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SEMIGROUPS OF FUNCTIONS ON
NEARNESS SPACES

Rhonda L. McKee

1. Introduction

For a topological space (X,t), C(X) denotes the semi-
group of all continuous selfmaps where composition is the
binary operation. M-spaces and S*-spaces are known classes
of topological spaces which have the property that if two
spaces (X,t) and Y,s) are in one of the classes, then
(X,t) is homeomorphic to (Y¥,s) if and only if C(X) is
isomorphic to C(Y). M*-spaces and S**-spaces have a simi-
lar property. Magill [3] and [4] showed that every 0-
dimensional Hausdorff space and every completely regular
Hausdorff space containing at least two distinct points
which are connected by an arc is an S*-space. Thus, these
form a rather large class of spaces.

Let N(X) denote the semigroup of all near selfmaps on
a nearness space (X,u). If h is a near-homeomorphism from
(X,u) onto (Y,v), £+ h o £ o h_l is an isomorphism from
N(X) onto N(Y). For what kinds of nearness spaces is it
true that if N(X) is isomorphic to N(Y), then (X,u) is
near-homeomorphic to (Y,v)? Near M-spaces, near M*-spaces,
near S*-spaces and near S**-spaces are defined. All have
the desired property, and each one is related to the class

of topological spaces with the corresponding name.
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2. Preliminaries

For an introduction to nearness spaces, we refer the
reader to [2]. A nearness space can be defined by giving
any one of several different structures on a set. In what
follows, it seems most convenient to specify the uniform

covers of a nearness space.

Definition 1. Let X be a set and u a collection of
covers of X, called uniform covers, which satisfy the
following:

(N1) A € y and A refines B implies B € y.

(N2) {X} € u.

(N3) If A€y and B € u, then A A B € u, where

A ALB={ANB|A €A and B € B}.
(N4) If A € u, then int A € u, where int A = {int A|
A € A} and int A = {x € X| {a, X\x} € u}.

Then, (X,u) is called a nearness space.

It is easily verified that if (X,u) is a nearness
space, then the operator int is an interior operator on X
and thus defines a topology on X. This topology is de-
noted by tu. It is a symmetric topology. That is, if
X € cl{y} then y € cl{x}.

Conversely, if (X,t) is any symmetric topological
space, then there exist several compatible nearness struc-
tures on X. For example, ny = {ucepx| v {U0| U € U} =

X}, where U0 indicates the interior of U with respect to t.
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Definition 2. A base for a nearness structure u on
X is a subset L C u such that for each U € u, there

exists a U0 € o which refines U.

Definition 3. A nearness space (X,u) is said to be

topological if every U C P(X) with U int U = X is in u.

Notice that for a topological nearness space, U € u
if and only if int U covers X. Thus, if t is a topology
on X, there is only one topological nearness structure on
X compatible with t. It is the set of all covers which

are refined by some open cover.

Definition 4. An N, nearness space (X,u) is one

which satisfies the condition x # y implies {X\x, X\y} € p.

Definition 5. If (X,u) and (Y,v) are nearness struc-
tures and £f: X » Y is a mapping, then f is called a neqgr
map if the inverse image under f of every uniform cover of

Y is a uniform cover of X.
The following two propositions are well-known.

Proposition 1. If £: (X,u) - (Y,v) <8 a near map
then £ 18 continuous with respect to the underlying topolo-

gies tu and t,-

The converse of Proposition 1 is not true in general.

However, the following partial converse holds.
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Proposition 2. If (X,u) and (¥,V) are nearmness
spaces, (X,u) is topological, and £: X +~ Y is continuous
with respect to the underlying topologies, then f is a

near map.

Definition 6. A 1l-1, onto near map whose inverse is

also a near map is called a near-homeomorphism.

Let F(X) denote the semigroup of all functions from
a set X into itself. 1If x € X, let X be the constant
function, x(a) = x for all a € X. Let Z(X) denote the
collection of all constant functions in F(X). Any sub-
semigroup of F(X) which contains Z(X) will be called an
alpha-semigroup.

