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SPACES OF CONTINUOUS LINEAR 

FUNCTIONALS: SOMETHING OLD 

AND SOMETHING NEW 

S.Kundu 

Let C(X) denote the set of all continuous real-valued 

functions on a completely regular Hausdorff space X and 

C*(X) be the set of bounded functions in C(X). Let us 

denote by Ck(X) (respectively by Cp(X» the set C(X) 

topologized with the compact-open (respectively L~le point-

open) topology. Both Ck(X) and Cp(X) are locally convex 

spaces. The locally convex compact-open topology on C(X) 

is generated by the collection of seminorms {Px: X is a 

compact subset of X} where Px(f) = sup {If(x) I: x E X} for 

f E C(X). Similarly the locally convex point-open topol

ogy on C(X) is generated by the collection of seminorms 

{PF: F is a finite subset of X} where PF(f) = sup {If(x) I: 
x E F}. Let K(X) = {X ~ X: X is a compact subset of X} 

and F(X) {F ~ X: F is a finite subset of X}. 

Basic open sets in Ck(X) (respectively in Cp(X» look 

like < f ,A, € > {g E C(X): If·(x) - 9 (x) I < € for all 

x'E A} where f E C(X), A E K(X) (respectively A E F(X» 

and € > o. 

Let Ak(X) (respectively Ap(X» be the set of all con

tinuous linear functionals (real-valued functions) on 

Ck(X) (on C~(X) respectively). Note since C,(X) (re

spectively C~(X» is a dense linear subspace of the 
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locally convex space Ck(X) (respectively Cp(X», the set 

of all continuous linear functionals on Ck(X) (respectively 

C*(X» equals the set of all continuous linear functionals 
p 

on Ck(X) (respectively on Cp:(X». In [8], a normed linear 

space whose underlying set is Ak(X) has been studied in 

detail. In [8], the notation A(X) has been used in place 

of Ak(X). A necessary condition for this normed linear 

space Ak(X) to be complete is that C(X) = C*(X), that is, 

every real-valued continuous function on X must be 

bounded. In this paper, we want to put the problem of 

completeness of Ak(X) in a proper perspective and we show 

that the problem of completeness of Ak(X) is essentially 

a problem of finding a suitable topology on C*(X). Be

cause of the discussion in this paragraph, from now on, 

we will be interested only in C*(X). We want to answer 

the problem of completeness of Ak(X) in a more general 

setting. For this purpose, we first define a new topology 

on C*(X) and we will see that the point-open, compact-open 

and sup-norm topologies on C*(X) are all special cases of 

this topology. 

1. A New TopololY on C* (X) 

Let a be a collection of subsets of X which satisfies 

the following two conditions: (i) each member of a is 

C*-embedded and (ii) if A,B E a, then there exists C E a 

such that A U B C C. 

For each A E a, define a seminorm PA on C*(X) as
 

follows. For f E C*(X}, PA(f) = sup {If(x) I: x E A}.
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Consider the locally convex topology on C·(X) generated 

by the collection of seminorms {PA: A E al. Because of 

(ii), for each f E C*(X), f + U = {f + V: V E Ul is a 

neighborhood base at f where U = {V E A E a, E > ol. 
PA' 

We call this new locally convex topology on C*(X) 

a-topology and the corresponding topological space we 

denote by C*(X). Note when a = K(X) or F(X), we geta 

compact-open or point-open topology on C*(X) respectively. 

The supremum norm on C*(X) is defined as IfD= = 
sup {If(x) I: x E xl for f E C·(X). This supermum norm 

generates a finer topology than the a-topology on C*(X). 

We denote this normed linear space by C*(X). If a contains = 
X, then C*(X) = C*(X); and if, in addition, we assume the 

a = 
members of a to be closed, then C*(X) = C*(X) only if a a = 
contains X. (see [7], page 7). 

Let Aa(X) be the set of all continuous linear func

tionals (real-valued) on C~(X) and let A=(X) be the set 

of all continuous linear functionals (real-valued) on 

C:(X). Since the sup-norm topology on C*(X) is finer 

than the a-topology on it, A (X) C A (X). Now A_(X) is a a = ~ 

normed linear space with the usual conjugate norm, that is, 

given A E A=(X), we have a norm DAD. = sup {IA(f) I: 

f E C*(X), Df"= ~ I} where 0.0= is the sup-norm on C*(X). 

