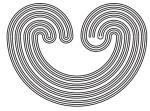
TOPOLOGY PROCEEDINGS Volume 14, 1989

Pages 113–129



http://topology.auburn.edu/tp/

SPACES OF CONTINUOUS LINEAR FUNCTIONALS: SOMETHING OLD AND SOMETHING NEW

by

S. Kundu

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SPACES OF CONTINUOUS LINEAR FUNCTIONALS: SOMETHING OLD AND SOMETHING NEW

S. Kundu

Let C(X) denote the set of all continuous real-valued functions on a completely regular Hausdorff space X and $C^*(X)$ be the set of bounded functions in C(X). Let us denote by $C_K(X)$ (respectively by $C_p(X)$) the set C(X)topologized with the compact-open (respectively use pointopen) topology. Both $C_K(X)$ and $C_p(X)$ are locally convex spaces. The locally convex compact-open topology on C(X)is generated by the collection of seminorms $\{p_K: K \text{ is a}$ compact subset of X} where $p_K(f) = \sup \{|f(x)|: x \in K\}$ for $f \in C(X)$. Similarly the locally convex point-open topology on C(X) is generated by the collection of seminorms $\{p_F: F \text{ is a finite subset of X}$ where $p_F(f) = \sup \{|f(x)|: x \in F\}$. Let $K(X) = \{K \subseteq X: K \text{ is a compact subset of X}$ and $F(X) = \{F \subset X: F \text{ is a finite subset of X}\}$.

Basic open sets in $C_k(X)$ (respectively in $C_p(X)$) look like < f,A, ε > = {g $\in C(X)$: $|f(x) - g(x)| < \varepsilon$ for all $x \in A$ } where f $\in C(X)$, A $\in K(X)$ (respectively A $\in F(X)$) and ε > 0.

Let $\Lambda_k(X)$ (respectively $\Lambda_p(X)$) be the set of all continuous linear functionals (real-valued functions) on $C_k^*(X)$ (on $C_p^*(X)$ respectively). Note since $C_k^*(X)$ (respectively $C_p^*(X)$) is a dense linear subspace of the

locally convex space $C_k(X)$ (respectively $C_p(X)$), the set of all continuous linear functionals on $C_k^{\star}(X)$ (respectively $\mathcal{C}^{\star}_{p}(X)$) equals the set of all continuous linear functionals on $C_{k}(X)$ (respectively on $C_{p}(X)$). In [8], a normed linear space whose underlying set is $\Lambda_k(X)$ has been studied in detail. In [8], the notation $\Lambda(X)$ has been used in place of $\Lambda_{\mathbf{k}}(\mathbf{X})$. A necessary condition for this normed linear space $\Lambda_k(X)$ to be complete is that $C(X) = C^*(X)$, that is, every real-valued continuous function on X must be bounded. In this paper, we want to put the problem of completeness of $\Lambda_k(X)$ in a proper perspective and we show that the problem of completeness of $\Lambda_k(X)$ is essentially a problem of finding a suitable topology on C*(X). Because of the discussion in this paragraph, from now on, we will be interested only in $C^*(X)$. We want to answer the problem of completeness of $\Lambda_{\mathbf{k}}(\mathbf{X})$ in a more general setting. For this purpose, we first define a new topology on $C^{*}(X)$ and we will see that the point-open, compact-open and sup-norm topologies on $C^*(X)$ are all special cases of this topology.

1. A New Topology on C* (X)

Let α be a collection of subsets of X which satisfies the following two conditions: (i) each member of α is C*-embedded and (ii) if A,B $\in \alpha$, then there exists C $\in \alpha$ such that A \cup B \subseteq C.

For each $A \in \alpha$, define a seminorm p_A on $C^*(X)$ as follows. For $f \in C^*(X)$, $p_A(f) = \sup \{ |f(x)| : x \in A \}$. Consider the locally convex topology on $C^*(X)$ generated by the collection of seminorms $\{p_A: A \in \alpha\}$. Because of (ii), for each $f \in C^*(X)$, $f + U = \{f + V: V \in U\}$ is a neighborhood base at f where $U = \{V_{p_A}, \varepsilon: A \in \alpha, \varepsilon > 0\}$.

We call this new locally convex topology on $C^*(X)$ α -topology and the corresponding topological space we denote by $C^*_{\alpha}(X)$. Note when $\alpha = K(X)$ or F(X), we get compact-open or point-open topology on $C^*(X)$ respectively.

The supremum norm on $C^*(X)$ is defined as $\|f\|_{\infty} = \sup \{|f(x)|: x \in X\}$ for $f \in C^*(X)$. This supermum norm generates a finer topology than the α -topology on $C^*(X)$. We denote this normed linear space by $C^*_{\infty}(X)$. If α contains X, then $C^*_{\alpha}(X) = C^*_{\infty}(X)$; and if, in addition, we assume the members of α to be closed, then $C^*_{\alpha}(X) = C^*_{\infty}(X)$ only if α contains X. (see [7], page 7).

