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A GENERALIZATION OF SCATTERED SPACES 

H. Z. Hdeib and C. M. Pareek 

1. Introduction 

Scattered spaces have been studied by several 

authors (see [6], [7], [8], [11], [12], [13], [14], [15], 

[16] and [17]). Recently, in [11], [15] and [17] some 

generalizations of scattered spaces have been considered 

and have been extensively studied. Our interest in this 

topic was stimulated by some questions in [8J and some of 

the results obtained in [llJ, [15] and [18J. 

In this paper, we introduce the concept of w-scattered 

spaces as a natural generalization of the concept of 

scattered spaces. It is proved that in the class of 

compact Hausdorff spaces the concept of w-scatteredness 

of the space coincides with scatteredness. It is noted 

that w-scattered need not be scattered in general. Also, 

the C-scattered spaces introduced in [lsJ are not compara­

ble with the w-scattered spaces. We start out by giving 

a characterization of w-scattered spaces. Then, a rela­

tionship between w-scatteredness of the space and 

scatteredness of some extensions is established. This 

relationship helps us to prove that Lindelof P*-spaces 

are functionally countable and Lindelof w-scattered spaces 

are functionally countable. Later on, we show that for a 

compact Hausdorff space X, (i) X is scattered, (ii) X is 

w-scattered and (iii) X is functionally countable are 
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equivalent. Finally, some product theorem for a class of 

Lindelof spaces have been established, and it is proved 

that a T3 , first countable, paracompact, and w-scattered 

space is metrizable. The last result improves a result 

of Wicke and Worrell in [18]. 

2.	 Preliminaries 

In this section some essential definitions are intro­

duced, notations are explained and some basic facts which 

are essential in obtaining the main results are stated. 

Throughout this paper X denotes a Tl space. The 

symbol wand c denote the cardinal number of integers and 

reals respectively. The cardinality of any set A is 

denoted by IAI • 

Definition 2.1 [9]. A function f: X + Y is called 

bareZy aontinuous if, for every non-empty closed A ~ X, 

the restriction f lA has at least one point of continuity. 

Definition 2.2 [8]. A space X is called funationaZZy 

countabZe if every continuous real valued function on X 

has a countable image. 

Definition 2.3 [8]. Given a topological space (X,T), 

b(X,T) will represent the set X with the topology generated 

by the Go-sets of (X,T). Sometimes T is not mentioned 

and bX is written instead of b(X,T) • 

Definition 2.4 [3]. A space X is called a P-space if 

the intersection of countably many open sets is open. 
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Now, we list some known results which will be helpful 

in obtaining the main results. 

Theorem 2.5 [2]. If X is a regular, Lindelof, 

scattered space, then bX is Lindelof. 

Theorem 2.6 [8]. If X is a regular, Lindelof, 

P-spaae, then X is a funationally countable. 

Theorem 2.7 [9]. If f is a barely continuous func­

tion from a hereditarily Lindelof spaae X onto a spaae Y, 

then Y is Lindelof. 

Theorem 2.8. If X is a T2, Lindelof, P-spaae, then
 

X is normal.
 

3. cu-Scattered Spaces 

A space X is called w-scattered if every non-empty
 

subset A of X has a point x and an open neighborhood U
 x
 

of x in X such that Iu n AI < w.
 
x -

Every scattered space is w-scattered but the converse 

is not true, because every countable space is w-scattered, 

while the (countable) set of rationals with the usual 

topology is not scattered. 

A space X is C-scattered [15], if every non-empty 

closed subset A of X has a point with a compact neighbor­

hood in A. The following remark shows that w-scattered 

spaces and C-scattered space are not comparable. 
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Remark 3.1. The set of rationals Q with usual 

topology is w-scattered. However, it is not C-scattered 

since no point of Q has a compact neighborhood. 

The set of reals m with usual topology is c-

scattered (in fact, it is locally compact) but not 

w-scattered. 

A point x of a space X is called a condensation 

point of the set A C X if every neighborhood of the point 

x contains an uncountable subset of A. 

Definition 3.2 [4J. A subset A of a space X is 

called w-closed if it contains all of its condensation 

points. The complement of an w-closed set is called 

w-open. 

Observe that A" ~ X is w-open iff for each x in A 

there is an open set U in X containing x such that 

Iu - AI" < w. 

The next theorem characterizes w-scattered spaces. 

Theorem 3.3. Fop any space X the foZZowing are 

equivalent: 

(i) X is w-scattered. 

(ii) Every nonempty w-closed subset A of X con­

tains a point x which is not a condensation point. 

(iii) There e~ists a well ordering < of X such 

that for each x E X, the set A = {y E xl y < x} has the 
x 

property that for 'each y E Ax there e~ists an open set 
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U containing y such that IUy n (X - Ax) I < w, i.e.,y 

for each x E X, the set Ax is w-open. 