Consequently we can assign this n.D.-norm on A (X)· to a 

make it a normed linear space (A (X),I.I*).a 

Note A=(X) is actually a particular case of Aa(X). 

Here we also mention another particular A (X). Let X be a 
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a normal Hausdorff space and a = {clxA: A is a a-compact 

subset of X}. Note that a is closed under finite union 

because uk 1 clXA = clx(uk 1 A). We denote the corresn= n n= . n 

ponding Aa(X) by Ag(X). While considering Aa(X), we will 

always assume X to be a normal Hausdorff space. 

2.	 Basic Properties of Aa (X) 

Let A+(X) = {A E A (X): A > O} where A > 0 provideda . a 

that A(f) > 0 for each f E C*(X) such that f > O. If
 

A E Aa(X) and A is a subset of X, then A is said to b~
 

supported on A provided that whenever f E C*(X) with
 

ft A = 0, then A(f) = O. Since A is linear, this is
 

equivalent to saying that whenever f,g E C*(X) with
 

~IA = glA' then A(f) = A(g).
 

The next two lemmas can be proved in manners similar 

to Lemmas 1.1 and 1.2 in [8]. 

Lemma	 2.1. Fo~ each A E A (X), the~e e%ists an eZea
 

ment A in a such that A is suppo~ted on A. ConverseZy,
 

if A is a positive linear functional on C*(X) which is 

+supported on an e~ement of a, then A E Aa(X). 

Lemma 2.2. Let A be a closed subset of X, let 

F E a and let A E Aa(X). If A is supported on each of A 

and F, then A is supported on A n F. 

Now on A+(X) we give a topology induced by the a
 

metric d*(A,~) =1 A - ~ D* for A,~ E A:(X).
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Theopem 2.3. (A+(X), d.) is a cZosed subspace of ex
 
(A (X), u· a.) •
 ex 

Proof. Let A E A (X)\A+(X). Then there exists a ex ex
 
9 E C·(X) such that 9 ~ 0 and A(g) < O. Let r be a posi

tive number such thatnrgH~~ 1. Define E = -!A(g). Now
 

suppose U E A (X) is such that nU - AD. < E. Then
 ex
 

I~(rg) - A(rg) I < E so that ~(g) - A(g) < %= - jA(g).
 
1 +
Therefore U(g) < !A(g) < 0 so that u E Aex(X)\Aex(X). 

3. The Completeness of A+ (X) and A (X)a cr 

The space A+(X) is a metric space with the metric d •• ex
 
This space is complete provided that if a sequence in
 

A+(X) is a Cauchy sequence with respect to d., then it ex
 
converges. Likewise the normed linear space A (X) is
 ex
 

complete if it is complete with respect to its norm 0·1.,
 

that is, if it is a Banach space.
 

+
We have studied the completeness of Ak(X) and Ak(X)
 

in [a]. We already know that A~(X), being the conjugate
 

space of a normed linear space, is always complete.
 

+To establish that the completeness of Aex(X) is 

equivalent to the completeness of Aa(X), we need the fol

lowing theorem which can be proved like Theorem 2.2 in [8]. 

Theorem 3.1.	 Each A E Aa(X) can be ~ritten as 

+ +A = A+ - A- ~here A and A- are members of Aa(X). Further

more, if A,U E AN(X), then D A+ - ~+ a <0 A - u Rand\.At	 ._. 

D A- - u- I.~D A - ul•• 
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Theorem 3.2. The metric space A+(X) is aomplete ifa 

and only if the normed linear space A (X) is complete.a
 

Proof· Use Theorems 3.1 and 2.3.
 

Because of Theorem 3.2, each of the following theorems 

about A+(X) is also true for A (X).
a a 

Theorem 3.3. Suppose X is infinite and F(X) S a. 

Now if A~X) is compZete. then evepy countabZe subset of 

X is contained in some member of a. 

