TOPOLOGY PROCEEDINGS Volume 14, 1989

Pages 59–74

http://topology.auburn.edu/tp/

A GENERALIZATION OF SCATTERED SPACES

by

H. Z. HDEIB AND C. M. PAREEK

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A GENERALIZATION OF SCATTERED SPACES

H. Z. Hdeib and C. M. Pareek

1. Introduction

Scattered spaces have been studied by several authors (see [6], [7], [8], [11], [12], [13], [14], [15], [16] and [17]). Recently, in [11], [15] and [17] some generalizations of scattered spaces have been considered and have been extensively studied. Our interest in this topic was stimulated by some questions in [8] and some of the results obtained in [11], [15] and [18].

In this paper, we introduce the concept of ω -scattered spaces as a natural generalization of the concept of scattered spaces. It is proved that in the class of compact Hausdorff spaces the concept of w-scatteredness of the space coincides with scatteredness. It is noted that w-scattered need not be scattered in general. Also, the C-scattered spaces introduced in [15] are not comparable with the ω -scattered spaces. We start out by giving a characterization of w-scattered spaces. Then, a relationship between ω -scatteredness of the space and scatteredness of some extensions is established. This relationship helps us to prove that Lindelöf P*-spaces are functionally countable and Lindelöf w-scattered spaces are functionally countable. Later on, we show that for a compact Hausdorff space X, (i) X is scattered, (ii) X is ω -scattered and (iii) X is functionally countable are

equivalent. Finally, some product theorem for a class of Lindelöf spaces have been established, and it is proved that a T_3 , first countable, paracompact, and ω -scattered space is metrizable. The last result improves a result of Wicke and Worrell in [18].

2. Preliminaries

In this section some essential definitions are introduced, notations are explained and some basic facts which are essential in obtaining the main results are stated.

Throughout this paper X denotes a T_1 space. The symbol ω and c denote the cardinal number of integers and reals respectively. The cardinality of any set A is denoted by |A|.

Definition 2.1 [9]. A function f: $X \rightarrow Y$ is called barely continuous if, for every non-empty closed $A \subseteq X$, the restriction f_{|A} has at least one point of continuity.

Definition 2.2 [8]. A space X is called functionally countable if every continuous real valued function on X has a countable image.

Definition 2.3 [8]. Given a topological space (X,T), b(X,T) will represent the set X with the topology generated by the G_{δ}-sets of (X,T). Sometimes T is not mentioned and bX is written instead of b(X,T).

Definition 2.4 [3]. A space X is called a P-space if the intersection of countably many open sets is open.

Now, we list some known results which will be helpful in obtaining the main results.

Theorem 2.5 [2]. If X is a regular, Lindelöf, scattered space, then bX is Lindelof.

Theorem 2.6 [8]. If X is a regular, Lindelöf, P-space, then X is a functionally countable.

Theorem 2.7 [9]. If f is a barely continuous function from a hereditarily Lindelöf space X onto a space Y, then Y is Lindelöf.

Theorem 2.8. If X is a T_2 , Lindelof, P-space, then X is normal.

3. ω-Scattered Spaces

A space X is called ω -scattered if every non-empty subset A of X has a point x and an open neighborhood U_X of x in X such that $|U_x \cap A| \leq \omega$.

Every scattered space is ω -scattered but the converse is not true, because every countable space is ω -scattered, while the (countable) set of rationals with the usual topology is not scattered.

A space X is C-scattered [15], if every non-empty closed subset A of X has a point with a compact neighborhood in A. The following remark shows that ω -scattered spaces and C-scattered space are not comparable.

Remark 3.1. The set of rationals Q with usual topology is ω -scattered. However, it is not C-scattered since no point of Q has a compact neighborhood.

The set of reals $\mathbb R$ with usual topology is C-scattered (in fact, it is locally compact) but not ω -scattered.

A point x of a space X is called a *condensation* point of the set $A \subseteq X$ if every neighborhood of the point x contains an uncountable subset of A.

