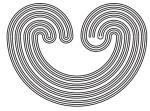
TOPOLOGY PROCEEDINGS

Volume 13, 1988 Pages 385–395



http://topology.auburn.edu/tp/

NON-WANDERING SETS, PERIODICITY, AND EXPANSIVE HOMEOMORPHISMS

by

J. D. WINE

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOON.	0146 4194

ISSN: 0146-4124 COPYRIGHT © by Topology Proceedings. All rights reserved.

NON-WANDERING SETS, PERIODICITY, AND EXPANSIVE HOMEOMORPHISMS

J. D. Wine

In what follows we examine the non-wandering set of a homeomorphism of a compact metric space onto itself, the ω -limit set of a point in the space, and the relationships that develop when we allow the homeomorphism to be expansive and/or the non-wandering set to be composed only of periodic points. The three possibilities examined are when the non-wandering set is pointwise periodic, the nonwandering set equals the union of ω -limit points, and when every point in the space is positively asymptotic to a point in the non-wandering set. Examples are given or cited which narrow down the possible relationships.

Preliminaries. We begin by introducing the necessary terminology and notation.

Definition 1. A homeomorphism h of a metric space (X, ρ) onto itself is *expansive* with expansive constant $\delta > 0$ if given any two distinct points x and y of X there is an integer n such that $\rho(h^n(x), h^n(y)) > \delta$.

Definition 2. If h is a homeomorphism of a metric space (X,ρ) onto itself, then a point x of X is a nonwandering point of h if for every open neighborhood U of x and for every positive integer N, there exists an integer n > N such that $h^{n}(U) \cap U$ is nonempty.

Wine

The set of non-wandering points of h will be denoted by $\Omega(h)$. We note that $\Omega(h)$ is a closed subset of (X, ρ) .

Definition 3. If h is a homeomorphism of the metric space (X,ρ) onto itself and x is a point of X, then the orbit of x (denoted by O(x)) is $\cup \{h^n(x) \mid n \text{ is an integer}\}$.

Definition 4. Let h be a homeomorphism of a metric space (X,ρ) onto itself and let x be a point of X. The ω -limit set of x under h (denoted by $\omega(x)$) is the set of limit points of the positive semi-orbit of x, $\bigcup_{i=1}^{\infty} h^{i}(x)$.

Note that for any point x of a metric space (X, ρ) and any self homeomorphism of (X, ρ) , we have $\omega(x)$ is a subset of $\Omega(h)$.

Definition 5. Let x and y be points of the metric space (X,ρ) and let h be a homeomorphism of (X,ρ) onto itself. If for every $\varepsilon > 0$ there is an integer N such that for each integer n greater than N, $\rho(h^n(x),h^n(y)) < \varepsilon$, then x is positively asymptotic to y.

Definition 6. Let x be a point of the metric space (X, ρ) and let h be a homeomorphism of (X, ρ) onto itself. The homeomorphism h is almost periodic at x provided that for any neighborhood U of x there exists a relatively dense subset D of the integers such that $h^{n}(x)$ is in U when n is in D. (D is relatively dense in the integers I if I = D + K for some finite subset K of I.) If the set D is a subgroup of the integers then h is regularly almost periodic at x. Definition 7. Let h be a homeomorphism of the metric space (X,ρ) onto itself. The set $\{x_{\alpha} \mid \alpha \in A\}$ is an *orbital* basis of (X,ρ) with respect to h if $U\{O(x_{\alpha}) \mid \alpha \in A\} = X$, and α not equal to β implies $O(x_{\alpha})$ is not $O(x_{\beta})$.

Results. The first theorem is known, at least when P is equal to X, and is included for completeness.

Theorem 1. Let (X,ρ) be an infinite compact metric space. If h is a homeomorphism of (X,ρ) onto itself which is pointwise periodic on a dense subset P of X, then h is not expansive on (X,ρ) .