Proof. Let A = {x : n E IN} be any countable subset n 

of X. For each m E IN, define A : C*(X) + lR as follows. m a 

For each f E C*(X), take Am(f) = Lm 1 ~ f(x). Each Ama n= ~n n 

is a positive linear functional on C*(X) supported on a 

the finite set {Xl' ••• ,x}. Then by Lemma 2.1, A is m m 

continuous. Now for each k and m with k < m, d*(Ak,A )m
m 1

IAk - AmU*~ Ln=k+l 2ii. Therefore (Am) is a Cauchy sequence 

in A+(X). Since A+(X) is complete, the (A ) converges to 
a a m 

some A in A+(X). Also Am + A implies A(f) = lim A (f) = a m+oo m 

1:~=l 2
l
n f (x ) for all f E C~ (X) •n 

Now suppose A has a support Y which belongs to a. We 

show that A C Y. Suppose not, then there is some m such 

that x ~ Y. Since X is completely regular, there is somem 

continuous function f on X with values in the unit interval 

I such that f(x ) = land f(t) = {Ole Since A is supportedm
00 1 1 

on Y, A(f) = O. But A(f) = Ln=l 2n f(x ) ~ 2m f(x ) = n m

~ > o. With this contradiction, it follows that A C Y. 

CopoZZapy 3.4. If X is infinite. then A;<X) and 

Ap(X) are not complete. 
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Theorem 3.5. If the closure of each countable union 

of elements of a belongs to a~ then A+(X) is complete.a 

Proof. Let (An) be a Cauchy sequence in A~(X). 

Consider A+(X} as a subspace of the complete metric spacea 

A:(X). Then (An) is a Cauchy sequence in A:CX) and hence 

converges to some A in A:(X}. Suppose each An is supported 

on An where An E a. We show that A is supported on A = 

clx(U~=l An)· Let f E C*(X} with fl A = o. Since each An 

is supported on An ~ A, then each An (f) = 0 and conse

quently A(f) = lim A (f) = O. Therefore A has support A.n+co n 

But by hypothesis A E a. Hence by Lemma 2.1 A E A+(X).a 
So A+(X) 

a 
is complete. 

Corollary 3.6. Suppose X is a normal Hausdorff 

space. Then A; (X) is always complete. 

Proof· Suppose for each n, A is a a-compact subset n 
of X. Then Clx(U~=l c10n) Clx(U~=l An} E a. 

4. Measure Theoretic-Counterparts 

In this section, we will talk about the measure-

theoretic counterparts of A (X) and A (X) with some extra a co 

conditions on a and X. So now we introduce some ideas 

from measure theory. 

The algebra generated by the closed sets of X are 

denoted by A while the a-algebra they generate is denotedc 
by B, called the Bopel sets. 

For us a finitely additive measure (also called 

signed measure) on A is a real-valued function defined c 
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on A satisfying the following two properties (i) ~(~) 0;c 
(ii) ~(A U B) = ~(A) + ~(B) if A,B E A and A n B = ~.c 

A finitely additive measure ~ is called a countably 

additive measure or simply a measure provided that 

(iii) ~(U:=l An ) = E:=l ~(An) for all pairwise disjoint 

sequences (A )= 1 such that A E A and U= 1 A EA. n n= n c n= n c 

When a measure ~ is defined on B, we call it a Borel 

measure. A measure ~ defined on B has support A where 

A C X and A E B if I~I (X\A) = O. A finitely additive 

measure ~ defined on A or B is regular whenever A is in c 

the domain of definition of ~ and € > 0, there are closed 

and open sets C and U such that C C A ~ U and I~I (U\C) < €. 

Note when ~ has compact support, this definition of regu

larity coincides with the one usually given in the books 

on measure theory. For more information on measure 

theory see [4] and [6]. 

Now we fix some notations. 

A (signed) measure ~ defined on B is said to be a 

finite (signed) measure if I~(A) I < = holds for each A E B. 

It can be shown that a signed measure ~ is finite if and 

only if I~I (X) < =. So a finite signed measure defined 

on S, has finite total variation. For details on the 

above, see [1], 26. 

Now let Mb(X) be the set of all finite (signed) 

+regular Borel measures on X. Let MbCX) = {~ E Mb(X): 

~ ~ 0, that is, U is a positive measure}. Throughout 

the remaining part of this paper we will assume the fol

lowing extra condition on a: the members of a are closed. 