Definition 3.2 [4]. A subset A of a space X is called ω -closed if it contains all of its condensation points. The complement of an ω -closed set is called ω -open.

Observe that $A \subseteq X$ is ω -open iff for each x in A there is an open set U in X containing x such that $|U - A| \leq \omega$.

The next theorem characterizes w-scattered spaces.

Theorem 3.3. For any space X the following are equivalent:

(i) X is ω -scattered.

(ii) Every nonempty ω -closed subset A of X contains a point x which is not a condensation point.

(iii) There exists a well ordering \leq of X such that for each $x \in X$, the set $A_x = \{y \in X \mid y \leq x\}$ has the property that for each $y \in A_x$ there exists an open set

 U_{y} containing y such that $|U_{y} \cap (X - A_{x})| \leq \omega$, i.e., for each $x \in X$, the set A_{y} is ω -open.

Proof. (i) + (ii) is obvious.

(ii) + (iii). Let X be a space in which every nonempty closed subset has a point which is not a condensation point. Then X has a point x_1 which is not a condensation point. Now, X - $\{x_1\}$ is ω -closed in X and therefore X - $\{x_1\}$ has a point x_2 which is not a condensation point. Then X - $\{x_1, x_2\}$ is ω -closed. Finally, using transfinite induction one can complete the proof.

(iii) + (i). Let A be any nonempty subset of X. Since X is well ordered, A has a first element, say x_0 . Now, by the hypothesis $A_{x_0} = \{y \in X | y \le x_0\}$ is ω -open. Hence, X is ω -scattered.

Definition 3.4 [5]. A function f: $X \rightarrow Y$ is called ω -continuous at $x \in X$ if for every open set V containing f(x) there is an ω -open set U containing x such that f(U) \subseteq V. If f is ω -continuous at each point of X, then f is ω -continuous on X. A function f: $X \rightarrow Y$ is called barely ω -continuous if for every non-empty closed subset A of X, f_{|A} has at least one point of ω -continuity.

The following theorem provides a basic tool to obtain some of the main results.

Theorem 3.5. If (X,T) is a topological space and T_{ω} is the topology on X having as a base {U - C| U \in T and

C is finite or countable}, then for any $A \subset X$ the following holds:

(i) A is
$$\omega$$
-open if an only if A is open in
(X,T_w), i.e., $A \in T_{\omega}$.

(ii) A is
$$\omega$$
-closed if and only if A is closed
in (X,T_{ω}) , i.e., $X - A \in T_{\omega}$.

(iii) f:
$$(X,T) \rightarrow Y$$
 is ω -continuous if and only
if f: $(X,T_{\omega}) \rightarrow Y$ is continuous.

(iv) f:
$$(X,T) + Y$$
 is barely ω -continuous if and
only if f: $(X,T_{\omega}) + Y$ is barely continuous.

The proof is straightforward.

Theorem 3.6. If (X,T) is Lindelöf, then (X,T $_{\!\!\omega})$ is Lindelöf.

The proof is straightforward, therefore left for the reader.

Theorem 3.7. If f: $(X,T) \rightarrow Y$ is barely ω -continuous and (X,T) is hereditarily Lindelöf, then Y is Lindelöf.

Proof. It follows from theorem 3.6 that (X,T_{ω}) is hereditarily Lindelöf. By theorem 3.5, f: $(X,T_{\omega}) + Y$ is barely continuous. Hence by theorem 2.7, Y is Lindelöf.

Theorem 3.8. (X,T) is w-scattered if an only if (X,T_{ω}) is scattered.

The proof is obvious by the Theorem 3.5.

Definition 3.9 [4]. A space X is called a P*-space if the intersection of countably many open sets is ω -open.

Theorem 3.10. If (X,T) is a T_2 , Lindelöf P*-space, then (X,T) is functionally countable.