If (X,t) is a topological space we will let C(X,t)
(or just C(X), if the topology under consideration is
obvious) denote the collection of all continuous selfmaps
on (X,t). If (X,u) is a nearness space, we will let
N(X,u) (or just N(X)) denote the collection of all near
selfmaps on (X,u). It is easy to show that both C(X,t)
and N(X,u) are alpha-semigroups.

Suppose ¢ is an isomorphism of an alpha-semigroup
a(X) onto an alpha-semigroup o (Y), and let ¢* be the re-
striction of ¢ to Z(X). Hicks and Haddock [3] showed
that if £ € a(X), then £ € 2(X) if an only if £ o g = £
for every g € o (X). Thus, ¢* maps Z(X) onto 2(Y). Define
a mapping x*: X + 2(X) by x*(a) = a for all a € X, and a

mapping y*: ¥ > Z(Y) by y*() = b for all b € Y. Then
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let h: X + Y be the mapping (y*)_l o 0% o x*,

o (X) 4 o(Y)

z2(x) 2% z2(v)
A
x* y*

x B v
Hicks and Haddock [3] proved the following lemma.
Lemma 1. h (as defined above) maps X 1l-1 and onto Y.

For £ € F(X), let H(f) = {x € X| £(x) = x}. The

following lemma is due to Magill [4].

Lemma 2. (i) h(H(f)) = H(¢(£f)) for every £ € a(x),
and
.. -1 -1
(ii) h T (H(g)) = H(¢ ~(g)) for every

g €a(y).
Also, Rothmann [7] proved that:

Lemma 3. (i) h(f_l(x)) = (¢(f))-1(h(x)) for all
f € a(X) and x € X

1

(i) h gty = 6 e Tty for

all g € a(Y) and y € Y.

3. Near M-spaces

In [3], Hicks and Haddock prove the following

theorem.
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Theorem 1. Suppose X and Y are topological spaces
and there exist alpha-semigroups, o(X) and a(Y) such that
{H(F)| £ € a(X)} and {H(f)| £ € a(Y)} form bases for the
eclosed set of X and Y respectively. If ¢ is an isomorphism

1

from a(X) onto a(Y), then h = (y*) ~ o ¢* o x* is a homeo-

morphism from X onto Y.

They then define a topological space X to be an
M-space if {H(F)| £ € C(X)} is a base for the closed sets
of X.

Let X be a set and let o (X) be an alpha-semigroup on

X. For F C a(X), define U(F) = {X\H(f)| £ € F}.

Theorem 2. If (X,u) is a nearness structure for X
for which there exists an alpha-semigroup o(X) such that
{U(F)| F C a(X) and U(F) covers X} is a base for u, then
{H(f)| £ € a(X)} forms a base for the closed sets in
(X,tu) .

Proof. We show that {X\H(f)| £ € a(X)} is a base
for t,. We first show that X\H(f) € t for each £ € a(X).
Let x € X\H(f) and let F = {f,X}. Then, U(F) = {X\H(f),
X\H(X)} = {X\H(f), X\x}. U(F) covers X, since x € X\H(f)
and if y # x, then y € X\x. Thus, U(F) € u and therefore
x € int X\H(f). This shows that X\H(f) C int (X\H(f)).
Since int is an interior operator we have int X\H(f) C
X\H(f) and therefore int X\H(f) = X\H(f) or X\H(f)'is open.

Let 0 € tu, and let x € 0. Then {0, X\x} € u. Thus,
there exists an F C a(X) such that U(F) covers X and re-

fines {0, X\x}. Choose f € F such that x € X\H(f).
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Either X\H(f) C 0 or X\H(f) C X\x. Since x € X\H(£f), the
latter is impossible, and so we have x € X\H(f) C 0. This

shows that {X\H(f)| £ € a(X)} is a base for €

Definition 7. If (X,u) is a nearness space such that
{U(F)| F C N(X) and U(F) covers X} is a base for y, then

(X,u) is called a near M-space.

Theorem 3. Let (X,u) be a topological nearness space.
Then (X,u) i8 a near M-gpace if and only if (X,tu) i8 an
M-space.