121 TOPOLOGY PROCEEDINGS Volume 14 1989 

Now define ~,a(X) = {~ E ~(X): ~ has a support 

A(~ X) such that A E a}. Let ~+ (X) {~E ~ (X):-c,a -c,a 
~ ~ oJ. When a = K(X) or F(X), we write Mb,k(X) or 

M (X) respectively.--b,p 

The next thing to observe is that given ~ E ~(X), 

n~ II = I~ I (X) defines a norm on ~ (X). So (~(X), II • II) is 

actually a normed linear space. Also ~(X) is a metric 

space when equipped with the norm p given by P(~1'~2) = 

Ill l - ll2 n for every lll' ll2 E ~ (X). Note (~, a (X) , II • n) is 

a normed linear space while (~+ (X),p) is a metric space.-c,a 
Before having our first theorem in this section, we 

need the following two lemmas. 

Lemma 4.1. Suppose Y is a Borel subset of a com

pleteZy regular Hausdorff space X. Let B(X) and B(Y) be 

the a-algebras of Borel subsets of X and Y respectiveZy. 

Then B(X) n Y = B(Y) where B(X) n Y = {B n Y: B E B(X)}. 

Proof. Define V = {A E P(X): A = E U (B\Y); E E B(Y) 

and B E B(X)} where P(X) is the power set of X. Note 

X\ (E U (B\ Y» = (Y\ E) U «X\ (B\ Y) ) \ Y). Now it can be 

easily shown that V is a a-algebra on X containing all the 

closed subsets of~. Hence SeX) ~ V. So seX) nyc V n Y. 

But V n Y = B(Y). So SeX) n Y ~ B(Y). Note B(X) n Y is 

a a-algebra on Y and if C is a closed subset of Y, then 

C C' n Y for some closed subset C' of X which means 

C E SeX) n Y. Hence B(Y) C SeX) n Y. Therefore SeX) n Y 

B(Y) • 
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Lemma 4.2. If A is a compact subset of a completely 

peguZap Hausdopff space X, then fop evepy cZosed set 

B ~ X\A, thepe exists a continuous function f: X ~ I such 

that f(x) = 0 fop x E A and f(x) 1 fop x E B. 

Proof. See [5], page 168. 

Theopem 4.3. Suppose a ~ K(X), that is, the membeps 

of a ape compact. Then (R (X),O·O) is isometpicalZy
-0,0. 

isomopphic to (A (X),U.O.) whiZe R+ (X) is identified a -0,0. 

with A+(X) under this isometric isomorphism.a 

Ppoof. Define F: M (X) ~ A (X) by F(~) (f) = I f d~-0,0. a 

for each ~ E M (X) and f E C·(X). Let K be a compact
-0,0. a 

support of ~ belonging to a, that is, I~ I (X\ K) 0 and 

K E a. Then for each f E C~(X), IF(~) (f) I = II f d~1 

11K f d~1 ~ IKlfldl·.~1 ~ I~I (K) • PK(f) and so F(~) is 

continuous. Clearly F(~) is linear. Hence F(~) E Aa(X). 

Also nF(~)". ~ sup {I~I (K)PK(f): f E C*(X), Hfn oo ~ I} 

Now we prove the reverse inequality, that is, 

u~u ~ UF(~) " •• 

Note I~I (K) = sup {EI~(Ai) I: {Ai} is a finite dis

joint collection of B with U A. C K}. So given € > 0,
1 

there exist AI, ••• ,A E B such that Ais are pairwisen 

disjoint and t~=ll~1 (Ai) I > t~1 (K) - E. Since ~ is regu

lar there exist compact sets Ci and open sets Ui such that 

C. C A. C U. and I~I (U.\C.) < E/n for 1 _< i _< n. Since 
1 - 1 - 1 1 1 

the compact subsets Cis are pairwise disjoint, pairwise 

disjoint open sets V ' exist such that C. C v .. Now let 
1 1 - 1 
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W. = u. n V.• Then C. n (X\W.) =~. Hence by Lemma 4.2, 
~ ~ ~ ~ ~ 

there exists a continuous function f.: X + I such that 
~ 

I~ (Ai) I iff. (C.) = {I} and f. (X\W.) = O. Let a; = 
~ ~ ~ ~ . ~(Ai) 

~(A;) ~ 0 and if I~(A.) I = 0, let a. = o. Let f. ~ ~ 

n Since Wis are pairwise disjoint, Ilfll ~ 1.I: i =1 ai.fi • oo 

Now II f d~ - I:~=ll ~ (Ai) I I 

1I:~=1 a i I fid~ - I:~=1 1~(Ai) I I 

1I:~=1 a i IW.fid~ - I:~=1 1~(Ai)1 I 
~ 

1I:~_1[a·Jc f.d~ - I~(A.) I] + 
~- ~ . ~ ~ 

~ 

< I:~ 11 a. II ~ (C.) - ~ (A. ) I + 
~= ~ ~ ~ 

< n • + n • ~ = 2E.*
SO IIF(~)II*~ II fd~1 > I:~=l 1~(Ai)l- 2E > I~I(K) - 3E 

U~U - 3E. Therefore n~n - 3E < nF(~)"* ~ n~u. Hence 

DF(~)I* = n~D, that is, F is an isometry. 