Proof. Suppose (X,T) is a Lindelöf P*-space, then by Theorem 3.6, (X,T_{ω}) is Lindelöf. Now, (X,T_{ω}) is a T_2 , Lindelöf P-space. Thus, by Theorem 2.8, (X,T_{ω}) is normal. Hence, by Theorem 2.6, (X,T_{ω}) is functionally countable. Let f: $(X,T_{\omega}) \rightarrow (X,T)$ be the identity function. Then, f is continuous. Since (X,T_{ω}) is functionally countable, it is easy to see that (X,T) is functionally countable.

Theorem 3.11. (X,T) is w-scattered if and only if every function f on (X,T) is barely w-continuous.

Proof. Suppose (X,T) is ω -scattered. Let f: (X,T) \rightarrow Y be a function from (X,T) onto an arbitrary space Y. Let A be any ω -closed subset of X. Then, A contains a point x_0 which is not a condensation point by Theorem 3.3. Now, it is easy to conclude that $f_{|A}$ is ω -continuous at x_0 . Hence, f is barely ω -continuous.

For the converse, suppose that any function f from (X,T) onto any space is barely ω -continuous. So, in particular the identity function i_x from (X,T) onto X with discrete topology is barely ω -continuous. Let A be any non-empty ω -closed subset of X. Then, $i_x|_A$ is ω -continuous at some y in A, i.e., there is an ω -open set U such that $U \cap A = i_x^{-1}(i_x(y)) = \{y\}$. Hence, (X,T_{ω}) is scattered. Therefore, by Theorem 3.8 (X,T) is ω -scattered.

Notation. Let X be a topological space. Let $X^{(0)} = X$. Let $X^{(1)}$ denote the collection of condensation points of X. With $X^{(\alpha)}$ for an ordinal α , let $X^{(\alpha+1)} = (X^{(\alpha)})^{(1)}$. If α is a limit ordinal, let $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)}$. It is easy to see that X is ω -scattered if and only if $X^{(\alpha)} = \phi$ for some α .

Theorem 3.12. If X is a Lindelöf w-scattered space then bX is Lindelöf.

Proof. Let α be an ordinal such that $x^{(\alpha)} = \phi$. α exists because X is ω -scattered. If $\alpha = 1$, then it is easy to see that X is countable because X is Lindelöf. Hence the result follows. Suppose we have proved the result for all $\beta < \alpha$. That is, if $\beta < \alpha$ and $x^{(\beta)} = \phi$, then bX is Lindelöf.

Case 1. There is $\beta < \alpha$ such that $\beta + 1 = \alpha$ and $X^{(\alpha)} = \phi$. It is easy to see that $X^{(\beta)}$ is a countable closed subset of X. Consider the open cover $\mathcal{U} =$ $\{X - X^{(\beta)}\} \cup \{U_X \mid X \in X^{(\beta)}\}$ where $|U_X \cap X^{(\beta)}| \leq \omega$ for each x and U_X is open in X containing x. Since X is regular, there exists an open cover \mathcal{H} of X such that the closure of members of \mathcal{H} refines \mathcal{U} . X is Lindelöf implies \mathcal{H} has a countable subcover \mathcal{V} . Now if $\mathcal{V} \in \mathcal{V}$ and $\overline{\mathcal{V}} \subseteq X - X^{(\beta)}$ then $\overline{\mathcal{V}}^{(\beta)} = \phi$, i.e. $b\overline{\mathcal{V}}$ is Lindelöf by the inductive assumption. Let $\mathcal{V}^* = \{\overline{\mathcal{V}} \mid \mathcal{V} \in \mathcal{V}, \text{ and } \overline{\mathcal{V}} \subseteq$ $(X - X^{(\beta)})$. Since $X^{(\beta)}$ is countable we have $bX^{(\beta)}$ is Lindelöf. Now $\mathcal{M} = \{X^{(\beta)}\} \cup \mathcal{V}^*$ is countable closed cover of X such that for each $M \in M$ we have bM is Lindelöf. Hence bX is Lindelöf.

Case 2. $x^{(\alpha)} = \bigcap_{\beta < \alpha} x^{(\beta)} = \phi$.

