TOPOLOGY PROCEEDINGS

Volume 14, 1989 Pages 41–45

http://topology.auburn.edu/tp/

THE SET OF NONUNIFORM ULTRAFILTERS IS C^* -EMBEDDED FOR SINGULAR CARDINALS

by

WILLIAM G. FLEISSNER AND JACK PORTER

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

THE SET OF NONUNIFORM ULTRAFILTERS IS C*-EMBEDDED FOR SINGULAR CARDINALS

William G. Fleissner¹ and Jack Porter

Our notation follows [CN] except that we use κ , rather than α , as the typical cardinal, and we use fewer parentheses. We consider κ to have the discrete topology, and $\beta\kappa$ to be the set of ultrafilters on κ . κ^* is the set of free ultrafilters; for $A \subset \kappa$, set $A^* = \{p \in \kappa^* : A \in p\}$. $\{A^*: A \subset \kappa\}$ is a base for a compact, T_2 , topology on $\beta\kappa$. For $p \in \beta\kappa$, set $\|p\| = \min\{|A|: A \in p\}$. Set $U\kappa =$ $\{p \in \kappa^* : \|p\| = \kappa\}$ and $N\kappa = \{p \in \kappa^* : \omega \leq \|p\| < \kappa\}$. We say that a subspace A is C*-embedded in a space X, if every continuous function f: $A \neq [0,1]$ can be extended to a continuous g: X + [0,1]. We say that N κ is C*-embedded if it is C*-embedded in $\beta\kappa$ (equivalently, in κ^*).

Fine and Gillman [FG] asked whether $N\omega_1$ is C*embedded; Warren [W] answered, "No". Dow and Merrill [DM] showed (i) if κ is weakly compact, then N κ is C*embedded, (ii) assuming V = L, if κ is uncountable, regular, and not weakly compact then N κ is not C*-embedded, (iii) it is consistent, modulo large cardinals, that for uncountable regular κ , N κ is C*-embedded. In this paper we consider whether N κ is C*-embedded for singular κ . We wish to thank Fred Galvin for calling this question to our attention.

¹Research supported by NSF grant DMS 8802814

It is a tempting trap to assert the equation $\cup \{\alpha^*: \delta < \alpha < \kappa\} = N\kappa;$ it holds only when κ is regular. If it were true for $\kappa > cf(\kappa) = \omega$, then NK would be an open F_{σ} , hence C*-embedded. However, for all $p \in \kappa^*$ and for all $\{A_n: n \in \omega\} \subset p$, there exists $B \in [\kappa]^{\omega}$ with $B \setminus A_n$ finite for all n, and thus there exists a $q \in \kappa^* \cap$ $\cap \{A_n^*: n \in \omega\}$ with $\|q\| = \omega$. Hence for $\kappa > \omega$, NK is not an F_{σ} in κ^* .

Let us fix, for the rest of this paper, a singular cardinal κ . Write κ as the disjoint union of small sets: $\kappa = \bigcup \{L_i: i < cf(\kappa)\}$, where $|L_i| < \kappa$. We make the following definitions.

 $Bd = \bigcup \{L_{i}^{*}: i < cf(\kappa)\}$ $T = \{T \subseteq \kappa: | \dot{T} \cap L_{i} | < \omega \text{ for all } i\}$ $Th = \bigcup \{T^{*}: T \in T\}.$ Note that if $T \in T$, then $|T| \leq cf(\kappa)$.

Lemma 1. Bd is a closed subspace of the normal space BD \cup K; hence Bd is C*-embedded in K*.

Proof. Note that Bd $\cup \kappa$ is homeomorphic to the discrete union of the compact T_2 spaces βL_i , $i < cf(\kappa)$, and that κ consists of isolated points. The second sentence follows from Tietze's Extension Theorem.

Lemma 2. $cl_{\kappa*}Bd = \kappa* Th.$

Proof. Suppose that $A \in p \in \kappa^* \setminus Th$. For some i, $B = A \cap L_i$ is infinite. Then $\emptyset \neq B^* \subset A^* \cap Bd$. The reverse inclusion follows since Th is open.

Lemma 3. Suppose that $G \in C$ Th is open in κ^* . If there is a p' $\in cl_{\kappa^*}G \in \cap U\kappa$, then there is a $p \in cl_{\kappa^*}G \in \cap cl_{\kappa^*}Bd \cap N\kappa$.

Proof. Set $v = cf(\kappa)^+$. By induction on $\alpha < v$, define $A_{\alpha} \in p'$ and countable $T_{\alpha} \in T$. Set $A_0 = \kappa$; and in general set $A_{\alpha} = \kappa \setminus \bigcup \{T_{\gamma} : \gamma < \alpha\}$. $A_{\alpha} \in p'$ because p' is uniform. Having defined A_{α} , we can choose $T_{\alpha} \subset A_{\alpha}$, $T_{\alpha} \in T$, with $T_{\alpha} * \subset A_{\alpha} * \cap G\epsilon$ because p' $\in cl_{\kappa} * G\epsilon$. Note that the family $\{T_{\alpha} : \alpha < v\}$ is pairwise disjoint.