Let $\Lambda_{\alpha}(X)$ be the set of all continuous linear functionals (real-valued) on $C^{*}_{\alpha}(X)$ and let $\Lambda_{\infty}(X)$ be the set of all continuous linear functionals (real-valued) on $C^{*}_{\infty}(X)$. Since the sup-norm topology on $C^{*}(X)$ is finer than the α -topology on it, $\Lambda_{\alpha}(X) \subset \Lambda_{\infty}(X)$. Now $\Lambda_{\infty}(X)$ is a normed linear space with the usual conjugate norm, that is, given $\lambda \in \Lambda_{\infty}(X)$, we have a norm $\|\lambda\|_{*} = \sup \{|\lambda(f)|: f \in C^{*}(X), \|f\|_{\infty} \leq 1\}$ where $\|\cdot\|_{\infty}$ is the sup-norm on $C^{*}(X)$. Consequently we can assign this $\|\cdot\|_{*}$ -norm on $\Lambda_{\alpha}(X)$ to make it a normed linear space $(\Lambda_{\alpha}(X), \|\cdot\|_{*})$.

Note $\Lambda_{\infty}(X)$ is actually a particular case of $\Lambda_{\alpha}(X)$. Here we also mention another particular $\Lambda_{\alpha}(X)$. Let X be

115

a normal Hausdorff space and $\sigma = \{cl_XA: A \text{ is a } \sigma\text{-compact} \text{ subset of } X\}$. Note that σ is closed under finite union because $\bigcup_{n=1}^{k} cl_XA_n = cl_X(\bigcup_{n=1}^{k} A_n)$. We denote the corresponding $\Lambda_{\alpha}(X)$ by $\Lambda_{\sigma}(X)$. While considering $\Lambda_{\sigma}(X)$, we will always assume X to be a normal Hausdorff space.

2. Basic Properties of $\Lambda_{\alpha}(\mathbf{X})$

Let $\Lambda_{\alpha}^{+}(X) = \{\lambda \in \Lambda_{\alpha}(X) : \lambda \geq 0\}$ where $\lambda \geq 0$ provided that $\lambda(f) \geq 0$ for each $f \in C^{*}(X)$ such that $f \geq 0$. If $\lambda \in \Lambda_{\alpha}(X)$ and A is a subset of X, then λ is said to be supported on A provided that whenever $f \in C^{*}(X)$ with $f|_{A} = 0$, then $\lambda(f) = 0$. Since λ is linear, this is equivalent to saying that whenever $f, g \in C^{*}(X)$ with $f|_{A} = g|_{A}$, then $\lambda(f) = \lambda(g)$.

The next two lemmas can be proved in manners similar to Lemmas 1.1 and 1.2 in [8].

Lemma 2.1. For each $\lambda \in \Lambda_{\alpha}(X)$, there exists an element A in a such that λ is supported on A. Conversely, if λ is a positive linear functional on C*(X) which is supported on an element of a, then $\lambda \in \Lambda_{\alpha}^{+}(X)$.

Lemma 2.2. Let A be a closed subset of X, let $F \in \alpha$ and let $\lambda \in \Lambda_{\alpha}(X)$. If λ is supported on each of A and F, then λ is supported on $A \cap F$.

Now on $\Lambda_{\alpha}^{+}(X)$ we give a topology induced by the metric $d_{\star}(\lambda,\mu) = | \lambda - \mu |_{\star}$ for $\lambda,\mu \in \Lambda_{\alpha}^{+}(X)$.

Theorem 2.3. $(\Lambda_{\alpha}^{+}(X), d_{\star})$ is a closed subspace of $(\Lambda_{\alpha}(X), \|\cdot\|_{\star})$.

Proof. Let $\lambda \in \Lambda_{\alpha}(X) \setminus \Lambda_{\alpha}^{+}(X)$. Then there exists a $g \in C^{*}(X)$ such that $g \geq 0$ and $\lambda(g) < 0$. Let r be a positive number such that $\|rg\|_{\infty} \leq 1$. Define $\varepsilon = -\frac{r}{2}\lambda(g)$. Now suppose $\mu \in \Lambda_{\alpha}(X)$ is such that $\|\mu - \lambda\|_{*} < \varepsilon$. Then $|\mu(rg) - \lambda(rg)| < \varepsilon$ so that $\mu(g) - \lambda(g) < \frac{\varepsilon}{r} = -\frac{1}{2}\lambda(g)$. Therefore $\mu(g) < \frac{1}{2}\lambda(g) < 0$ so that $\mu \in \Lambda_{\alpha}(X) \setminus \Lambda_{\alpha}^{+}(X)$.