Proof. Let δ be an arbitrary positive real number and let $\beta = \{x_{\alpha} \mid \alpha \in A\}$ be an orbital basis of (X, ρ) with respect to h. Let G be an open cover of X by $\delta/2$ neighborhoods of the points of X and let H be a finite subcover of G. If β^* is the subset of β such that $x_{\alpha} \in \beta^*$ implies h is periodic at x_{α} , then β^* cannot be finite and there is an open set G of H such that G contains two elements of β^* , call them x_1 and x_2 , with periods p_1 and p_2 respectively. If $p = p_1 p_2$, then it is clear that h^p is not expansive with expansive constant δ since $\rho(x_1, x_2) < \delta$ and they are fixed points under h^p . However, if h were expansive, h^p would be expansive for some δ since (X, ρ) is compact.

The next two results examine the structure of $\omega(x)$ for a point x of a compact metric space under a homeomorphism onto itself.

Theorem 2. Let (X,ρ) be a compact metric space and let h be a homeomorphism of (X,ρ) onto itself. If x is a point in X, then there is no decomposition of $\omega(x)$ into unions of orbits of h that have positive separation.

Proof. For x a point of X, suppose $\omega(x)$ is the union of the families $A = \bigcup\{O(Y_i) | i \in P\}$ and $B = \bigcup\{O(Y_j) | j \in Q\}$, $Q \cap P = \emptyset$. Further, suppose that the distance between A and B is $L = \inf\{\rho(u,v) | u \in A, v \in B\}$ and that L is not zero. Since h is uniformly continuous there is a positive real number ε such that $\varepsilon < L/3$ and $\rho(u,v) < \varepsilon$ implies $\rho(h(u),h(v)) < L/3$ for every u and v in X. Let A* and B* be ε -neighborhoods of A and B respectively. By construction, the intersection of A* and B* is empty.

For the same point x in X, now let $A = \{k | k \text{ is a positive integer, } h^{k}(x) \in A^{*}\}$ $B = \{k | k \text{ is a positive integer, } h^{k}(x) \in B^{*}\}$ $C = \{i | i \text{ is a positive integer, } h^{i}(x) \notin A^{*}\}$ and $H = \{\hat{k} | \hat{k} = \max\{i | i \in C, i < k, k \in A\}.$

The cardinality of H is infinite since such is true for B and A. The intersection of H and B is empty since $n \in H \cap B$ implies $h^{n}(x) \in B^{*}$ and hence $\rho(h^{n+1}(x), u) < L/3$ for some u in B, but $h^{n+1}(x)$ is in A*.

Since (X,ρ) is compact, the set $S = \{h^k(x) | \hat{k} \in H\}$ has a cluster point p. Thus p is in $\omega(x)$, but p is not in $A \cup B$. A contradiction has been reached. In the next result, for the first time, we require that h be an expansive homeomorphism of a compact metric space onto itself.

Theorem 3. Let (X, ρ) be a compact metric space and let h be an expansive homeomorphism of (X, ρ) onto itself. If $\Omega(h)$ is pointwise periodic, then for every point x of X, $\omega(x)$ is either a single orbit or $\omega(x)$ is empty.

Proof. The set $\omega(\mathbf{x})$ is closed and invariant under the homeomorphism h. Since $\omega(\mathbf{x})$ is a subset of $\Omega(\mathbf{h})$, $\omega(\mathbf{x})$ must be periodic, and since h restricted to $\omega(\mathbf{x})$ is expansive, the cardinality of $\omega(\mathbf{x})$ is finite. However, if $\omega(\mathbf{x})$ is finite and has more than one orbit, then any decomposition of $\omega(\mathbf{x})$ into unions of orbits would have a positive separation of components. This is in contradiction to the preceding theorem. Therefore, $\omega(\mathbf{x})$ can have at most one orbit.

Theorem 4. Let (X,ρ) be a compact metric space and let h be an expansive homeomorphism of (X,ρ) onto itself. If $\Omega(h)$ is pointwise periodic, then every point of X is positively asymptotic to a point of $\Omega(h)$.

Proof. Let x be a point in X. Since (X,ρ) is compact, $\omega(x)$ is not empty unless x is in $\Omega(h)$. If x is in $\Omega(h)$, then x is positively asymptotic to $h^{p}(x)$, where p is the period of x.