Proof. First suppose (X,u) is a near M-space. Since
(X,u) is topological, Propositions 1 and 2 imply that
N(X,u) = C(x,tu). The result follows from Theorem 2, by
letting a(X) = N(X) = C(X).

Now, suppose (X,tu) is an M-space. Let F C C(X) =
N(X) and suppose that U(F) covers X. Since, for each
£ € F, H(f) is a basic closed set, X\H(f) is open. Thus,
U(F) is an open cover of X and, since (X,u) is topological,
U(F) € u.

Let A € uy. Then int A € y also. For each A € 4,

int A is open in tu, so there exists F, C C(X) = N(X) such

a
that int A = U{X\H(f)| £ € F,}. Let F = U{F,| A € A}.

Then, U{X\H(f)| £f € F} = U int A = X, and U(F) refines
A€A

A. So, {U(F)| F C N(X) and U(F) covers X} is a base

for u.

The next theorem is the main result for near M-spaces.
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Theorem 4. Two near M-gpaces (X,u) and (Y,v) are
near-homeomorphic if and only i1f N(X) and N(Y) are iso-
morphic.

Proof. If h is a near-homeomorphism of (X,u) onto

1

(Y,v), then ¢ defined by ¢(f) = h © £ © h"~ is an iso-

morphism of N(X) onto N(Y).

Let ¢ be an isomorphism of N(X) onto N(Y) and define

h = (y*)'l o ¢* o x* (as before). By Lemma 1, h maps

X 1-1 and onto Y. We first show that h™ 1

is a near map.
Let A € uy. Then there exists F C N(X) such that U(F)
covers X and refines A. Since h is an onto map h(U(F))

covers Y. Also, h(U(F)) refines h(A). Now, h(U(F))

{h(X\H(F)| £ € F}

{Y\h(H(f))| £ € F}, since h is 1-1, onto,

{Y\H(¢(£))| £ € F}, by Lemma 2(i),

{Y\H(g)| g € G}, where G = ¢(F) C N(Y).

Thus, h(U(F)) = U(G) is a basic uniform cover of Y. Since
h(U(F)) refines h(A), h(A) € v. This shows that h™! is a
near map. To prove that h is a near map, use Lemma 2

.part (ii).

4. Subbases for nearness spaces
Definition 8. A subbase for a nearness space (X,u)
is a subcollection Ko of u such that for every uniform

n
cover U € y there exist U,,...,U_ € u, such that A U,
1 n 0 j=1 1

refines U.
Recall that any collection of subsets of a set X is

a subbase for some topology on X. Is every collection of
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covers a subbase for some nearness structure on X? The

following useful theorem answers this question.

Theorem 5. Let Ho be a nonempty collection of covers

of a set X. Let u = {U C P(X)| there exist Ul,...,Un € Mo

n
such that iél Ui refines U}. Then y is a nearness struc-

ture if and only if it satisfies the condtion:

(1)

intu U €y for every U € Moo

Proof. 1If p is a nearness structure, then condition

(1) follows from (N4), since Ho C u.

Suppose condition (1) is satisfied. We show that u

is a nearness structure.

(N1)

(N2)
(N3)

If A € y and A refines B, then there exist

n
Uu,,...,U_ € u, such that A U, refines A which
1 n 0 j=1 +

refines B. So, B € yu.
{X} € u since every cover refines {X}.

If A€y and B € u, then there exist

n
ul,...,un € Mo such that iil Ui refines A, and
m
there exist U reeesU € u_ . such that A u,
n+l m 0 i=n+1 i

m

refines B. Then, A ui refines A A B. So,
i=1

AABEW.

- To prove (N4) we use the following lemmas, which we

state without proof.

Lemma 4. For A,B C X, 2f A C B, then intuA (= intuB.
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Lemma 5. For Al,...,An C x,

[ 1=}

int A, C

i=1 i
n

i N

1ntu(.