3. The Completeness of $\Lambda^{+}_{\alpha}(\mathbf{X})$ and $\Lambda^{-}_{\alpha}(\mathbf{X})$

The space $\Lambda_{\alpha}^{+}(X)$ is a metric space with the metric d_{\star} . This space is complete provided that if a sequence in $\Lambda_{\alpha}^{+}(X)$ is a Cauchy sequence with respect to d_{\star} , then it converges. Likewise the normed linear space $\Lambda_{\alpha}(X)$ is complete if it is complete with respect to its norm $\|\cdot\|_{\star}$, that is, if it is a Banach space.

We have studied the completeness of $\Lambda_{\mathbf{k}}(\mathbf{X})$ and $\Lambda_{\mathbf{k}}^{+}(\mathbf{X})$ in [8]. We already know that $\Lambda_{\infty}(\mathbf{X})$, being the conjugate space of a normed linear space, is always complete.

To establish that the completeness of $\Lambda_{\alpha}^{+}(X)$ is equivalent to the completeness of $\Lambda_{\alpha}(X)$, we need the following theorem which can be proved like Theorem 2.2 in [8].

Theorem 3.1. Each $\lambda \in \Lambda_{\alpha}(\mathbf{X})$ can be written as $\lambda = \lambda^{+} - \lambda^{-}$ where λ^{+} and λ^{-} are members of $\Lambda_{\alpha}^{+}(\mathbf{X})$. Furthermore, if $\lambda, \mu \in \Lambda_{\alpha}(\mathbf{X})$, then $\| \lambda^{+} - \mu^{+} \|_{\star} \leq \| \lambda - \mu \|_{\star}$ and $\| \lambda^{-} - \mu^{-} \|_{\star} \leq \| \lambda - \mu \|_{\star}$.

Kundu

Theorem 3.2. The metric space $\Lambda_{\alpha}^{+}(X)$ is complete if and only if the normed linear space $\Lambda_{\alpha}(X)$ is complete. Proof. Use Theorems 3.1 and 2.3.

Because of Theorem 3.2, each of the following theorems about $\Lambda^+_{\alpha}(X)$ is also true for $\Lambda_{\alpha}(X)$.

Theorem 3.3. Suppose X is infinite and $F(X) \subseteq \alpha$. Now if $\Lambda^+_{\alpha}(X)$ is complete, then every countable subset of X is contained in some member of α .

Proof. Let $A = \{x_n : n \in \mathbb{N}\}$ be any countable subset of X. For each $m \in \mathbb{N}$, define $\lambda_m : C^{\star}_{\alpha}(X) + \mathbb{R}$ as follows. For each $f \in C^{\star}_{\alpha}(X)$, take $\lambda_m(f) = \sum_{n=1}^m \frac{1}{2n} f(x_n)$. Each λ_m is a positive linear functional on $C^{\star}_{\alpha}(X)$ supported on the finite set $\{x_1, \ldots, x_m\}$. Then by Lemma 2.1, λ_m is continuous. Now for each k and m with k < m, $d_{\star}(\lambda_k, \lambda_m) =$ $\|\lambda_k - \lambda_m\|_{\star \leq \sum_{n=k+1}^m \frac{1}{2n}}$. Therefore (λ_m) is a Cauchy sequence in $\Lambda^+_{\alpha}(X)$. Since $\Lambda^+_{\alpha}(X)$ is complete, the (λ_m) converges to some λ in $\Lambda^+_{\alpha}(X)$. Also $\lambda_m + \lambda$ implies $\lambda(f) = \lim_{m \to \infty} \lambda_m(f) =$ $\sum_{n=1}^{\infty} \frac{1}{2n} f(x_n)$ for all $f \in C^{\star}_{\alpha}(X)$.

Now suppose λ has a support Y which belongs to α . We show that $A \subseteq Y$. Suppose not, then there is some m such that $x_m \notin Y$. Since X is completely regular, there is some continuous function f on X with values in the unit interval I such that $f(x_m) = 1$ and $f(\dot{Y}) = \{0\}$. Since λ is supported on Y, $\lambda(f) = 0$. But $\lambda(f) = \sum_{n=1}^{\infty} \frac{1}{2n} f(x_n) \ge \frac{1}{2m} f(x_m) = \frac{1}{2m} > 0$. With this contradiction, it follows that $A \subseteq Y$.

Corollary 3.4. If X is infinite, then $\Lambda_p^+(X)$ and $\Lambda_p^-(X)$ are not complete.

118

Theorem 3.5. If the closure of each countable union of elements of a belongs to a, then $\Lambda^+_{\alpha}(X)$ is complete.