Consider the cover $\mathcal{U} = \{X - X^{(\beta)} | \beta < \alpha\}$ of X. Since X is regular, there exists an open cover \mathcal{H} of X such that the closures of members of \mathcal{H} refines \mathcal{U} . X is Lindelöf implies \mathcal{H} has a countable subcover \mathcal{V} . Then for each $\nabla \in \mathcal{V}, \ \overline{\nabla}$ is in some $X - X^{(\beta)}$ for $\beta < \alpha$. Hence, for each $\nabla \in \mathcal{V}, \ \overline{\nabla}^{(\beta)} = \phi$. By the inductive assumption, for each $\nabla \in \mathcal{V}, \ b\overline{\nabla}$ is Lindelöf. Therefore, bX is Lindelöf.

Theorem 3.13. (i) If (X,T) is a regular, Lindelöf, w-scattered space, then (X,T) is functionally countable.

(ii) If X is a regular, Lindelöf, ω -scattered space such that each point of X is a G_x-set, then $|X| \leq \omega$.

Proof. (i) It follows from Theorem 3.12 that b(X,T) is Lindelöf. Also b(X,T) is a T_2 P-space. Hence by Theorem 2.6 and 2.8, b(X,T) is functionally countable. Let f: b(X,T) + (X,T) be the identity function. Then, f is continuous. Since b(X,T) is functionally countable, (X,T) is functionally countable.

The proof of (ii) follows easily from the Theorem 3.12.

Theorem 3.14. If (X,T) is hereditarily Lindelöf ω -scattered space, then (X,T) is countable.

Proof. Suppose (X,T) is hereditarily Lindelöf ω -scattered space. Let i, be the identity function from

(X,T) into X with discrete topology. Then i_x is barely ω -continuous. Hence, by Theorem 3.7, $i_x(X)$ is Lindelöf. Therefore, X is countable.

In [8], the following theorem is attributed to Rudin [13] and Pelcyzynski and Semadeni [12].

Theorem 3.15. For a compact Hausdorff space the following are equivalent:

(i)	Х	is	scattered.	
(iii)	х	is	functionally	countable

It is natural to ask whether Theorem 3.15 remains true if we replace scattered by ω -scattered. The following theorem gives an affirmative answer to this question.

Theorem 3.16. For a compact Hausdorff space X the following are equivalent:

(i)	X is scattered.				
(i i)	X is w-scattered.				
(iii)	X is functionally countable.				
Proof.	(i) → (ii) is obvious				
	(ii) \rightarrow (iii). It follows from Theorem 3.13.				
	(iii) → (i) follows from Theorem 3.15.				

4. Product of Lindelöf ω-Scattered Spaces

Theorem 4.1. If bX and Y are Lindelöf spaces, then $X \times Y$ is Lindelöf.

The proof that $bX \times Y$ is Lindelöf follows an argument similar to the one used in ([6], Vol. II, page 16)

to prove that the product of two compact spaces is compact. Since $X \times Y$'s topology is weaker than $bX \times Y$'s, $X \times Y$ is Lindelöf.

Theorem 4.2. If X is a regular, Lindelöf, ω -scattered space and Y is any Lindelöf space, then X \times Y is Lindelöf.

Proof. It follows from Theorem 3.12 that bX is Lindelöf. Hence, by Theorem 4.1, $X \times Y$ is Lindelöf.

Corollary 4.3. A finite product of Lindelöf wscattered spaces is Lindelöf.

In [10], it was shown that a countable product of Lindelöf P-spaces is Lindelöf. Using this result we can obtain the following theorem.

Theorem 4.4. A countable product of regular, Lindelöf, w-scattered spaces is Lindelöf.

Proof. Let $\{X_n \mid n \le \omega\}$ be a family of Lindelöf ω -scattered spaces. Then, by Theorem 3.12, each bX_n is a Lindelöf. Hence $\prod_{\substack{n \le \omega}} bX_n$ is Lindelöf. Since $\prod_{\substack{n \le \omega}} bX_n$ maps continuously onto $\prod_{\substack{n \le \omega}} X_n$, we obtain that $\prod_{\substack{n \le \omega}} X_n$ is Lindelöf.