A.).
i=1 1

(N4) If A € u, there exist ul,...,un € Ho such that

n
. i . i . €
iilul refines A, If u1 € Hor then 1ntuul u
n
by hypothesis. Thus, A intuui € u by (N3).
i=1
n
We show that A int U, refines int A.
i=1 1 3]
Given any choice of Ui € ui, there exists A € A such
n
that N Ui C A. Using Lemmas 4 and 5 above, we have
i=1
n n n
'n lntuUi c 1ntu(.ﬁ Ui) c 1ntuA. Thus, .A 1ntuUi refines

i=1 i=1 i=1
in so i € u.
tuA, ntuA o

Definition 8 seems to be the natural way to define a

subbase for a nearness structure. However, in [8] Wattel

gives the following as a definition of subbase.

Definition 9. A sgubbase, Ugr for a nearness struc-
ture on X is a collection of covers of X which satisfies
the condition:

u €

(2) for every X €E U € U € nu, there exist Ul,..., h

n
Hy such that A ui refines {U, X\x}.
i=1
The nearness structure for which ¥g is a subbase is given
n
by u = {U C P(X)| there exist ul,...,u such that A U,
n j=1 &

refines U}.
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Although Definitions 8 and 9 appear to be different,
they are equivalent in a sense made precise by the follow-

ing theorems.

Theorem 6. Let Mo be a collection of covers of a set
X which satisfies condition (2), and let u be the nearness
structure for which Ko 18 a subbase. Then W satisfies
eondition (1) of Theorem 5.

Proof. Let U €y and let x € U € U. Then by condi-
tion (2), there exist ul,...,un € Ho such that igl (& re-
fines {U, X\x}. This implies that {U, X\x} € u or that
x € intuU. Thus, U C intuU. Since it is always true

that intuU C U, we have U = intuU for all U € U € Moo

Hence, condition (1) is satisfied.

Theorem 7. Let Ho be a collection of coveres gatis-
fying condition (1) and W be the nearness structure for

which Mo i8 a subbase. Define v, = {intuulu € o and

0
intuu covers X}. Let v be the nearness structure for

which Vg 18 a subbase. Then (i) Vo satisfies condition
(2), and (ii) v = p.

Proof. (i) Let x EV E V €y Then, V = intuu for

0*
some ( € Hgr and V = intuU for some U € U. Thus,

x € intuU = intu(intuU) . This implies that {intuU, X\x} €
u which implies that {V, X\x} € u. So, there exist

n

Uypees,U. such that A U, refines {V,X\x}. But, int U,

1 n j=1 1 pi
n

refines U;, so iil lntuui refines {V, X\x}. Since lntuui

€ Vor we have shown that v, satisfies (2).

0
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(ii) Let V € v. Then there exist ul,...,un € Ho such

n
that A int

& refines V. But lntuUi € u for all ui € Ho

u.
K1

n
since Mo satisfies (2). Thus, A ui € y, which implies

i=1

that V € y.
Let U € p. Then, there exist ul,...,un such that
n

n n
A ui refines U. But, A intuui refines 'A

Ui which
i=1 i=1 i=1

refines U, thus U € v.

In what follows, we will use Definition 8 as the

definition of a subbase for a nearness structure.

5. NearM’ -Spaces
Rothmann [7] defines a topological space (X,t) to

be an M*-space if there exists an alpha-semigroup of con-
tinuous selfmaps a(X) such that {H(f)| £ € a(X)} is a
subbase for the closed sets of X.

He then proves that two M*-spaces X and Y are homeo-
morphic if and only if there exist isomorphic alpha-
semigroups o (X) and a(Y) which generate subbases for the

closed sets of X and Y respectively.

Definition 10. If p is a nearness structure for a
set X for which there exists an alpha-semigroup a(X) of
near selfmaps such that {U(F)| F C a(X) and U(F) covers X}
is a subbase for u, then (X,u) is called a near M*-space

generated by a(X).
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Theorem 8. If (X,u) is a nearness space for which
there exists an alpha-semigroup o(X) such that
{U(F)| F C a(X) and U(F) covers X} is a subbase for u,
then {X\H(f)| £ € a(X)} is a subbase for -

Proof. This proof is similar to the proof of

Theorem 2.

Corollary. If (X,u) i8 a near M*-space generated by
a(X), then (X,tu) 18 an M*-gpace generated by o (X).
Proof. The proof follows from Theorem 8 and the

fact that N(X,u) C C(X,tu).