Proof. (i) ~ (ii) is obvious. 

(li) ~ (i ii) • Let X be a space in which every 

nonempty closed subset has a point which is not a condensa­

tion point. Then X has a point xl which is not a condensa­

tion point. Now, X - {xl} is w-closed in X and therefore 

X - {xl} has a point x2 which is not a condensation point. 

Then X - {xl ,x } is w-closed. Finally, using transfinite2

induction one can complete the prQof. 

(iii) ~ (i). Let A be any nonempty subset 

of	 X. Since X is well ordered, A has a first element, 

Now, by the hypothesis Ax 
o 

w-open. Hence, X is w-scattered. 

Definition 3.4 [5]. A function f: X ~ Y is called 

w-continuou8 at x E X if for every open set V containing 

f(x) there is an w-open set U containing x such that 

feU) C V. If f is w-continuous at each point of X, then 

f is w-continuous on X. A function f: X ~ Y is called 

bapely w-continuOU8 if for every non-empty closed subset 

A of X, f lA has at least one point of w-continuity. 

The following theorem provides a basic tool to obtain 

some of the main results. 

Theorem 3.5. If (X,T) is a topoZogiaaZ space and T 
w 

is the topoZogy on X having as a base {U - ci U E T and 
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C is finite or aountabZe}" then for any A C X the foZZow­

ing hoZds: 

(i)	 A is oo-open if an onZy if A is open in 

(X,T )' i.e., AE T oo	 00 

(ii)	 A is oo-aZosed if and onZy if A is aZosed 

in (X,T )' i.e., X - A E Too.oo 

(iii) f: (X,T) .. Y is oo-aontinuous if and onZy 

if f: (X,T ) .. Y is aontinuous. oo 

(iv)	 f: (X,T) .. Y is bareZy oo-aontinuous if and 

onZy if f: (X,T ) .. Y is bareZy aontinuous.oo 

The proof	 is straightforward. 

Theorem 3.6. If (X,T) is LindeZaf" then (X,Too ) is 

LindeZaf. 

The proof is straightforward, therefore left for the 

reader. 

Theorem 3.7. If f: (X,T) .. Y is bareZy oo-aontinuous 

and (X,T) is hereditariZy LindeZof, then Y is LindeZof. 

Proof. It follows from theorem 3.6 that (X,Too ) is 

hereditarily Lindelof. By theorem 3.5, f: (X,T ) .. Y is oo 
barely continuous. Hence by theorem 2.7, Y is Lindelof. 

Theorem 3.8. (X,T) is oo-saattered if an onZy if 

(X, Too) is saattered. 

The proof	 is obvious by the Theorem 3.5. 
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Definition 3.9 [4]. A space X is called a P*-space 

if the intersection of countably many open sets is w-open. 

Theorem 3.10. If (X,T) is a T Lindelof P*-space,2, 

then (X,T) is functionally countable. 

Proof. Suppose (X,T) is a Lindelof P*-space, then by 

Theorem 3.6, (X,T ) is Lindelof. Now, (X,T ) is a T2 ,w w 

Lindelof P-space. Thus, by Theorem 2.8, (X,T ) is normal. w 
Hence, by Theorem 2.6, (X,T ) is functionally countable. 

w 

Let f: (X,T ) + (X,T) be the identity function. Then, f w 

is continuous. Since (X,T ) is functionally countable,w
it is easy to see that (X,T) is functionally countable. 

Theorem 3.11. (X,T) is oo-scattered if and only if 

every function f on (X,T) is barely w-continuous. 

Proof. Suppose (X,T) is oo-scattered. Let f: (X,T) + 

Y be a function from (X,T) onto an arbitrary space Y. Let 

A be any w-closed subset of X. Then, A contains a point 

Xo which is not a condensation point by Theorem 3.3. Now, 

it is easy to conclude that f lA is w-continuous at xO• 

Hence, f is barely w-continuous. 

For the converse, suppose that any function f from 

(X,T) onto any space is barely w-continuous. So, in 

particular the identity function i from (X,T) onto X with x 
discrete topology is barely w-continuous. Let A be any 

non-empty w-closed subset of X. Then, i is 00­
X1A 

continuous at some y in A, i.e., there is an w-open set U 

such that UnA = i-l(i (y» = {y}. Hence, (X,T,,) is x x ~ 

scattered. Therefore, by Theorem 3.8 (X,T) is oo-scattered. 



66 Hdeib and Pareek 

Notation. Let X be a topological space. Let 

x(O) X. Let x(l) denote the collection of condensation 

points of X. With x(a) for an ordinal a, let x(a+l) = 
(x(a» (1). If a is a limit ordinal, let x(a) n x(S). 