If $\omega(\mathbf{x})$ is not empty, let $\omega(\mathbf{x})$ consist of $O(\mathbf{y})$, then y is periodic and by Lemma 3 in [1] it must be the case that there is a point z of $O(\mathbf{y})$ such that x and z are positively asymptotic. Theorem 11 of Bryant and Walters in [3] is now a corollary of Theorem 4.

Corollary 4A. Let (X, ρ) be a compact metric space and h be an expansive homeomorphism of (X, ρ) onto itself. If $\Omega(h)$ is finite, then every point of X is positively asymptotic to a point in $\Omega(h)$.

Proof. If $\Omega(h)$ is finite, it is pointwise periodic.

As noted earlier, for any homeomorphism h of a metric space (X,ρ) onto itself and for any point x of X we have $\omega(x) \subset \Omega(h)$. We now give sufficient conditions for equality to exist.

Theorem 5. Let (X,ρ) be a compact metric space, let h be an expansive homeomorphism of (X,ρ) onto itself with $\Omega(h)$ pointwise periodic, and for each x in $\Omega(h)$ let there be a y in X such that y is positively asymptotic to x, y \neq x. Then $\Omega(h) = \bigcup \{ \omega(x) \mid x \in X \}$.

Proof. Let x be a point of the non-wandering set, $\Omega(h)$, with period p, let y be the point in X which is positively asymptotic to x, and let an arbitrary $\varepsilon > 0$ be given. There is a positive integer N such that for all n > N, $\rho(h^n(x), h^n(y)) < \varepsilon$. Therefore, there is a positive integer k such that $\rho(x, h^{(k+m)p}(y)) = \rho(h^{(k+m)p}(x),$ $h^{(k+m)p}(y)) < \varepsilon$ for all positive integers m. Hence x is in $\omega(y)$ and $\Omega(h) \subset \cup \{\omega(x) | x \in X\}$ and we have equality of the two sets. Examples. The first example illustrates that in Theorem 5 some hypothesis beyond h being expansive and $\Omega(h)$ pointwise periodic is needed for the equality in the conclusion.

Example 1. We use an example given by Bryant and Walters [3, page 65], among others. The space (X, ρ) is a subspace of the real numbers where

$$X = \{0,1\} \cup \{x = \frac{1}{n} | n = 2,3,4,\cdots\} \cup \{x = 1 - \frac{1}{n} | n = 3,4,5,\cdots\},$$
$$h(x) = \begin{cases} x, \text{ if } x \text{ is } 0 \text{ or } 1 \\ \\ \\ \\ x, \text{ otherwise} \end{cases}$$

and x is the point immediately to the right of x. Equality between $\Omega(h)$ and $\cup \{\omega(x) | x \in X\}$ does not hold.

We now give an example of a compact metric space which has an expansive homeomorphism possessing the following properties:

- the non-wandering set is equal to the union of the ω-limit points, but
- (2) the non-wandering set is not pointwise periodic, and
- (3) there is a point which is not positively asymptotic to any point in the non-wandering set.

Example 2. Define the following subsets of Euclidean 3-space where the points are given in cylindrical coordinates

 $C = \{(1,\theta,0) | \theta = 0, \pi/n, \text{ or } \frac{2n-1}{n}\pi \text{ for } n \text{ a}$ positive integer}

$$C_{k} = \{ \left(\frac{k}{k+1}, \theta(M_{k}), \frac{1}{2+k} \right) | \theta(M_{k}) = \pi + \frac{M_{k}\pi}{|M_{k}|+1},$$

 $-k \leq M_k \leq k, M_k$ an integer}, $k = 0, 1, 2, \cdots$

$$L = \{(0,0,\frac{k}{k+1}) | k = 2,3,4,\cdots\} \cup \{(0,0,1)\}$$

T = C translated by the vector (-1,0,1).

Let (X,ρ) be the metric space which is obtained by considering the union of the above sets to be a subspace of Euclidean 3-space (see diagram). The space (X,ρ) is compact.

We now define the function h taking (X,ρ) onto itself by the following.

