TOPOLOGY PROCEEDINGS

Volume 13, 1988

Pages 365-369

http://topology.auburn.edu/tp/

THE HOMOGENEITY OF SMALL MANIFOLDS

by

STEPHEN WATSON

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

THE HOMOGENEITY OF SMALL MANIFOLDS

Stephen Watson*

1. Introduction

A separable space X is said to be *countable dense*homogeneous if, for any two countable dense subsets A and
B in X, there is an autohomeomorphism f of X such that f(A) = B.

A classical result (see [3]) is that any Euclidean space \mathbb{R}^n is countable dense homogeneous.

R. Bennett [1] and, independently, C. Bessaga and A.Pelczynski [2] showed that any manifold of countable weight is countable dense homogeneous (a manifold is any connected topological space for which there is an integer n and an open cover of homeomorphs of R^n). If X is a separable manifold, then $R_0 \leq w(X) \leq 2^{n-1}$. In [4], Steprans and Zhou constructed, by diagonalization, a separable manifold of weight 2^{n-1} which is not countable dense homogeneous and observed that the results of [1] and [2] needed only that w(X) < b where b is the least cardinality of an unbounded family in ω^{ω} (mod finite). In an early version of [4], Steprans and Zhou conjectured that separable manifolds of weight less than continuum might have to be countable dense homogeneous. The purpose of this paper is to construct a separable manifold of

^{*} Supported by a grant from the Natural Sciences and Engineering Research Council of Canada.

366 Watson

weight \aleph_1 which is not countable dense homogeneous by means of \aleph_1 Cohen reals added to the universe. The use of forcing to define neighborhoods in a manifold is perhaps the most interesting part of the paper.

2. The Construction

Let A be the unit open disc.

Let ∂A be the boundary of A in R^2 .

Let D and E be disjoint countable dense subsets of A.

For each $x \in \partial A$, let $L_x : [0,1] \to A \cup \{x\}$ be a continuous injection such that $\operatorname{rng}(L_x \cap E) = \emptyset$ and $L_x(0) = x$ and $L_x(\frac{1}{n}) \in D$. We shall define $M_x : [-1,1] \times [0,1] \to A \cup \{x\}$ to be a continuous mapping such that

- 1. $M_{\mathbf{v}}[([-1,1] \times (0,1])]$ is an injection
- 2. $M_{\mathbf{v}}[(\{0\} \times [0,1]) \simeq L_{\mathbf{v}} \text{ in the canonical way}]$
- 3. $M_{\mathbf{x}}[([-1,1] \times \{0\}) \equiv \mathbf{x}$

 M_X will be defined using $f_X:[0,1] \to [0,1]$ which is a continuous mapping such that $f_X^{-1}(0) = \{0\}$. The counter-example is $X = A \cup ([0,1) \times Y)$ where $Y \subset \partial A$. A is an open subspace of X with the Euclidean topology. $[0,1) \times Y$ as a subspace is the free union of copies of [0,1) with the Euclidean topology.

We need to define how basic open neighborhoods of $[0,1) \times Y$ intersect A.

Let $x \in Y$ and $(r,s) \subset (0,1)$. We declare $((r,s) \times \{x\}) \cup M_X(((r,s) \cup (-s,-r)) \times (0,s-r))$ to be open. Let $x \in Y$ and $[0,r) \subset [0,1)$. We declare $([0,r) \times \{x\}) \cup M_X((-r,r) \times (0,r))$ to be open

This defines a topology on X which depends on the choice of function $f_{\ensuremath{\mathbf{v}}}$.

We shall add \aleph_1 Cohen reals to the universe V. Y is any set of cardinality \aleph_1 in V. Each $d_{\mathbf{X}}$, $L_{\mathbf{X}}$ is an element of V but $\mathbf{M}_{\mathbf{X}}$ is not an element of V. Any Cohen real added to the universe adds canonically an increasing continuous function $f\colon (0,1] \to (0,1]$ such that if $g\colon (0,1] \to (0,1]$ and g < f then $g \not\in V$. List the Cohen reals with index set Y and list the associated increasing functions as $\{f_{\mathbf{X}}\colon \mathbf{X}\in Y\}$. Let $\mathbf{P}_{\mathbf{X}}\colon [-1,1]\times [0,1]\to \mathbf{A}\cup \partial \mathbf{A}$ be a homeomorphism such that $\mathbf{P}_{\mathbf{X}}[(\{0\}\times [0,1])\simeq \mathbf{L}_{\mathbf{X}}$ (in the canonical way). Actually we need $\mathbf{L}_{\mathbf{X}}(1)\in \partial \mathbf{A}$ to do this but do not mention it earlier as it is used only to simplify the proof.