Theorem 9. Let (X,t) be a topological space for
which there exists an alpha-semigroup o(X) such that
{(X\H(f) | £ € a(X)} is a subbase for t. Let uy =
{U(F) |U(F) C a(X) and UWF) covers X}. Then, Ho 8 a sub-
base for a compatible nearness structure on X.

Proof. Let u = {U C P(X)| there exist Uprowesliy € o

n
such that A ui refines U}. We first show that for any
i=1

A C X, A0 C int A, where AO denotes the interior of A with
respect to t. The proof that int A C A0 is similar to the
first part of the proof of Theorem 2.

0

Suppose x € A°. The, there exist functions fl, fz,

n
ee.r f. € a(X) such that x € N X\H(f.,) CA. Let F, =
n i=1 i 1
{,,X} Fy = {f,,X},..., F = {£ ,X}. Each F; C a(X)
since fi € a(X) and X € 2(X) C a(X). Also, U(Fi) =

{X\H(fi), X\H(X)} = {X\H(fi), X\x)}. So, x € X\H(fi) and
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if y # x, then y € X\x. Thus, each U(F,;) covers X. We

n
now show that A U(F,) refines {A, X\x}.
i=1
n
There are only three types of elements of A U(Fi).
n i=1
One is N X\H(fi), and it is a subset of A. Another is
i=1

X\H(X) = X\x, which is certainly a subset of X\x. The

third type is of the form X\H(x) N[ N X\H(fi)], where
i

€S

sc{1,2,...,n}. But, this is also a subset of X\x. Thus,

I =

u(F;) refines {A, X\x}. This shows that {a, X\x} € yu,
1

i
so that x € int A.

Now, according to Theorem 5, we need only to show
that U(F) € o implies that int U(F) € u. But, each
X\H(F) € U(F) is open in t = tu, so int U(F) = U(F) € u.

Thus, p is a nearness structure on X.

Corollary 1. Suppose (X,u) s a topological nearness
space. Then, (X,u) is a near M*-space generated by o(X)

if and only <if (X,tu) 18 an M*-space generated by a(X).

Theorem 10. Suppose (X,u) and (Y,v) are near M*-
spaces. Then (X,u) and (Y,v) are near-homeomorphic if
and only if there exist alpha-semigroups o(X) and o(Y)
which are isomorphic and generate (X,u) and (Y,v).

Proof. If (X,u) and (Y,v) are generated by iso-
morphic alpha-semigroups, then the proof that X and Y are
near-homeomorphic is similar to the proof of Theorem 4.

Suppose h: (X,u) =+ (Y¥,v) is a near-homeomorphism.

Since (X,u) is a near M*-space, there exists an
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alpha-semigroup a(X) which generates it. Define
: N(X) » N(Y) by ¢(£) =h o £ o h™' and let a(Y) = ¢(a(X)).
Then «(X) is an alpha-semigroup, ¢ is an isomorphism of

o(X) onto a(Y), and a(Y) generates v.

6. NbarS'-Spaces

Magill [5] defines a topological space (X,t) to be
an S*-space if it is Tl and for each closed subset F of
X and each point p in X/F there exists a function f € C(X)
and a point y in X such that f(x) = y for each x in F
and f£(p) # v.

He then proves that for two S*-spaces X and Y, ¢ is
an isomorphism from C(X) onto C(Y) if and only if there
exists a homeomorphism h from X onto Y such that ¢(f) =
hofoh ™t for all £ € C(X).

Rothmann [7] gave the following characterization of

S*-spaces.

Theorem. A topological space (X,t) is an S*-space if
and only if {f-l(x)| f € C(X), x € X} 78 a base for the

closed sets of X.

The theorems following Definition 11 will justify it.
But first we must introduce some notation. Let X be a set
and let a(X) be an alpha-semigroup of selfmaps of X. 1If

F C a(X) and A C X, let B(F,A) = {x\f 1(x)| x €A, £ € F}.

Definition 1ll. A nearness space (X,u) is called a
near S*-space if {B(F,A)| F C N(X), A C X and B(F,A)

covers X} is a base for u.
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Notice that every S*-space is a Tl space. It is

also true that every near S*-space is an N1 space.