Let r be a uniform ultrafilter on v; for each $\alpha < \nu$, let $q_\alpha \in T_\alpha^*.$ We define

 $p = \{ p \subset \kappa : \{ \alpha \in v : p \in q_{\alpha} \} \in r \}.$

(Loosely speaking, p = f q dr). It is routine to verify that for all $D \subseteq \kappa$, either $D \in p$ or $\kappa \setminus D \in p$, and that p is closed under intersection because r and the q_{α} 's are. Because $\cup \{T_{\alpha}: \alpha < \nu\} \in p$, $\|p\| \leq \nu$. The family $\{T_{\alpha}: \alpha < \nu\}$ is pairwise disjoint and r is uniform; hence $\|p\| \geq \nu$. Thus $p \in cl_{\kappa*}Bd \cap N\kappa$. If $D \in p$, then for some α (in fact for many α 's) $(D \cap T_{\alpha})^* \subseteq G\epsilon$; hence $p \in cl_{\kappa*}G\epsilon$.

Theorem 4. If κ is a singular cardinal, then $N\kappa$ is $C^{\star}\text{-embedded}.$

Proof. We show C*-embedded. Let a continuous function f: $N\kappa \neq [0,1]$ be given. Set $f_1 = f|_{Bd}$; by Lemma 1, we can extend f_1 to a continuous f_2 : $(Bd \cup \kappa) \neq [0,1]$. By the unique extension of properties of $\beta\kappa$, we can extend f_2 to f_3 : $\beta\kappa \neq [0,1]$. Now f and f_3 agree on cl_{κ} *Bd; however f and f_3 may disagree on Th.

Define g: $N\kappa + [0,1]$ by $g(x) = f(x) - f_3(x)$. Note that g(x) = 0 for all $x \notin Th$. Extend g to $g_1: \kappa^* + [0,1]$ by setting $g_1(y) = 0$ for $y \in U\kappa$. Because $N\kappa$ is open in κ^* , g_1 is continuous on $N\kappa$; we must show that g_1 is continuous on $U\kappa$. Towards a contradiction, assume that for some $p' \in U\kappa$ and $\varepsilon > 0$, p' is not in the interior of $\{x \in \kappa^*: g_1(x) \le \varepsilon\}$. That is, p' is in the closure of $\{x \in \kappa^*: |g_1(x)| > \varepsilon\} = \{x \in N\kappa: |g(x)| > \varepsilon\} \subset Th$; let's call this set $G\varepsilon$. Now Lemma 2 gives a point $p \in cl_{\kappa^*}G\varepsilon \cap cl_{\kappa^*}Bd \cap N\kappa$. We get $|g(p)| \ge \varepsilon$ and g(p) = 0. Contradiction!

Finally, $f_3 + g_1$ is the desired continuous extension of f.

Dow and Merrill [DM] remark that it is known that $N\mu$ is strongly zero dimensional whenever μ is an infinite cardinal and $cf(\mu) < \omega_2$, and they asked for which μ is $N\mu$ strongly zero dimensional. We give a partial answer below.

Corollary 5. If κ is a singular cardinal, then $N\kappa$ is strongly zero dimensional and **2**-embedded in $\beta\kappa$.

Proof. We note that NK is dense and C*-embedded in κ^* ; hence $\beta NK = \kappa^*$. Since κ^* is zero dimensional, the result follows from [PW], 4.7 (h) and (f).

Let κ be an infinite cardinal and $\omega < \mu \leq \nu$. Set $M(\nu,\mu) = \cup \{A^*: A \subseteq \nu \text{ and } |A| < \mu\}.$ Let us suppose that $M(\nu,\mu)$ is not C*-embedded in ν^* ; then $M(\nu,\mu)$ is not C*-embedded in $\nu \cup M(\nu,\mu)$. Because $M(\nu,\mu)$ is closed in $\nu \cup M(\nu,\mu)$, $\nu \cup M(\nu,\mu)$ is not normal. Theorem 1 of [M] asserts that $M(\nu,\mu)$ is normal iff $\nu \cup M(\nu,\mu)$ is normal. Hence, $M(\nu,\mu)$ is not normal. This suggests the question of whether it is possible for $M(\nu,\mu)$ to be not normal but still C*-embedded in ν^* . A positive answer follows by coupling Theorem 4 with Proposition 1 of [M], which asserts that $M(\kappa,\kappa)$ is not normal whenever κ is singular.

References

- [CN] W. Comfort and S. Negrepontis, The theory of ultrafilters, Springer, New York 1974.
- [DM] A. Dow and J. Merrill, $\omega_2^{*\setminus U(\omega_2)}$ can be C*-embedded in $\beta\omega_2$, preprint.
- [FG] N. Fine and L. Gillman, Extensions of continuous functions in βN , Bull. AMS 66 (1960), 376-381.
- [M] V. I. Malyhin, Nonnormality of some subspaces of βX, where X is a discrete space, Dokl. Akad. Nauk SSSR 211 (1973), 781-783 = Sov. Math. Dokl. 14 (1973), 1112-1115.
- [PW] J. Porter and R. Woods, Extensions and absolutes of Hausdorff spaces, Springer, New York, 1987.
- [W] N. Warren, Properties of the Stone-Cech compactifications of discrete spaces, Proc. AMS 33 (1972), 599-606.

University of Kansas

Lawrence, Kansas 66045-2142