such that (r.)f = r.~ for aZl i.
9 1 1 

Then~ the homeotopy class of f is generated by the classes 

T, M, ~, ~, and 8. 

) 

Figure 2.5
 

Proof. This is a direct consequence of Proposition
 

2.2 and Lemma 2.3. Inductively, suppose we have 
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Rotate the handles until (ps,qs) is in the first position, 

switch Ps and qs by ~, simplify Ps by using Lemma 2.3, 

then switch back to simplify qs in the same way, and 

finally rotate it back. Again by Lemma 2.3, all Pi's and 

qi's for i ~ s - 1 are unchanged. 

. : : :. . : . :. . :~ . . . . . : . . : . : . : . :0'·:' 0'" 0'" 0····. 0'" 0···· 
r; r2 r,JII r,1 

Figure 2.6 

r. for i > 3 
1. 

By Lemma 2.4, from now on, it is sufficient to 

study the image of the cutting system ri's of an extendible 

class. Thus, we firs~ discuss some extendible mapping 

classes which change the cutting system. For example, the 

images of the cutting system of the mapping classes X' w 

and n are drawn in Figures 2.6-8. 

Lemma 2.5. Let y be an oriented simpZe aZosed aurve 

on the surface F , which does not intersect any of the g

meridian circles r., and whose homology class in Hl(F ,Z)
1. g 

relative to the meridian circle r is nontrivial (i,e.,i 

Y separates ri and r1 in two sides in the planar repre­

sentation). Then, there exists a self-homeomorphism g 

whose homeotopy class is generated by the classes T, M, ~, 

~, e and n, such that (y)g = r l , and (ri)g = r i , for any 

i > 2. 
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Figure 2.7 

00000
r; ra r; r; 

Figure 2.8 

Proof. Denote by k the number of cutting circles in 

the disk area ~ bounded by y in the planar representation 

of F The lemma will be proved by induction on k. 

l 

g 

For k = 1, the cutting circle in ~ must be either 

r'1 or r"1· If y is oriented in the same way as this 

cutting circl'e, we may let g be an isotopy deformation, 

which deforms y into r • If y is oriented in the oppo­

site way, follow the isotopy by the operation ~, which 

reverses the orientation of r 
l

. 

For k = 2, by some handle switchings and rotations, 

i.e. a mapping class generated by ~, ~ and T, we may 
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suppose that the two cutting circles in ~ are ri and r 2. 
Connecting the point P = P2 n r 2 and the point Q ql n r 1 
by a simple arc ° in ~ which intersects neither ql nor P2 

(Figure 2.9). 

",-----, 
I r" r· I 

. : . . . . . . . . . : . . . . . ~ . . I. . . : . 
10,:­

--'" 
0. < ·: O·:-0·-:2~:':-. \.-: : : / :-. 

~V-qt
 

Figure 2.9 

If ~ does not intersect any other Pi's and qi's, 

the disk ~ is isotopic to a neighborhood of ri U ° U ri 
whose boundary is exactly the circle (rl)n as shown in 

Figure 2.9. Thus, the lemma is done. 

If 0 does intersect some Pi'S or qi's, we may simplify 

the intersection by the method we did in Lemma 2.3. 

Actually, letting a = P2o, apply Lemma 2.3 to reduce to 

the previous case. 

For k > 3, by some handle switchings and rotations, 

i.e. a mapping class generated by ~, ~ and T, we may sup­

pose again that the cutting circles ri and ri are in the 
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···· 0..:::­. .0
0 ..... -- ... y" rill ~ 

A '0'::\. (Q ':':')';,:, ,r~ ~0.' ' ....... _", .....
 

0,. ···· 

0::··
.. 

.. 
([[)

r'

0:.­
, . 

..··0
··
 ..0


~.:'.'.".:'."
'0J

y' 

····
 
..0

o
 
r'"2 
~ 

CL
~ 

y 

Figure 2.10 

domain~. Connecting the point P = P2 n ri and the point 

Q = ql n ri by a simple arc 0 in ~ which intersects neither 

ql nor P2 (Figure 2.10), we may choose a disk neighborhood 

~, of ri U ori contained in the interior of ~ but including 

no other cutting circles. Applying the case of k = 2 to 

the disk ~', the original ~ will be reduced to the case of 

k - 1. 

Applying Lemma 2.5 repeatedly, we have the following 

immediate consequence. 
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Lemma 2.6. Let f be an arbitrary self-homeomorphism 

of the handlebody H , with the property that,
9 

(r.)f n r. = ~, for all i,j = 1,2, •.. ,g. Then, there 
1 J 

exists another seZf-homeomorphism 9 whose homeotopy cZass 

is generated by the classes T, ~, ~, e and n, such that 

1,2, ... ,g. 