Let $\alpha_n \searrow 0$ where $\alpha_0 = 1$. Find a continuous p: $[-1,1] \times [0,1] \rightarrow [-1,1]$ such that $p(\{0\} \times [0,1]) \equiv 0$ and $p([-1,1] \times [\alpha_{n+1},\alpha_n] \subseteq [-f_{\mathbf{X}}(\alpha_n),f_{\mathbf{X}}(\alpha_n)].$ Define $\mathbf{M}_{\mathbf{X}}$ by $\mathbf{M}_{\mathbf{X}}(\alpha,\beta) = \mathbf{P}_{\mathbf{X}}(p(\alpha,\beta),\beta).$

3. Geometric Details

Reading descriptions of manifolds can be difficult because writing out details of evident geometric facts can turn into masses of notation. Why can L_{χ} be defined?

Let $\{O_n\colon n\in\omega\}$ be a sequence of open sets converging to x such that the line segment L between any point in O_n and any point a in O(n+1) "approaches" x. That is, if 1 and m are points in L and 1 is closer to a than m then 1 is closer to x than m.

368 Watson

Choose $L_{\mathbf{X}}(\frac{1}{2n})\in O_{\mathbf{n}}\cap D$. For each $\mathbf{n}\in \omega$, let R be a copy of [0,1] perpendicular to the line segment between $L_{\mathbf{X}}(\frac{1}{2n})$ and $L_{\mathbf{X}}(\frac{1}{2n+2})$. For each $\mathbf{r}\in \mathbb{R}$, let $\mathbf{T}(\mathbf{r})$ be the union of the line segment between $L_{\mathbf{X}}(\frac{1}{2n})$ and \mathbf{r} and the line segment between $L_{\mathbf{X}}(\frac{1}{2n})$ and \mathbf{r} .

 $\{ T(r): \ r \in R \} \ \text{is a disjoint family except for the}$ points $L_{_{\mathbf{X}}}(\frac{1}{2n})$ and $L_{_{\mathbf{X}}}(\frac{1}{2n+2})$. At least one of these, say $T(r_{_{\mathbf{0}}})$ is disjoint from E. Let $r_{_{\mathbf{0}}} = L_{_{\mathbf{X}}}(\frac{1}{2n+1})$ and let $L_{_{\mathbf{X}}}[([\frac{1}{2n+2},\ \frac{1}{2n}])$ be a one-to-one mapping onto $T_{_{\mathbf{T}\mathbf{0}}}$.

4. D cannot be mapped onto E

Let h: X \rightarrow X be an autohomeomorphism in the generic extension V[G] by all \aleph_1 Cohen reals such that h(D) = E. Now h[D is a countable subset of D \times E which determines h and so there is an intermediate generic extension V[H] by countably many Cohen reals such that h \in V[H]. Let $x \in Y$ be such that the xth Cohen real is generic over V[H].

Let $y = h^{-1}(x)$. There is a sequence $S \subset D$ in V[H] which converges to y since D is dense. By continuity, $h(S) \subset E$ must converge to x. The problem is that no infinite subset of E in V[H] is even contained in any of the basic open sets about X.

To see this, let $h(S) = \{P_{\mathbf{x}}(\delta_n, r_n) : n \in \omega\}$. Note that $|\delta_n| > 0$ and that this definition takes place in V[H]. If $P_{\mathbf{x}}(\delta_n, r_n)$ lies in any basic open set and $r_n \in [\alpha_{\mathfrak{m}(n)+1}, \alpha_{\mathfrak{m}(n)}]$ then $|\delta_n| < f(\alpha_{\mathfrak{m}(n)})$. Define $g \in V[H]$ by extending $g(r_n) = |\delta_{n+1}|$ to a continuous

increasing function from (0,1] to (0,1]. Consider any $\beta \in (0,1]. \quad \text{Find } n \in \omega \text{ such that } r_{n+1} < \beta \leq r_n. \quad \text{We can}$ calculate $g(\beta) \leq g(r_n) = |\delta_{n+1}| < |f(\alpha_{m(n+1)})| < |f(\alpha_{m(n)+1})| < f(r_{n+1}) < f(\beta). \quad \text{We see that } g(\beta) < f(\beta)$ for any β . This contradicts $g \in V[H]$.

References

- [1] R. Bennett, Countable dense homogeneous spaces, Fund. Math., 74:189-194, 1972.
- [2] C. Bessaga and A. Pelczynski, Selected topics in infinite-dimensional topology, Polish Scientific Publishers, 1975.
- [3] W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, 1948.
- [4] J. Steprans and H. Zhou, Some results on CDH spaces-I, Topology and its Applications, 28(1988) 147-154.

York University
North York, CANADA