In [7], Kunen proved that if each X_n is a Hausdorff compact scattered space, then the box product $\Box X_n$ is $n \le \omega$ c-Lindelöf.

In view of Theorem 3.16, we can state Kunen's result as follows:

Theorem 4.5. If each X_n is a Hausdorff compact, w-scattered space, then the box product $\square X_n$ is c-Lindelöf.

5. Metrizability of ω-Scattered Spaces

In [18], it was shown that every regular, first countable, paracompact, scattered space is metrizable. In this section, we obtain a generalization of this result using ω -scattered spaces.

Definition 5.1 [11]. A space X is called σ -discrete if it is a union of countably many closed discrete subspaces.

Definition 5.2. A space X is called F_{σ} -screenable if every open cover of X has a σ -discrete closed refinement.

Definition 5.3. A subset Y of a space X is called locally countable if for each $y \in Y$ there is an open neighborhood U_v in X containing y such that $|U_v \cap Y| \leq \omega$.

Lemma 5.4. If X is F_{σ} -screenable (or metalindelöf) and locally countable, then X is σ -discrete.

Proof. We prove the lemma when X is F_{σ} -screenable and locally countable. The other case follows similarly. By the assumptions, X has an open cover $U = \{U_{\beta} | \beta \in \Gamma\}$ such that $|U_{\beta}| \leq \omega$ for each $\beta \in \Gamma$. X is F_{σ} -screenable implies there exists a σ -discrete closed refinement $F = \bigcup_{i=1}^{\infty} F_i$ where $F_i = \{F_{i\alpha} | \alpha \in \Lambda_i\}$ for $i \in N$. Since each U_{β} is countable and F refines U, we see that $|F_{i\alpha}| \leq \omega$ for each i and α . Hence $F_{i\alpha}$ is σ -discrete for each i and α . Let $F_{i\alpha} = \{x_{ij\alpha} | j \in N\}$ and $G_{ij} = \{x_{ij\alpha} | \alpha \in \Lambda_i\}$. Then it is obvious that G_{ij} is discrete, closed and $X = \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} G_{ij}$. Therefore, X is σ -discrete. i=1 j=1

Lemma 5.5. If X is $F_{\sigma}^{}\text{-screenable}$ and $\omega\text{-scattered},$ then X is $\sigma\text{-discrete}.$

Proof. Let α be an ordinal such that $X^{(\alpha)} = \phi$. α exists because X is ω -scattered. If $\alpha = 1$, then it is easy to see that X is locally countable and by Lemma 5.4 the result follows. Suppose we have proved the result for all $\beta < \alpha$ and $X^{(\beta)} = \phi$, then X is σ -discrete.

Case 1. There is $\beta < \alpha$ such that $\alpha = \beta + 1$ and $X^{(\alpha)} = \phi$. It is easy to see that $X^{(\beta)}$ is a closed locally countable subset of X. Consider the open cover $u = \{X - X^{(\beta)}\} \cup \{U_X \mid x \in X^{(\beta)}\}$ where $|U_X \cap X^{(\beta)}| \leq \omega$ for each x and U_X is open in X containing x. X is F_{σ} screenable implies u has a σ -discrete closed refinement $v = \bigcup_{n=1}^{\infty} v_n$ where $v_n = \{V_{n\lambda} \mid \lambda \in \Lambda_n\}$. Note that each $v_{n\lambda}$ is F_{σ} -screenable and ω -scattered. Also if $V_{n\lambda} \subseteq X - X^{(\beta)}$ then $V_{n\lambda}^{(\beta)} = \phi$, i.e. $V_{n\lambda}$ is σ -discrete by the inductive assumption. Let $v' = \{V \mid V \in V$, and $V \subseteq X - X^{(\beta)}\}$, then v' covers $X - X^{(\beta)}$. Since $X^{(\beta)}$ is a closed subset of X, it follows by Lemma 5.4 that $X^{(\beta)}$ is σ -discrete. Now $M = \{X^{(\beta)}\} \cup V'$ is a σ -discrete closed cover of X with

each member is σ -discrete. Hence, it is easy to conclude that X is σ -discrete.