, S<a 

It is easy to see that X is w-scattered if and only if 

x(a) = $ for some a. 

Theopem 3.12. If X is a LindeZof w-scatteped space 

then bX is LindeZof. 

Ppoof. Let a be an ordinal such that x(a) = $. 

a exists because X is w-scattered. If a = 1, then it is 

easy to see that X is countable because X is Lindelof. 

Hence the result follows. Suppose we have proved the 

result for all S < a. That is, if a < a and xeS) = $, 

then bX is Lindelof. 

Case 1. There is S < a such that S + 1 = a and 

x(a) =~. It is easy to see that xeS) is a countable 

closed subset of' X. Consider the open cover U = 
{x - x(S>} u {u I x e" xeS)} where lu n xeS) I < w for 

x x-
each x and U is open in X containing x. Since X is regu­x 
lar, there exists an open cover H of X such that the 

closure of members of H refines U. X is Linde10f implies 

H has a countable subcover V. Now if V E V and 

V C X - xeS) then v(S) = ~, i.e. bV is Linde18f by the 

inductive assumption. Let VI = {Vi V E V, and V ~ 

(X - xes»~}. Since xes) is countable we have bX(S) is 

Lindelof. Now M = {Xes>} U VI is countable closed cover 
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of X such that for each M E Mwe have bM is Lindelof. 

Hence bX is Lindelof. 

Case 2. X(a) = n xeS) = ~. 
S<a 

Consider the cover U = {X - xeS) I S < a} of X. Since X 

is regular, there exists an open cover H of X such that 

the closures of members of H refines U. X is Lindelof 

implies H has a countable subcover V. Then for each 

V E V, ~ is in some X - xeS) for S < a. Hence, for each 

V E V, v(S) =~. By the inductive assumption, for each 

V E V, bV is Lindelof. Therefore, bX is Lindelof. 

Theorem 3.13. (i) If (X,T) is a regular~ Lindelof~ 

w-scattered space, then (X,T) is functionally countable. 

(ii) If X is a regular, Lindelof~ w-scattered space 

such that each point of X is a Go-set, then Ixl ~ w. 

Proof. (i) It follows from Theorem 3.12 that b{X,T) 

is Lindelof. Also b(X,T) is a T P-space. Hence by
2 

Theorem 2.6 and 2.8, b(X,T) is functionally countable. 

Let f: b{X,T) + (X,T) be the identity function. Then, f 

is continuous. Since b(X,T) is functionally countable, 

eX,T} is functionally countable. 

The proof of (ii) follows easily from the Theorem 

3.12. 

Theorem 3.14. If (X,T) is hereditarily Lindelof 

w-scattered space, t~en (X,T) is countable. 

Proof. Suppose (X,T) is hereditarily Lindelof 

w-scattered space. Let i be the identity function from x 
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(X,T) into X with discrete topology. Then i is barelyx
 

w-continuous. Hence, by Theorem 3.7, ix(X) is Lindelof.
 

Therefore, X is countable.
 

In [a], the following theorem is attributed to
 

Rudin [13] and Pelcyzynski and Semadeni [12].
 

Theorem 3.15. For a compact Hausdorff space the
 

following are equivalent:
 

(i) X is scattered. 

(iii) X is functionally countable. 

It is natural to ask whether Theorem 3.15 remains 

true if we replace scattered by w-scattered. The follow­

ing theorem gives an affirmative answer to this question. 

Theorem 3.16. For a compact Hausdorff space X the
 

following are equivalent:
 

(i) X is scattered. 

(ii) X is. w-scattered. 

(iii) X is functionally countable.
 

Ppoof. (i) + (ii) is obvious
 

(ii) + (iii). It follows from Theorem 3.13. 

(iii) + (i) follows from Theorem 3.15. 

4. Product of Lindelof cu-Scattered Spaces 

Theorem 4.1. If bX and Yare LindeZof spaces, then
 

X x Y is LindeZof.
 

The proof that bX x Y is Lindelof follows an argu­


ment similar to the one used in ([6], Vol. II, page 16)
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to prove that the product of two compact spaces is com­

pact. Since X x Y's topology is weaker than bX x Y's, 

X x Y is Lindelof. 

Theorem 4.2. If X is a regular, Lindelof, oo-scattered 

space and Y is any Lindelof space, then X x Y is Lindelof. 

Proof. It follows from Theorem 3.12 that bX is 

Lindelof. Hence, by Theorem 4.1, X x Y is Lindelof. 

Corollary 4.3. A finite product of Lindelof 00­

scattered spaces is Lindelof. 

In [10], it was shown that a countable product of 

Lindelof P-spaces is Lindelof. Using this result we can 

obtain the following theorem. 

Theorem 4.4. A countable product of regular, 

LindeZof, oo-scattered spaces is Lindelof. 