Lemma 2.7. Let f be an arbitrary self-homeomorphism 

of the handlebody H , then there exists another self­
9 

homeomorphism 9 whose homeotopy class is generated by the 

classes T, ~, ~, e and n, such that 

9 9
 
( U (r.)f)n( U (r.)g) = ~.
 
i=l 1 i=1 1
 

i.e. none of the circles (r.)gf's intersects a meridian 
1 

circle of ri's. 

Proof. Denote by k for i = 1,2, ••• ,g, and k thei , 

numbers of intersection points given by 

9 
k. #«ri)f n ( U r.» and 

1 ]j=l 

9 ( 9 
k E k. = #( U r.)gf n ( U r.». 

j=1 1 i=l 1 j=l ] 

For k 0, take 9 to be the identity. 

For k > 1, we may suppose k ~ 0, i.e. {rl)f n (Ujr )l j 

~ O. Consider the meridian disks D bounded by the r ini i 

the solid handlebody H , which have nonempty intersection g 

with the disk (Dl)f. By an isotopy deformation, we can 

suppose the set (Dl)f n (U.D.) is a collection of disjoint
J ] 
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arcs in (Ol)f. Thus, there is a disk component of 

(Ol)f - (U.O.) whose boundary circle is formed exactly by
J J 

one arc a from (rl)f and one arc 6 from (Ol)f n Os for 

some s (Figure 2.11). In the planar representation of H ,
g 

the disk Os and the arc 6 have two copies o~, o~, and 6' 

and 6" for each of them, and one of the arcs 6' and 6", 

e.g. 6', together with the arc a forms a simple closed 

curve. 

.. '· 0·:-· 0',. . 0-':'0· ..0. :'· . 

o0:-:· .. 

0:-· 
, ,

0,:'··
 ..
 

0' 

O
0 ~···· .. 

Figure 2.11 

Consider the two boundary circles of an annular 

neighborhood of D~ U a in the representation plane, there 

is one and only one of them, denoted by y, separating D~ 

and O~ in two parts. By Lemma 2.5, we may replace r bys 

y without changing other ri's by composing some mapping 

classes generated by M, T, ~, $, e and n. Since 

# (y n (r l ) f) < # (r n (rl ) f) - 2, and # (y n (r.) f) < 
- s J 

#(r n (r.)f), for j > 2, the number k has been reduceds J -

by at least two. This completes our lemma. 

From Lemmas 2.4, 2.6 and 2.7, we conclude that, 
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Theorem 2.8. The subgroup Kg is generated by M, T, 

<p, ljJ, e and n. 

Proof of Theorem 2.1. All we need is to give the re­

lations between the generators claimed in Theorem 2.1 and 

the mapping classes M, T, <p, ljJ, e and n. By Theorem 1.1 

and using some relations from the paper [5J, we have the 

following equations: 

M = NLN, 

2 - 2
P = M • LNL NL · M,
 

2
 
<p p,
 

4 3
 p N ,
 

e TP2T . (PQN)-l • p2,
 

n TP2T (QNP)-l,
 

PQN N3 . PN2P . p2 . PNPN,
 

N3
p 2 • (PN2P)-1 . p2, 

LNLNLN2LNLNL = LNLN3LN2LNLNL = LNLN3LN3~LN 
6LN2LN2LN = LN2LN4LN = (NLN2L)-1 . N M, 

and 

PNPN M· LNLNLNLNLN2 = M . LN2LNLN2LN2 • N6 

M • LN2LN • N3 . NLN2L. 
By Theorem 2.8 and by the above formulas, Theorem 2.1 

is obvious. 

Remark. The topological explanation of the generators 

of K 
g 

is very clear. M is the 3600 -twist along the 

meridian circle aI' p2 and N3 are the laOO-twists along the 

circles [al,b ] and [a ,b ][a ,b ] respectively, T totatesl 1 1 2 2 
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-3 2 3 3the handles, and N· PN P = N LN • NLN • M is a composition 

of Dehn twists along the curves a l , blalbla2b2a2 and b 2 , 

and is also obtained by sliding one foot of the first 

handle around the longitude b of the second handle2 

(Figure 2.12). 