Now we need to show that F is onto. Suppose 

A E Aa(X). Then A can be written as A = A+ - A- where 
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A+,A- E A+(X). Now if A has a compact support K belonging
a 

to a, then both A+ and A have compact support K. To 

+show F is onto, we try to get ~1'~2 E Mb,a(X) such that 

A+ = F(~l) and A- F(~2). So A A+ - A- = F(~l) - F(~2) 

= F(~l - ~2) = F(~) where ~ = ~l - ~2 E ~,a(X). So we 

just need to consider A+. Define A;: C:(K) + lR as 

follows. For each f E C:(K), choose an f K E C~(X) such 

that f = f. Then define A;(f) = A+(fK). Since A+ isK1K 
supported on K, A; is well-defined. Also since A+ is 

linear, so is AK
+ • Finally A; is continuous since 

sup {IA;(f) I: f E C* (K), II f II 00 ~ l} = sup {I A+ (f) I: 
f E C* (X), II f II 00 < l} = 11:\+11* < 00. By the Riesz Represen

+tation Theorem (see [1]), there exists a ~K E Mb(K) such 

that A;(f) = !K fdPK for all f E C*(K). 

+It only remains to show that an element ~l E Mb(X) 

can be found such that ~l(B) = ~K(B n K) for all B E B. 

Then Pl would be supported on K so that ~l would be in 

~,a(X) and thus for each f E C*(X),l+(f) = A;(fI K) = 

!K flK d~K = ! f d~l = F(~l) (f) which shows that A+ F(~l)· 

First observe that because of Lemma 4.1, ~l is well-

defined on B. So we only need to show that ~l is regular. 

Let B E B and let E > o. Since ~K is regular, there 

exists a compact subset C of K and an open subset U of K 

such that C C B n K C U and ~K(U\C) < E. Let V U U (X\K) 

which is open in X. Then C C B C V and ~l(V\C) ~K ( (V\ C) 

n K) = PK(U\C) < E. Therefore Pl is regular and is thus 

an element of ~+ (X).-c,a 
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Note when a = F{X) or K{X), the above theorem tells 

us what is exactly the measure-theoretic counterpart of 

Ap{X) or of Ak{X) respectively. Note that when a = F(X), 

~ (X) is actually the linear space over m generated by-o,a 
the set of Dirac's measures on X. This fact explains 

+why Ap{X) and Ap{x) cannot be complete because a limit of 

a Cauchy sequence in R (X) or in M+ (X) may converge-b,p -b,p 

to a regular Borel measure on X with infinite support. 

Now what is the measure-theoretic counterpart of 

A~(X)? To answer this question, we introduce a new 

measure space. Let Mc(X) be the set of all bounded 

finitely additive regular measures defined on A • Againc 

Mc(X) is a normed linear space with the total variation 

norm. Let M+(X) = {~ E M (X): ~ > O}.c c-

Theorem 4.4. If X is a normal and Hausdorff, then 

(Mc(X)~U·U) is isometrioally isomorphio to (A~(X),U·U*) 

while M~{X) is identified with A:{X) under this isometrio 

isomorphism. 

Proof. See [3], pages 78-83. 

But what about the countable additiveness of elements 

of Mc(X)? When X is countably compact, we have the 

following answer. 

Theorem 4.4. If X is oountably oompaot and if ~ is 

a bounded regular finitely additive measure defined on A ' c 

then ~ is oountably additive on A ' that is, ~(U~=l An) = c 
~ 

~n=l ~(An) whenever (An) is a oountable family of pairwise 
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disjoint sets from A with union in A . Moreover ~ has a c c 

reguZar aountabZy additive extension to the a-aZgebra B of 

BoreZ subsets of x. 
Proof. See Theorem 3.11 in [7]. Also see [3]. 