Case 2. $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)} = \varphi$.

Consider the cover $\mathcal{U} = \{X - X^{(\beta)} \mid \beta < \alpha\}$ of X. Let \mathcal{V} be a σ -discrete closed refinement of \mathcal{U} . Then, each $\mathbf{v} \in \mathcal{V}$ is in some $X - X^{(\beta)}$ for $\beta < \alpha$. Hence $\mathbf{v}^{(\beta)} = \phi$ for each $\mathbf{v} \in \mathcal{V}$. Therefore, for each $\mathbf{v} \in \mathcal{V}$, \mathbf{v} is σ -discrete by the inductive assumption. Hence, it is easy to conclude that X is σ -discrete.

Theorem 5.6. If X is a regular, first countable, paracompact, w-scattered space, then X is metrizable.

Proof. It follows from Lemma 5.5 that X is σ discrete. Now, it is well known that a σ -discrete first countable space is developable. Thus X is developable. Therefore by Bing's metrization theorem (see [1], p. 408), X is metrizable.

Corollary 5.7 [18]. If X is a regular, first countable, scattered, paracompact space, then X is metrizable.

Finally, we suggest, the following questions.

Question 5.8. Which spaces (X,T) have (X,T $_{\omega}$) paracompact?

Question 5.9. When are regular Lindelöf, ω -scattered spaces, scattered?

References

- [1] R. Engelking, General topology, Warszawa, 1977.
- [2] M. Gewand, The Lindelöf degree of scattered spaces and their products, J. Austral. Math. Soc. (series A), 37 (1984), 98-105.
- [3] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, NJ, 1960.
- [4] H. Z. Hdeib, ω-closed mappings, Revista Colombiana de Mathematicas, Vol. XVI (1982), 65-78.
- [5] H. Z. Hdeib, w-continuous functions, preprint.
- [6] K. Kuratowski, Topology, Vol. I and II, New York-London-Warszawa, 1966.
- [7] K. Kunen, Paracompactness of box products of compact spaces, Trans. Amer. Math. Soc. 240 (1978), 307-316.
- [8] R. Levy and M. D. Rice, Normal P-spaces and G_δtopology, Colloquium Mathematicum, 47 (1981), 227-240.
- [9] E. Michael and I. Namioka, Barely continuous functions, Bull. de l'acad. Polonaise des sci. serie des sci. math. astr. et phys. 24, (1976), 889-892.
- [10] N. Noble, Products with closed projections, II Trans. Amer. Math. Soc. 160 (1971), 169-183.
- [11] P. J. Nyikos, Covering properties on σ-scattered spaces, Top. Proc. 2 (1977), 509-542.
- [12] A. Pelczynski and Z. Semadeni, Spaces of continuous functions (III) (Spaces C(Ω) for Ω without perfect sets), Studia Mathematica 18 (1959), 211-222.
- [13] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proceedings of the American Math. Soc. 8 (1957), 39-42.
- [14] Z. Semadeni, Sur les ensembles clair semes, Rozpr. Alatem. 19 (1959), 1-39.
- [15] R. Telgarsky, C-scattered and paracompact spaces, Fund. Math. LXXIII, (1971), 59-74.
- [16] R. Telgarsky, Total paracompactness and paracompact dispersed spaces, Bull. Acad. Polon. Sci. 16 (1968), 567-572.

- [17] H. H. Wicke and J. M. Worrell, Jr., Spaces which are scattered with respect to collections of sets, Top. Proc., 2 (1977), 281-307.
- [18] H. H. Wicke and J. M. Worrell, Jr., Topological completeness of first countable Hausdorff spaces I, Fund. Math. 75 (1972), 209-222.

Kuwait University

13060 Safat, Kuwait