Theorem 11. Let (X,u) be a nearness space with under-
lying topology tu. If (X,u) is a near S*-space, then
(X,tu) 18 an S*-gpace.

Proof. If (X,u) is an Nl nearness space, then
(x,tu) is a Tl space. Thus, X\f_l(x) is open for each
f € C(X,tu). The rest of the proof is similar to previous

arguments.

Theorem 12. Let (X,u) be a topological nearness
space. Then (X,u) is8 a near S*-space if and only if
(X,tu) 18 an S*-space.

Proof. If (X,u) is a near S*-space, then (X'tu) is
an S*-space by Theorem 11.

Suppose (X,tu) is an S*-space. Then N(X) = C(X).
Since (X,u) is topological, it consists of all covers
refined by an open cover. Thus, if B(F,A) covers X, it
is a uniform cover since it is an open cover.

Let U € y. Then int U € y also. Since int U is

open, for each x € U there exists a € X and fU € C(X) =

Ux X

'l(aU ) CU. Let A = {a

N(X) such that x € X\fU
X X x

x € int U € int U}, and let F = {f | x € int U € int U}.
X
B(F,A) covers X since y € X implies that u € int U

for some U € U. Thus, there exists ay € A and fU €EF
x X

such that y € x\£;, “(a, ) € B(F,a).
X X
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Also, B(F,A) refines int U since if x\fU —l(aU

X X

) €

-l(aU ) € int U. Thus, B(F,A) refines
x X

B(F,A), then x\fU
int U which refines U. So, {B(F,A)| A C X, F C N(X) and
B(F,A) covers X} is a base for u, and (X,u) is a near S*-

space.

Theorem 13. Two near S*-gpaces (X,u) and (¥,v) are
near-homeomorphic if and only if (N(X)and N(Y) are iso-
morphic.

Proof. This proof is similar to the proof of

Theorem 4.

7. NearS™ -Spaces
In [7], Rothmann defines a topological space (X,t)

to be an S**-space generated by a(X) if a(X) is an alpha-
semigroup of continuous selfmaps of X such that
{f—l(x)l f € a(X), x € X} is a subbase for the closed
sets of X.

It is actually unnecessary to state the requirement
that o(X) be a subset of C(X), since, if {f—l(x)l f € a(X),
x € X} is a subbase for the closed sets of X, then each

f € a(X) must be continuous.

Definition 12. The nearness space (X,u) is said to
be a near S**-space generated by a(X) if a(X) is an alpha-
semigroup of selfmaps of X such that 8(F,A)| F C a(X),

A C X and B(F,A) covers X} is a subbase for yu.
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The condition that {B(F,A)| F C a(X), A C X, and
B(F,A) covers X} is a subbase for u forces each f € a(X)
to be a near map. Notice that since the identity may not

be in a(X), a near S**-space may not be Nl.

Theorem 14. Let (X,u) be a near S**-gpace generated
by o(X). Then (x,tu) 18 an S**-gpace generated by a(X).

Proof. We show that each set of the form ey,
where £ € o (X), a € X is open in tu. The rest of the
proof is similar to the proof of Theorem 2.

If y € x\f-l(x), let F = {£f} and let A = {x, f(y)}.
Then B(F,A) = {X\f *(x), X\f >(£(y))} which refines
e x), X\y}. Also, B(F,A) covers X, since if p € X
such that £(p) = £(y) # £(x), then p € X\f 1 (x), and if
f(p) # £(y), then p € x\f'l(f(y)). Thus, B(F,A) € u, so
that {X\f-l(x), X\y} € y and y € int X\f-l(x). This

shows that X\f 1(x) = int X\£f 1(x).

Theorem 15. Let (X,t) be an S**-space generated by
a(X). Let Mg = {B(F,A)| F C a(X), A C X and B(F,A) covers
X}. Then Mo 18 a subbase for a compatible near S**-
nearness structure u on X.

Proof. The techniques used in this proof are similar

to techniques used in Theorems 9 and 12.