Now the last theorem can be used to improve Theorem 

4.4 to the following version. 

Theorem 4.6. If X is aountabZy aompaat, normaZ and
 

Hausdorff, then Mb{X) is isometriaaZZy isomorphia to
 

Aoo{X) whiZe ~(X)is identified with A~{X) under this
 

isometria isomorphism.
 

Since Aa{X) ~ Aoo{X) , for a countably compact, normal 

Hausdorff space, we have the following measure-theoretic 

counterpart of Aa{X). 

Theorem 4.7. If X is aountabZy aompaat, normaZ and
 

Hausdorff, then M. (X) is isometriaaZZy isomorphia to
--b,a
 

A (X) whiZe M.+ (X) is identified with Aa+{X) under this
a --b,a 

isometria i8omorphi8m~ 

5.	 Density 

The density d(X) of a space X is the smallest infinite 

cardinal number m such that X has a dense subset which has 

cardinality less than or equal to m. Now a space X is 

separable if and only if d(X) = ~O. If X is a subspace
 

of a metrizable space Y, then d(X) ~ dey).
 

Theorem 5.1. For eaah spaae X, d(A+{X» d{Aa(X».a
 

Proof. Use Theorem 3.1.
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Corollary 5.2. A+(X) is separable if an only if 
a 

A (X) is separable.
a 

For each x E X, define the evaluation function at x, 

4>x: C~ (X) + lR by taking 4>x{ f) '= f (x) for each f E C~ (X) • 

Now 4> is a positive linear functional on C*(X) which is x a 
supported on {x}. Now if {x} E a, then by Lemma 2.1 

If\ E A+{X).
~x a 

For the remainder of this section, the notation Ixl 
stands for the cardinality of X. 

+Theorem 5.3. Suppose F{X) Ca. ThenlXI ~ d{Aa(X». 

Proof. Since F{X) C a, 4> E A + (X) for all x E X. - x a 
Define the evaluation function ~: X + A+(X) by taking

a 

~(x) 4>x. Since C*{X) separate points, then ~ is one-to

one. Therefore I~{X) I = Ixi. Now let x and y be distinct 

points of X. Then d*{4>x,4>y) = U4>x - $yU* = sup {14>x{f) 

cPy{f) j: f E C*{X), Dflloo~ I} = sup {If{x) - fey) I: f E C*(X), 

DfD < l} > 1. So ~(X) is a discrete subset of A+(X) and 
00- - a 

hence I~(X) I < d{~{X». Therefore IXI = I~(X) I ~ d(~(X» 

< d(A+(X». 
- a 

CoroZZary 5.4. Suppose F(X) ~ a and A+{X) is separ
a 

abZe. Then X is countabZe. 

In order to establish a more general theorem on 

separability of A+(X), we need to discuss the separability
a 

of R+ (X). Note that the proof of Theorem 3.3 in [8]--b,a 

actually shows that if X is countable, then Mb(X) is 
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separable. So when X is countable, ~ (X) and ~+ (X)-c,a. -c,a.
 

are also separable.
 

Theorem 5.5. Suppose f(X) ~ a. ~ K(X). Then A+(X)
a. 

is	 separable if and only if X is countable.
 

Proof. Suppose A+(X) is separable. Then by
a.
 

Corollary 5.4, X is countable. Conversely, let X be
 

countable. Now since a. ~ K(X), by Theorem 4.3, A~(X) is
 

isomorphic to ~+ (X). So d(A+(X» = d(~+ (X». Hence
-o,a. a. -c,a.
 

A+(X) is separable.
a. 

Lastly, we talk about the separability of Aoo(X). 

Note that Theorem 5.1 gives us d(A+(X» = d(A (X». This 
00 00 

means that Aoo(X) is separable if and only if A~(X) is
 

separable.
 

Theorem 5.6. Aoo(X) is separable if and only if X is
 

compact and countable.
 

Proof. If Aoo(X) is separable, then Ak(X) is separable 

and so X is countable. Again, since Aoo(X) is the conjugate 

space of the normed linear space C:(X), C:(X) is separable. 

But this implies that X is compact (see [9], page 54). 

Conversely, let X be compact and countable. Since X is 

compact~ Ck(X) = C:(X) and consequently Aoo(X) = Ak(X). 

But X is countable and so Ak(X) is separable. Hence 

Aoo(X) is separable. 
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