
Volume 14, 1989

Pages 163–193

http://topology.auburn.edu/tp/

ON CONTINUOUS IMAGES OF ARCS AND
COMPACT ORDERABLE SPACES

by

Jacek Nikiel

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



163 TOPOLOGY PROCEEDINGS Volume 14 1989 

ON CONTINUOUS IMAGES OF ARCS 

AND COMPACT ORDERABLE SPACE6' 

Jacek Nikiel 

All spaces below are assumed to be HaUSdf!)r-ff
 

continuum means a compact and connected space.
 

1.	 Classical results 

About 1880 C. Jordan defined a continuous curve as a 

continuous image of the closed interval of real numbers. 

However, in 1890 G. Peano found an example of a continuous 

map of [0,1] onto the square [0,1]2 (see [48]). This 

motivated the subsequent efforts in order to find a satis­

factory definition of a dimension of topological spaces. 

About 1914 Peano's result was generalized by H. Hahn 

and S. Mazurkiewicz. They proved independently the follow­

ing famous Hahn-Mazurkiewicz theorem (see [13], [33]): 

Theorem 1. Each locally connected metrizable con­


tinuum is a continuous image of [0,1].
 

It is rather easy to see that the converse of 

Theorem 1 holds. Thus we have the following characteriza­

tion result: 

Theorem 2. A space is a continuous image of [0,1]
 

if and only if it is a metrizable locaZZy connected con­


tinuum.
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Let us also state the following Moore theorem, [35],
 

which can be proved as a corollary to the Hahn­


Mazurkiewicz theorem:
 

Theorem 3. Each metrizable locaZly connected con­

tinuum is arcwise connected (and locally arcwise connected). 

Another result related to the Hahn-Mazurkiewicz 

theorem is again a characterization theorem. It was 

proved by P. S. Alexandrov and F. Hausdorff about 1925 

(see [2] - the result was announced in [1]; [15]). 

Theorem 4. A space is a continuous image of the 

Cantor set {O,l}w if and only if it is compact and metriz­

able. 

The Alexandrov-Hausdorff theorem has several simple 

proofs. Together with the Moore theorem it can be applied 

to produce a rather easy proof of the Hahn-Mazurkiewicz 

theorem (see e.g. [17, p. 129]). 

2.	 The Hahn-Mazurkiewicz problem: A history 

The Alexandrov-Hausdorff theorem motivated the follow­

ing definition: a space is said to be dyadic if it is a 

continuous image of {O,l}~ for some cardinal number a. 

Simple arguments show that not every compact space is a 

dyadic space. 

However, -there is another way to produce large 

classes of compact spaces in a manner related to the 

Alexandrov-Hausdorff, Hahn-Mazurkiewicz and Moore theorems. 
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This way makes a use of the orderability properties of 

[0,1] and {O,l}w. 

Let us start with recalling ·some definitions and 

simple facts. 

A triple (X,T,~), where X is a set, T a topology on X, 

and ~ a linear ordering on X, is said to be a linearly 

ordered topologiaal spaae provided the family of all 

intervals (-+-,a) = {x E X: x < a}, (a,b) = {x E X: a<x<b} 

and (b,+) = {x E X: b < x}, a,b E X, a < h, is a basis 

for the space (X,T). Moreover, a space (X,T) is said to 

be orderable if there exists a linear ordering ~ on X 

such that (X,T,~) is a linearly ordered topological space. 

Such an ordering ~ is said to be a natural ordering of the 

space (X,T). 

It is well-known that a linearly ordered topological 

space (X,T,~) is compact if and only if (X,~) is order 

complete, i. e ., each nonempty subset of X h.as its supremum 

and infimum in (X,~). Moreover, (X,.T,~) is a continuum 

if and only if (X,~) is order complete and has no jump, 

i.e., (a,b) ~ ~ for any a,b E X, a < b. 

A point x of a continuum X is a aut point of X pro­

vided X - {x} is not connected. If x.E X is not a cut 

point of X, then it is called a non-aut point of X. Recall. 

that, by another well-known Moore theorem (see e.g. [17, 

p. 49]) each continuum has at least two non-cut points. 

We will say that a continuum is an arc provided it is 

a nondegenerate orderable space. It is well known (see 
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e.g. [17, pp. 50-56]) that a continuum is an arc if and 

only if it has exactly two non-cut points. It is easy to 

see that each arc has exactly two natural orderings and 

that its weight coincides with its density. Hence there 

exists exactly one metrizable arc (this was proved in 

1905 by o. Veblen, [65]). Finally, recall that each com­

pact orderable space X can be embedded into an arc Y in a 

manner such that each component of Y - X is homeomorphic 

to [0,1]. Therefore the class of arcs is proper (i.e., 

it is not a set). 