Theorem 16. Let (X,u) and (Y,v) be near S**-gpaces.
Then (X,u) and (Y,v) are near-homeomorphic if an only <if
there exist alpha-semigroups o(X) and o(Y) which are
igomorphic and generate (X,u) and (Y,v) respectively.

Proof. See the proofs of Theorems 4 and 10.
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8. Examples

Example 1. The following describes a near M*-space.
Let X be an infinite set. Let Wy = {{a, x\x}| X\A is
finite, x € A} and u = {U C P(X)| there exist A,,...,A
and X.,...,X
n 1 n

A {Ai, x\xi} refines U}. Notice that if X\A is finite,
i=1l

such that each {Ai, x\xi} € Ho and

then intuA = A. By Theorem 5, then, Mg is a subbase for
the nearness space u.

Let a(X) = {f € N(X)| £ is the identity or f is con-
stant}. We show that u = {U(F)| F C a(X) and U(F) covers
X} is a subbase for yu.

If U(F) € Hyv then U(F) = {X\H(f)| £ € F} covers X.
Now, if f is the identity, then X\H(f) = X\X = ¢, and if
f is constant, say £ = X, then X\H(f) = X\H(X) = X\x.
Thus, F must contain at least two constant maps, say X
and y, in order for U(F) to cover X. Then, {X\x, X\y} =
{X\H(x), X\H(Y)} refines U(F), and {X\x, X\y} € Hor SO

U(F) € uy. This shows that uy C yu.

If {aA,X\x} € Hor let X\A {bl,...,bn}. Let F, =

— — — . — n 1
{51, X}, F, = {b,, X},eees F = {Sn' X}. Then i1=\1U(Fi)

n n
has three types of sets: N X\H(Ei) = N x\bi = A,
i=1 i=1

X\H(x) = X\x, and [ N X\bi] N [x\x] C x\x, where
i€A

n
AC{1,2,...,n}. Thus, A U(Fi) refines {A, X\x}. So
i=1

each subbasic element of p is refined by a finite inter-

section of elements of M.
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I1f U € u, then there exist Al,...,An and XyreeerX

n
n
such that each {A.,, X\x,} € p, and A {&,, X\x.,} refines
i i 0 i=1 i i
By, i
U. Each {Ai, x\xi} is refined by some A U(Fj) and thus,

j=1

n m, . .
AL AYu(FYry] = A U(FY) refines U. This shows that Hy
i=1 j=1 3 i3

is a subbase for u, so that p is a near M*-space.

Example 2, Every discrete nearness space of two or
more points is a near S*-space. Let X be a set of two or
more. points and let p be the discrete nearness structure
on X, u = {U C P(X)| U covers X}. Choose two distinct
points, x and y, in X. For U € U € yu, define fU by fU(U) =
x, and fU(X\U) =y. Let F = {fUI U € U} and A = {y}.

Since every map is near, F C N(X).

Claim 1. B(F,A) covers X.
Proof. If z € X, then z € U for some U € U. Then,

f£,(z2) =x #y, s0z€ xmfal(y) € B(F,A).

Claim 2. B(F,A) refinees U.

Proof. 1If X\fal(y) € B(F,A), then X\fal(y) cu,
since p € X\fal(y) implies that p & fal(y) which implies
that fU(p) # y. Therefore fU(p) = x which implies that

p € U.

Now we have shown that {B(F,A)| F C N(X), A C X} is

a base for u, so that (X,u) is a near S*-space.

Example 3. In [6] 0-dimensional nearness spaces are

defined as below. Their relationship to extensions of
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topological spaces is also demonstrated there. Further
discussion of the relationship between nearness spaces and

extensions of topological spaces can be found in [1].

Definition 13. A nearness space (X,u) is O-dimension-
al if for every U € y there exists V € y such that V re-

fines U and for every V € V, {V, X\V} € ..

It is shown in [6] that a topological nearness space
is 0-dimensional if andonly if the underlying topological
space (X,tu) is 0-dimensional. Magill [4] and [5] showed
that every Hausdorff, O-dimensional space is an M-space
and also an S*-space. Thus, every topological, Hausdorff,
0-dimensional nearness space is a near M-space and a near

S*-space.
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