Proof. Let {Xnl n ~ oo} be a family of Lindelof 

oo-scattered spaces. Then, by Theorem 3.12, each bX is n 
a Linde18f. Hence IT bX is Lindelof. Since IT bX n nn<oo n<oo 

maps continuously onto IT X , we obtain that IT X is n n 
n~w n<w 

Linde16f. 

In [7], Kunen proved that if each X is a Hausdorff n 
compact scattered space, then the box product C X is nn<w 

c-Lindel8f. 

In view of Theorem 3.16, we can state Kunen's result 

as follows: 
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Theorem 4.5. If each X is a Hausdorff compact,n 

w-scattered space, then the bo~ product n~w Xn is
 

c-LindeZof·
 

5. Metrizability of cu-Scattered Spaces 

In [lS], it was shown that every regular, first 

countable, paracompact, scattered space is metrizab1e. 

In this section, we obtain a generalization of this
 

result using w-scattered spaces.
 

Definition 5.1 [11]. A space X is called a-discrete 

if it is a union of countab1y many closed discrete sub­

spaces. 

Definition 5.2. A space X is called Fa-sareenable 

if every open cover of X has a a-discrete closed· refine-

mente 

Definition 5.3. A subset Y of a space X is called 

loaalZy countable if for each y E Y there is an open 

neighborhood U in X containing y such that IUy n YI < w. y 

Lemma 5.4. If X is Fa-screenabZe (or metalindeZof) 

and ZocaZZy aountabZe, then X is a-discrete. 

Proof. We prove the lemma when X is F -screenab1e a 
and locally countable. The other case follows similarly. 

By the assumptions, X has an open cover U = {USI S E r} 

such that Iuai < w for each B E r. X is F -screenab1e 
~ - a
 

implies there exists a a-discrete closed refinement
 
co 

F = U F. where F. = {F. I a E A.} for i E N. Since
1 1 1a 1i=l 
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each Us is countable and F refines U, we see that 

IFial ~ w for each i and a. Hence Fia is a-discrete for 

each i and a. Let Fia = {xijal j E N} and Gij = 

{x .. I a E Ai}· Then it is obvious that Gij is discrete,J.Ja 
00 00 

closed and X = U U G..• Therefore, X is a-discrete. 
i=l j=l J.J 

Lemma 5.5. If X is Fa-scpeenabZe and w-scatteped, 

then X is a-discpete. 

Ppoof. Let a be an ordinal such that x(a) = ~. 

a exists because X is w-scattered. If a = 1, then it is 

easy to see that X is locally countable and by Lemma 5.4 

the result follows. Suppose we have proved the result 

for all S < a and xeS) ~,then X is a-discrete. 

Case 1. There is S < a such that a = S + 1 and 

x(a) =~. It is easy to see that xeS) is a closed 

locally countable subset of X. Consider the open cover 

U = {X - x(a>} u {Ux ' x E x(S>} where lux n x(S>, < w for 

each x and U is open in X containing x. X is F ­x a 

screenable implies U has a a-discrete closed refinement 
00 

V n~l Vn where Vn = {VnAI A E An}· Note that each VnA 

is Fa-screenable and w-scattered. Also if VnA ~ X - x(a> 

then V~~> = ~, i.e. VnA is a-discrete by the inductive 

assumption. Let V' = {Vi V E V, and V C X - xeS)}, then 

V' covers X - xes>. Since xeS) is a closed subset of X, 

it follows by Lemma 5.4 that xeS) is a-discrete. Now 

M = {Xes>} u Viis a a-discrete closed cover of X with 
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each member is a-discrete. Hence, it is easy to conclude 

that X is a-discrete. 

Case 2. x(a) = n xeS) = ~. 
S<a 

Consider the cover U = {X - xeS) I S < a} of X. Let 

V be a a-discrete closed refinement of U. Then, each 

V E V is in some X - xeS) for S < a. Hence V(S) = ~ for 

each V E V. Therefore, for each V E V, V is a-discrete 

by the inductive assumption. Hence, it is easy to con­

clude that X is a-discrete. 

Theorem 5.6. If X is a regular, first countable, 

paracompact, w-scattered space, then X is metrizable. 

Proof. It follows from Lemma 5.5 that X is a-

discrete. Now, it is well known that a a-discrete first 

countable space is developable. Thus X is developable. 

Therefore by Bing's metrization theorem (see [1], p. 408), 

X is metrizable. 

Corollary 5.7 [18]. If X is a pegulap, first 

countable, scatteped, papacompact space, then X is 

metriaable. 

Finally, we suggest, the following questions. 

Question 5.8. Which spaces (X,T) have (X,T ) para­w

compact? 

Question 5.9. When are regular Lindelof, w-scattered 

spaces, scattered? 
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