Proof. Let (λ_n) be a Cauchy sequence in $\Lambda_{\alpha}^+(X)$. Consider $\Lambda_{\alpha}^+(X)$ as a subspace of the complete metric space $\Lambda_{\infty}^+(X)$. Then (λ_n) is a Cauchy sequence in $\Lambda_{\infty}^+(X)$ and hence converges to some λ in $\Lambda_{\infty}^+(X)$. Suppose each λ_n is supported on A_n where $A_n \in \alpha$. We show that λ is supported on $A = cl_X(\bigcup_{n=1}^{\infty} A_n)$. Let $f \in C^*(X)$ with $f|_A = 0$. Since each λ_n is supported on $A_n \subseteq A$, then each $\lambda_n(f) = 0$ and consequently $\lambda(f) = \lim_{n \to \infty} \lambda_n(f) = 0$. Therefore λ has support A. But by hypothesis $A \in \alpha$. Hence by Lemma 2.1 $\lambda \in \Lambda_{\alpha}^+(X)$.

Corollary 3.6. Suppose X is a normal Hausdorff space. Then $\Lambda_{\sigma}^{+}(X)$ is always complete.

Proof. Suppose for each n, A_n is a σ -compact subset of X. Then $cl_X(\bigcup_{n=1}^{\infty} cl_X A_n) = cl_X(\bigcup_{n=1}^{\infty} A_n) \in \sigma$.

4. Measure Theoretic-Counterparts

In this section, we will talk about the measuretheoretic counterparts of $\Lambda_{\alpha}(X)$ and $\Lambda_{\infty}(X)$ with some extra conditions on α and X. So now we introduce some ideas from measure theory.

The algebra generated by the closed sets of X are denoted by A_{C} while the σ -algebra they generate is denoted by B, called the *Borel sets*.

For us a finitely additive measure (also called signed measure) on A_{c} is a real-valued function defined

on A_{C} satisfying the following two properties (i) $\mu(\emptyset) = 0$; (ii) $\mu(A \cup B) = \mu(A) + \mu(B)$ if $A, B \in A_{C}$ and $A \cap B = \emptyset$.

A finitely additive measure μ is called a countably additive measure or simply a measure provided that (iii) $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ for all pairwise disjoint sequences $(A_n)_{n=1}^{\infty}$ such that $A_n \in A_c$ and $\bigcup_{n=1}^{\infty} A_n \in A_c$. When a measure μ is defined on 8, we call it a Borel measure. A measure μ defined on 8 has support A where $A \subseteq X$ and $A \in B$ if $|\mu|(X \setminus A) = 0$. A finitely additive measure μ defined on A_c or 8 is regular whenever A is in the domain of definition of μ and $\varepsilon > 0$, there are closed and open sets C and U such that $C \subseteq A \subseteq U$ and $|\mu|(U \setminus C) < \varepsilon$. Note when μ has compact support, this definition of regularity coincides with the one usually given in the books on measure theory. For more information on measure theory see [4] and [6].

Now we fix some notations.

A (signed) measure μ defined on 8 is said to be a finite (signed) measure if $|\mu(A)| < \infty$ holds for each $A \in B$. It can be shown that a signed measure μ is finite if and only if $|\mu|(X) < \infty$. So a finite signed measure defined on 8, has finite total variation. For details on the above, see [1], 26.

Now let $M_b(X)$ be the set of all finite (signed) regular Borel measures on X. Let $M_b^+(X) = \{\mu \in M_b(X): \mu \ge 0, \text{ that is, } \mu \text{ is a positive measure}\}$. Throughout the remaining part of this paper we will assume the following extra condition on α : the members of α are closed. Now define $M_{b,\alpha}(X) = \{\mu \in M_b(X) : \mu \text{ has a support} A(\subseteq X) \text{ such that } A \in \alpha\}$. Let $M_{b,\alpha}^+(X) = \{\mu \in M_{b,\alpha}(X) : \mu \ge 0\}$. When $\alpha = K(X)$ or F(X), we write $M_{b,k}(X)$ or $M_{b,p}(X)$ respectively.

The next thing to observe is that given $\mu \in M_{b}(X)$, $\|\mu\| = |\mu|(X)$ defines a norm on $M_{b}(X)$. So $(M_{b}(X), \|\cdot\|)$ is actually a normed linear space. Also $M_{b}^{+}(X)$ is a metric space when equipped with the norm p given by $p(\mu_{1}, \mu_{2}) =$ $\|\mu_{1} - \mu_{2}\|$ for every $\mu_{1}, \mu_{2} \in M_{b}^{+}(X)$. Note $(M_{b,\alpha}(X), \|\cdot\|)$ is a normed linear space while $(M_{b,\alpha}^{+}(X), p)$ is a metric space.

Before having our first theorem in this section, we need the following two lemmas.

Lemma 4.1. Suppose Y is a Borel subset of a completely regular Hausdorff space X. Let B(X) and B(Y) be the σ -algebras of Borel subsets of X and Y respectively. Then $B(X) \cap Y = B(Y)$ where $B(X) \cap Y = \{B \cap Y: B \in B(X)\}$.