Figure 2.12 

3.	 Heegaard Splitting of the 3-Sphere S 3 

Let F be the closed orientable surface of genus g
9 

embedded unknottedly in 53 and bounding two handlebodies 

H and H~. Let B = {al,bl,a2,b2, ••• ,ag,bg} be a system of g 

baseaurves on the surface F based at a basepoint 0, such 
9 

that a. 's are meridians of the handlebody H , and b. 's are 
1 g 1 

meridians of the handlebody H'. Let K and K' denote the 
9 9 9
 

subgroups of the group M formed by the mapping classes
 
9 

which	 can extend to the solid handlebodies Band H' 
9 9 
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respectively. For any mapping class f of Mg, we will 

denote by 

M = HI U H 
f g f g 

the closed 3-manifold associated by f, formed by identi­

fying each point X of dH~ with the point (X)f of dH • Itg 

is easy to see, 

Proposition 3.1. For any mapping classes f EM,
g 

h E Kg and hi E KI
g' 

Mf = Mhlfh • 

In particular, Waldhausen ([8J) proved that, 

Theorem 3.2. Any genus-g Heegaard splitting of the 

3-sphere is an element of the semiproduct of subgroups, 

K I K • 
9 

• 

9 

We obtained a specific description of K in the last 
9 

section, now we need one for KI
• In fact, if <.p is a 

9 

homeotopy class induced by a homeomorphism from the)handle­

body HI onto the handlebody H , then K' = ~K~. We will
9 g 9 9 

call such a homeotopy class a transfer operation. For 

example, 

ExampZes 3.3. 

(1) the reversion map R is a transfer operation, 

since 

(ai)R = bg- i +2 (mod g)' and (bi)R a g - i +2 (mod g)' 

for any i = 1,2, ••• ,g. 
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(2) the homeotopy class n = (PT)gT9 = P P ••• P is al 2 g 
transfer operation, where P. = Ti-lpTi - l , since 

1. 

(a.)n = a.b.a., and (b1..)n = a1."1. 1. 1. 1. 

for any i = 1,2, •.. ,g. 

Using the homeotopy class n, we have, 

Proposition 3.4. The subgroup K' = nK n is generated
9 9 

N3 2by the mapping classes T, , p , PN2P and L. 

Proof. The proposition is an obvious consequence of 

the following formulas: 

nMTI = PMP = LPP = L, 

3­nN n 3­ -Pl P2N Pl P2 
PN3pN'3N3pN3pN3 3= N , 

2­nP n PI . p2 . PI = p2 , 

and 2 -nPN Pn = Pl P2 
. PN2P . P2Pl p2 2­. P2N P2 

p2N3 . PN2P -2-3. P N • 

Denote by N the subgroup of M generated by the g 
2 N3elements T, p , and PN2P, which obviously is a subgro~p 

of K' () K Using a result of Powell [6] that the sub­
9 9 

group K' () K is generated by T, N3 , p2 , wand n, we have 
9 9 

the following consequence: 

Corollary 3.5. 

N = K' K9 () g. 
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Theorem 3.6. The associated 3-manifold M of a map­
f 

ping class f is the 3-sphere 53 if and only if f is an 

element of the set 

(L,N) • (N,M). 

Before we end this section, we discuss some more 

relations among the mapping classes in those subgroups. 

Let L. = Ti-1LTi - l , and M. = Ti-1MTi - l , for i = 
1 1 

l,2, ••• ,g. Let Land M denote the abelian subgroups of 

rank g generated by the LilS and Mils respectively. 

Proposition 3.7. For any i 1,2, ••• ,g, 

(b) 

(c) N3
M f or.~ r~ 1 , 2 ,i , 

(d) L.PN2P PN2PL
i

, M PN2p PN2PMi , f or.4~ r ~ 1 " 2 
1 i 

and L PN2 
p PN2PL2 , M PN2p PN2PM

1
.1 2


Proof· Since
 

T [a ,b ,a1 ,b1 ,···,a l,b 1]'9 9 g- g­

[xa2x,xb2x,al,bl··a3,b3,···,ag,bgJ, 

[cla1,b1c1,a2,b2,···,ag,bg]' 

and [xb2xala2b2x,xb2x,al,b2c2b1,a3,b3,···,ag,bg]' 

the proposition is clear. 
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Proposition 3.8. L n N = 1, and M n N = 1. 

Proof. Consider the image of Land N in Siegel's 

modular group ([2J). For any element fEN · f leaves the 

subspace ~g generated by the ai,s in Hl(Fg:~) ~ ~2g in­

variant, by looking at the expressions in the proof of 

the last proposition. But the only element of L having 

this	 property is the identity. Therefore L n N = 1. And 

analogously, Mn N = 1. 
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