- (1) For points in L, h((0,0,1)) = (0,0,1) $h((0,0,\frac{k}{k+1})) = (0,0,\frac{k-1}{k})$ $k = 2,3,4,\cdots$
- (2) For points r in C_k , let r be the point in C_k with next larger angular coordinate, and let q_k be the point in C_k with smallest angular coordinate, and define

$$h(r) = \begin{cases} r, r \text{ not having largest angular coordinate} \\ in C_k \\ q_{k+1}, \text{ otherwise} \end{cases}$$

(3) For points r in C, h((1,0,0)) = (1,0,0) $h(r) = \hat{r}$ otherwise where \hat{r} is defined the same as for C_k.

(4) For points in T,

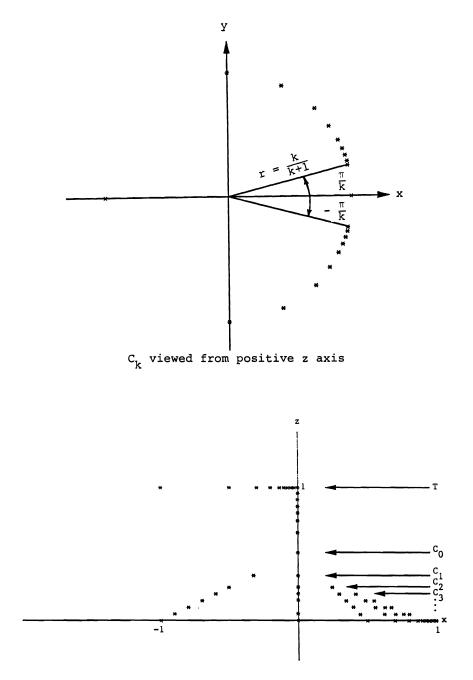
define h as for analogous points in C. We observe the following concerning h:

- (i) h is a self homeomorphism of (X, ρ)
- (ii) h is expansive with expansive constant of 1/6
- (iii) the non-wandering set of h is composed of $\{(0,0,1)\} \cup C$
 - (iv) the union of the ω -limit points of h is equal to the non-wandering set,
 - (v) the non-wandering set is not pointwise periodic, and
 - (vi) the point (0,0,1/2) is not positively asymptotic to any point in X.

If we let P, Q, and R be the following properties of a self homeomorphism h

- P: the non-wandering set of h is pointwise periodic,
- Q: the non-wandering set of h equals the union of ω-limit points,
- R: every point in X is positively asymptotic to a point in the non-wandering set,

then for (X,ρ) compact and h expansive, besides the implications shown we have that Example 2 shows that property Q implies neither property P nor property R.



 $(\textbf{X}, \boldsymbol{\rho})$ viewed from negative y axis

There is an example [4, page 342] of a nonexpansive homeomorphism on a compact metric space in which property R is true but property P is not. Whether for expansive homeomorphisms of compact metric spaces property R implies anything about properties P or Q, appears to be an open question.

References

- B. F. Bryant, On expansive homeomorphisms, Pacific J. Math 10 (1986), 1163-1167.
- [2] _____, Expansive self-homeomorphisms, Amer. Math. Monthly 69 (1962), 386-391.
- B. F. Bryant and P. Walters, Asymptotic properties of expansive homeomorphisms, Math. Systems Theory 3 (1969), 60-66.
- W. H. Gottschalk, Minimal sets: an introduction to topological dynamics, Bull. Amer. Math. Soc. 64 (1958), 336-351.
- [5] W. R. Utz, Unstable homeomorphisms, Proc. Amer. Math. Soc. 1 (1950), 769-774.
- [6] R. K. Williams, On expansive homeomorphisms, Amer. Math. Monthly 76 (1969), 176-178.
- [7] _____, Some results on expansive mappings, Proc. Amer. Math. Soc. 26 (1970), 655-663.
- [8] _____, Further results on expansive mappings, Proc. Amer. Math. Soc. 58 (1976), 284-288.
- [9] J. D. Wine, Extending expansive homeomorphisms, Proc. Amer. Math. Soc. 86 (1982), 531-534.

University of Wisconsin - LaCrosse

LaCrosse, Wisconsin 54601