Proof. Define $\mathcal{D} = \{A \in \mathcal{P}(X) : A = E \cup (B \setminus Y); E \in \mathcal{B}(Y) \}$ and $B \in \mathcal{B}(X)\}$ where $\mathcal{P}(X)$ is the power set of X. Note $X \setminus (E \cup (B \setminus Y)) = (Y \setminus E) \cup ((X \setminus (B \setminus Y)) \setminus Y)$. Now it can be easily shown that \mathcal{D} is a σ -algebra on X containing all the closed subsets of X. Hence $\mathcal{B}(X) \subseteq \mathcal{D}$. So $\mathcal{B}(X) \cap Y \subseteq \mathcal{D} \cap Y$. But $\mathcal{D} \cap Y = \mathcal{B}(Y)$. So $\mathcal{B}(X) \cap Y \subseteq \mathcal{B}(Y)$. Note $\mathcal{B}(X) \cap Y$ is a σ -algebra on Y and if C is a closed subset of Y, then $C = C' \cap Y$ for some closed subset C' of X which means $C \in \mathcal{B}(X) \cap Y$. Hence $\mathcal{B}(Y) \subseteq \mathcal{B}(X) \cap Y$. Therefore $\mathcal{B}(X) \cap Y =$ $\mathcal{B}(Y)$.

Kundu

Lemma 4.2. If A is a compact subset of a completely regular Hausdorff space X, then for every closed set $B \subseteq X \setminus A$, there exists a continuous function f: $X \neq I$ such that f(x) = 0 for $x \in A$ and f(x) = 1 for $x \in B$.

Proof. See [5], page 168.

Theorem 4.3. Suppose $\alpha \subseteq K(X)$, that is, the members of α are compact. Then $(M_{b,\alpha}(X), \|\cdot\|)$ is isometrically isomorphic to $(\Lambda_{\alpha}(X), \|\cdot\|_{*})$ while $M_{b,\alpha}^{+}(X)$ is identified with $\Lambda_{\alpha}^{+}(X)$ under this isometric isomorphism.

Proof. Define F: $M_{b,\alpha}(X) \neq \Lambda_{\alpha}(X)$ by $F(\mu)(f) = f f d\mu$ for each $\mu \in M_{b,\alpha}(X)$ and $f \in C^{*}_{\alpha}(X)$. Let K be a compact support of μ belonging to α , that is, $|\mu|(X \setminus K) = 0$ and $K \in \alpha$. Then for each $f \in C^{*}_{\alpha}(X)$, $|F(\mu)(f)| = |f f d\mu| =$ $|f_{K} f d\mu| \leq f_{K}|f|d|\mu| \leq |\mu|(K) \cdot p_{K}(f)$ and so $F(\mu)$ is continuous. Clearly $F(\mu)$ is linear. Hence $F(\mu) \in \Lambda_{\alpha}(X)$.

Also $\|F(\mu)\|_{\star} \leq \sup \{|\mu|(K)p_{K}(f): f \in C^{\star}(X), \|f\|_{\infty} \leq 1\}$

 $= |\mu|(K) = \|\mu\|.$

Now we prove the reverse inequality, that is, $\|\mu\| \leq \|F(\mu)\|_{\star}$.

Note $|\mu|(K) = \sup \{\Sigma | \mu(A_i) | : \{A_i\}$ is a finite disjoint collection of B with $\cup A_i \subseteq K\}$. So given $\varepsilon > 0$, there exist $A_1, \ldots, A_n \in B$ such that A_i 's are pairwise disjoint and $\sum_{i=1}^{n} |\mu|(A_i)| > |\mu|(K) - \varepsilon$. Since μ is regular there exist compact sets C_i and open sets U_i such that $C_i \subseteq A_i \subseteq U_i$ and $|\mu|(U_i \setminus C_i) < \varepsilon/n$ for $1 \le i \le n$. Since the compact subsets C_i 's are pairwise disjoint, pairwise disjoint open sets V_i exist such that $C_i \subseteq V_i$. Now let

 $W_i = U_i \cap V_i$. Then $C_i \cap (X \setminus W_i) = \emptyset$. Hence by Lemma 4.2, there exists a continuous function $f_i: X + I$ such that $f_i(C_i) = \{1\}$ and $f_i(X \setminus W_i) = 0$. Let $a_i = \frac{|\mu(A_i)|}{\mu(A_i)}$ if $\mu(A_i) \neq 0$ and if $|\mu(A_i)| = 0$, let $a_i = 0$. Let f = $\Sigma_{i=1}^{n} a_{i}f_{i}$. Since W_{i} 's are pairwise disjoint, $\|f\|_{\infty} \leq 1$. Now $|f f d\mu - \Sigma_{i=1}^{n} |\mu(A_i)||$ = $|\Sigma_{i=1}^{n} a_{i} f_{i} d\mu - \Sigma_{i=1}^{n} |\mu(A_{i})||$ = $|\Sigma_{i=1}^{n} a_{i} f_{W_{i}} f_{i} d\mu - \Sigma_{i=1}^{n} |\mu(A_{i})||$ = $|\Sigma_{i=1}^{n}[a_{i}f_{C_{i}}f_{i}d\mu - |\mu(A_{i})|] +$ $\sum_{i=1}^{n} a_{i} f_{W_{i} \setminus C_{i}} f_{i} d\mu$ $= \left| \sum_{i=1}^{n} \left[a_{i} \mu(C_{i}) - a_{i} \mu(A_{i}) \right] + \right.$ $\sum_{i=1}^{n} a_{i} f_{W_{i} \setminus C_{i}} f_{i} d\mu$ $\leq \Sigma_{i=1}^{n} |a_{i}| |\mu(C_{i}) - \mu(A_{i})| +$ $\Sigma_{i=1}^{n} |a_{i}| f_{W_{i} \setminus C_{i}} |f_{i}|d|\mu|$ $\leq \Sigma_{i=1}^{n} | \mu(A_{i} \setminus C_{i}) | + \Sigma_{i=1}^{n} | \mu|(W_{i} \setminus C_{i})$ $\leq \Sigma_{i-1}^{n} |\mu| (A_{i} \setminus C_{i}) + \Sigma_{i-1}^{n} |\mu| (W_{i} \setminus C_{i})$ $< n \cdot \frac{\varepsilon}{n} + n \cdot \frac{\varepsilon}{n} = 2\varepsilon.$ So $\|F(\mu)\|_{\star} \ge |f f d\mu| > \sum_{i=1}^{n} |\mu(A_i)| - 2\varepsilon > |\mu|(K) - 3\varepsilon =$ $\|\mu\| - 3\varepsilon$. Therefore $\|\mu\| - 3\varepsilon < \|F(\mu)\|_{*} \le \|\mu\|$. Hence

 $\|F(\mu)\|_{\star} = \|\mu\|, \text{ that is, } F \text{ is an isometry.}$ Now we need to show that F is onto. Suppose $\lambda \in \Lambda_{\alpha}(X)$. Then λ can be written as $\lambda = \lambda^{+} - \lambda^{-}$ where

1989

 $\begin{array}{lll} \lambda^+,\lambda^- \in \Lambda^+_\alpha(X)\,. & \text{Now if }\lambda \text{ has a compact support K belonging}\\ \text{to }\alpha, \text{ then both }\lambda^+ \text{ and }\lambda^- \text{ have compact support K. To}\\ \text{show F is onto, we try to get }\mu_1,\mu_2 \in M^+_{b,\alpha}(X) \text{ such that}\\ \lambda^+ = F(\mu_1) \text{ and }\lambda^- = F(\mu_2)\,. & \text{So }\lambda = \lambda^+ - \lambda^- = F(\mu_1) - F(\mu_2)\\ = F(\mu_1 - \mu_2) = F(\mu) \text{ where }\mu = \mu_1 - \mu_2 \in M_{b,\alpha}(X)\,. & \text{So we}\\ \text{just need to consider }\lambda^+. & \text{Define }\lambda^+_K\colon C^\infty_\alpha(K) \to \mathrm{IR as}\\ \text{follows. For each }f \in C^\infty_\infty(K)\,, \text{ choose an }f_K \in C^*_\alpha(X) \text{ such}\\ \text{that }f_K|_K = f. & \text{Then define }\lambda^+_K(f) = \lambda^+(f_K)\,. & \text{Since }\lambda^+ \text{ is}\\ \text{supported on }K, \;\lambda^+_K \text{ is well-defined. Also since }\lambda^+ \text{ is}\\ \text{linear, so is }\lambda^+_K. & \text{Finally }\lambda^+_K \text{ is continuous since}\\ \sup \; \{|\lambda^+_K(f)|\colon f \in C^*(K), \|f\|_\infty \leq 1\} = \sup\; \{|\lambda^+(f)|\colon \\f \in C^*(X), \|f\|_\infty \leq 1\} = \|\lambda^+\|_* < \infty. \text{ By the Riesz Representation Theorem (see [1]), there exists a }\mu_K \in M^+_b(K) \text{ such}\\ \text{that }\lambda^+_K(f) = f_K f \; d\mu_K \text{ for all }f \in C^*(K)\,. \end{array}$

It only remains to show that an element $\mu_1 \in M_b^+(X)$ can be found such that $\mu_1(B) = \mu_K(B \cap K)$ for all $B \in B$. Then μ_1 would be supported on K so that μ_1 would be in $M_{b,\alpha}^+(X)$ and thus for each $f \in C^*(X), \lambda^+(f) = \lambda_K^+(f|_K) = \int_K f|_K d\mu_K = f f d\mu_1 = F(\mu_1)(f)$ which shows that $\lambda^+ = F(\mu_1)$.

First observe that because of Lemma 4.1, μ_1 is welldefined on B. So we only need to show that μ_1 is regular. Let $B \in B$ and let $\varepsilon > 0$. Since μ_K is regular, there exists a compact subset C of K and an open subset U of K such that $C \subseteq B \cap K \subseteq U$ and $\mu_K(U \setminus C) < \varepsilon$. Let $V = U \cup (X \setminus K)$ which is open in X. Then $C \subseteq B \subseteq V$ and $\mu_1(V \setminus C) = \mu_K((V \setminus C))$ $\cap K = \mu_K(U \setminus C) < \varepsilon$. Therefore μ_1 is regular and is thus an element of $M_{b,\alpha}^+(X)$. Note when $\alpha = F(X)$ or K(X), the above theorem tells us what is exactly the measure-theoretic counterpart of $\Lambda_p(X)$ or of $\Lambda_k(X)$ respectively. Note that when $\alpha = F(X)$, $M_{b,\alpha}(X)$ is actually the linear space over \mathbb{R} generated by the set of Dirac's measures on X. This fact explains why $\Lambda_p(X)$ and $\Lambda_p^+(x)$ cannot be complete because a limit of a Cauchy sequence in $M_{b,p}(X)$ or in $M_{b,p}^+(X)$ may converge to a regular Borel measure on X with infinite support.

Now what is the measure-theoretic counterpart of $\Lambda_{\infty}(X)$? To answer this question, we introduce a new measure space. Let $M_{C}(X)$ be the set of all bounded finitely additive regular measures defined on A_{C} . Again $M_{C}(X)$ is a normed linear space with the total variation norm. Let $M_{C}^{+}(X) = \{\mu \in M_{C}(X) : \mu \geq 0\}$.

Theorem 4.4. If X is a normal and Hausdorff, then $(M_{c}(X), \|\cdot\|)$ is isometrically isomorphic to $(\Lambda_{\infty}(X), \|\cdot\|_{*})$ while $M_{c}^{+}(X)$ is identified with $\Lambda_{\infty}^{+}(X)$ under this isometric isomorphism.

Proof. See [3], pages 78-83.

But what about the countable additiveness of elements of $M_{C}(X)$? When X is countably compact, we have the following answer.

Theorem 4.4. If X is countably compact and if μ is a bounded regular finitely additive measure defined on A_c , then μ is countably additive on A_c , that is, $\mu(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$ whenever (A_n) is a countable family of pairwise

Kundu

disjoint sets from A_c with union in A_c . Moreover μ has a regular countably additive extension to the σ -algebra B of Borel subsets of X.

Proof. See Theorem 3.11 in [7]. Also see [3].

Now the last theorem can be used to improve Theorem 4.4 to the following version.

Theorem 4.6. If X is countably compact, normal and Hausdorff, then $M_b(X)$ is isometrically isomorphic to $\Lambda_{\infty}(X)$ while $M_b^+(X)$ is identified with $\Lambda_{\infty}^+(X)$ under this isometric isomorphism.

Since $\Lambda_{\alpha}(X) \subseteq \Lambda_{\infty}(X)$, for a countably compact, normal Hausdorff space, we have the following measure-theoretic counterpart of $\Lambda_{\alpha}(X)$.

Theorem 4.7. If X is countably compact, normal and Hausdorff, then $M_{b,\alpha}(X)$ is isometrically isomorphic to $\Lambda_{\alpha}(X)$ while $M_{b,\alpha}^{+}(X)$ is identified with $\Lambda_{\alpha}^{+}(X)$ under this isometric isomorphism.

5. Density

The density d(X) of a space X is the smallest infinite cardinal number m such that X has a dense subset which has cardinality less than or equal to m. Now a space X is separable if and only if $d(X) = \aleph_0$. If X is a subspace of a metrizable space Y, then d(X) < d(Y).

Theorem 5.1. For each space X, $d(\Lambda_{\alpha}^{+}(X)) = d(\Lambda_{\alpha}(X))$. Proof. Use Theorem 3.1. Corollary 5.2. $\Lambda^+_{\alpha}(X)$ is separable if an only if $\Lambda^-_{\alpha}(X)$ is separable.

For each $x \in X$, define the evaluation function at x, $\phi_{\mathbf{X}}: C^{\star}_{\alpha}(X) \rightarrow \mathbb{R}$ by taking $\phi_{\mathbf{X}}(f) = f(\mathbf{x})$ for each $f \in C^{\star}_{\alpha}(X)$. Now $\phi_{\mathbf{X}}$ is a positive linear functional on $C^{\star}_{\alpha}(X)$ which is supported on $\{\mathbf{x}\}$. Now if $\{\mathbf{x}\} \in \alpha$, then by Lemma 2.1 $\phi_{\mathbf{x}} \in \Lambda^{+}_{\alpha}(X)$.

For the remainder of this section, the notation |X| stands for the cardinality of X.

Theorem 5.3. Suppose $F(X) \subseteq \alpha$. Then $|X| \leq d(\Lambda_{\alpha}^{+}(X))$. Proof. Since $F(X) \subseteq \alpha$, $\phi_{X} \in \Lambda_{\alpha}^{+}(X)$ for all $x \in X$. Define the evaluation function $\phi: X + \Lambda_{\alpha}^{+}(X)$ by taking $\phi(x) = \phi_{X}$. Since $C^{*}(X)$ separate points, then ϕ is one-toone. Therefore $|\phi(X)| = |X|$. Now let x and y be distinct points of X. Then $d_{*}(\phi_{X}, \phi_{Y}) = \|\phi_{X} - \phi_{Y}\|_{*} = \sup \{|\phi_{X}(f) - \phi_{Y}(f)|: f \in C^{*}(X), \|f\|_{\infty} \leq 1\} = \sup \{|f(x) - f(y)|: f \in C^{*}(X), \|f\|_{\infty} \leq 1\} \geq 1$. So $\phi(X)$ is a discrete subset of $\Lambda_{\alpha}^{+}(X)$ and hence $|\phi(X)| \leq d(\phi(X))$. Therefore $|X| = |\phi(X)| \leq d(\phi(X))$ $\leq d(\Lambda_{\alpha}^{+}(X))$.

Corollary 5.4. Suppose $F(X) \subseteq \alpha$ and $\Lambda^+_{\alpha}(X)$ is separable. able. Then X is countable.

In order to establish a more general theorem on separability of $\Lambda_{\alpha}^{+}(X)$, we need to discuss the separability of $M_{b,\alpha}^{+}(X)$. Note that the proof of Theorem 3.3 in [8] actually shows that if X is countable, then $M_{b}(X)$ is

separable. So when X is countable, $M_{b,\alpha}(X)$ and $M_{b,\alpha}^+(X)$ are also separable.

Theorem 5.5. Suppose $F(X) \subseteq \alpha \subseteq K(X)$. Then $\Lambda^+_{\alpha}(X)$ is separable if and only if X is countable.

Proof. Suppose $\Lambda_{\alpha}^{+}(X)$ is separable. Then by Corollary 5.4, X is countable. Conversely, let X be countable. Now since $\alpha \subseteq K(X)$, by Theorem 4.3, $\Lambda_{\alpha}^{+}(X)$ is isomorphic to $M_{b,\alpha}^{+}(X)$. So $d(\Lambda_{\alpha}^{+}(X)) = d(M_{b,\alpha}^{+}(X))$. Hence $\Lambda_{\alpha}^{+}(X)$ is separable.

Lastly, we talk about the separability of $\Lambda_{\infty}(X)$. Note that Theorem 5.1 gives us $d(\Lambda_{\infty}^{+}(X)) = d(\Lambda_{\infty}(X))$. This means that $\Lambda_{\infty}(X)$ is separable if and only if $\Lambda_{\alpha}^{+}(X)$ is separable.

Theorem 5.6. $\Lambda_{\infty}(X)$ is separable if and only if X is compact and countable.

Proof. If $\Lambda_{\infty}(X)$ is separable, then $\Lambda_{k}(X)$ is separable and so X is countable. Again, since $\Lambda_{\infty}(X)$ is the conjugate space of the normed linear space $C_{\infty}^{\star}(X)$, $C_{\infty}^{\star}(X)$ is separable. But this implies that X is compact (see [9], page 54). Conversely, let X be compact and countable. Since X is compact, $C_{k}^{\star}(X) = C_{\infty}^{\star}(X)$ and consequently $\Lambda_{\infty}(X) = \Lambda_{k}(X)$. But X is countable and so $\Lambda_{k}(X)$ is separable. Hence $\Lambda_{\infty}(X)$ is separable.

References

1. C. Aliprantis and O. Burkinshaw, Principle of Real Analysis, North Holland, New York, 1981.

- C. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press Inc., Orlando, Florida, 1985.
- E. Beckenstein, L. Narici, C. Suffel, Topological Algebras, Notas de Matematica (60), North Holland, New York, 1958.
- N. Dunford and J. T. Schwartz, Linear Operators, Part 1, Interscience Publishers Inc., New York, 1958.
- 5. R. Engelking, *General Topology*, Polish Scientific Publishers, Warszawa, Poland, 1977.
- E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, New York, 1965.
- 7. S. Kundu, *Dissertation*, Virginia Polytechnic Institute and State University, USA, 1989.
- S. Kundu, R. A. McCoy and A. Okuyama, Spaces of Continuous Linear Functionals on C_k(X), Mathematica Japonica 34, No. 5 (1989).
- R. A. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Mathematics 1315, Springer-Verlag, New York, 1988.

Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061