We will say that a space is arcwise connected if 

any two distinct points of the space can be joined by an 

arc. 

Now, let us give three false statements which served 

for years as "folk conjectures" (see [25, p. 929] and [61, 

p. 96]): 

Statement 1 -- a "generalization" of the A1exandrov­

Hausdorff theorem. Each compact space is a continuous 

image of a compact orderable space. 

Statement 2 -- a "generalization" of the Hahn­

Mazurkiewicz theorem. Each locally connected continuum is 

a continuous image of an arc. 

Statement 3 -- a "generalization" of the Moore 

theorem. Each locally connected continuum is arcwise 

connected. 
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In 1960 S. Marde~ic produced an example of a locally 

connected continuum which is not arcwise connected ([25], 

a simpler example can be found in [8]). This proved that 

Statement 3 is false. Moreover, Statement 2 is false be­

cause a continuous image of an arc is arcwise connected 

(the latter fact was proved only in [14] and [66]). A 

few years later Marde~ic gave another surprising example: 

he constructed a locally connected continuum no proper 

subcontinuum of which is locally connected, [29]. That 

construction was done under the additional assumption of 

Continuum Hypothesis. Recently, G. Gruenhaqe constructed 

in ZFC only another example with the same properties, [12]. 

Again, in 1960, in [31] which is subsequent to [25], 

S. Marde~ic and P. Papic proved that if a product of 

locally connected continua is a continuous image of an 

arc, then only countably many factor spaces are nondegen­

erate and all of them are metrizable. Hence each non-

metric Tichonov cube is a locally connected and arcwise 

connected continuum which is a continuous imaqe of no arc. 

The result of Marde§ic and papic was then generalized. In 

particular, in 1962, G. S. Young proved that the Tichonov 

plank (00+1) x (001+1) is a continuous image of no compact 

orderable space, [72]. A very simple proof of the latter 

fact is attributed to A. J. Ward (see [61, p. 96]): each 

continuous image of a compact orderable space is heredi­

tarily normal (see e.g. [16]) and the Tichonov plank is 

not hereditarily normal (see e.g. [10]). By Young's result, 
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Statement 1 is false as well. Theorems of Mardesic and 

Papia, and Young were generalized in 1964 by L. B. Treybig 

([57]1 for simple proofs see [16] and [5]): 

Theorem 5. If a product space Xl x X2 is a continu­

ous image of a compact orderabZe space and X 'X2 are in­l 

finite, then both Xl and X2 are metrizabZe. 

The above-mentioned counterexamples caused a lot of 

natural questions, some of which were asked explicitly in 

a 1963 paper" of S. Mardesic and P. papic, [32]. The most 

important of them was the so-called (nonseparable) Hahn­

Mazurkiewicz problem, [32, Problem 1]: find a topological 

characterization of continuous images of arcs. Up to this 

time over 60 papers have been published which deal with 

continuous images of arcs and compact orderable spaces. 

Those papers are due to S. Mardesic, S. Mardesic and 

P. Papic, A. J. Ward, L. B. Treybig, J. L. Cornette, B. J. 

Pearson, J. N. Simone, L. E. Ward, the author, and other 

topologists. There are even two.survey articles: the 

1966 paper [27] of S. Mardesic and the beautiful 1981 

paper [61] of L. B. Treybig and L. E. Ward1 see also [21, 

pp. 287-289] and [71, p. 315]. The deep results, which 

were obtained within 25 years, finally led to a solution of 

the Hahn-Mazurkiewicz problem which was given in the 

author's paper [37]1 see Theorem 14, below. Let us follow 

some steps on that way_ 
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3.	 The Hahn-Mazurkiewicz problem: A solution 

We will say, [37, p. 92], that a subset A of a 

locally connected continuum X is a Treybig set (abbrevi­

ated as T-set) in X provided A is closed and the boundary 

of each component of X - A consists of exactly two points. 

It is rather easy to show the following Theorem 6 

which relates continuous images of compact orderable
 

spaces to continuous images of arcs:
 

Theopem 6. (see [28, Lemma 8], [40, Theorem 2]). If 

X is a continuous image of a compact orderabZe space, then 

thepe exists a continuum Y such that Y is a continuous 

image of an arc, X C Y, X is a T-set in Y, and each com­

ponent of Y - X is homeomorphic to ]0,1[. 

In 1965 L. B. Treybig proved the following very deep 

Theorem 7. 

Theopem 7. [58]. If X is a continuum which is a 

continuous image of a compact orderabZe space, then either 

X is metpizabZe or thepe is a subset C'of X such that 

Icl < 3 and X - C is not connected. 

In 1984 L. B. Treybig and then R. Maehara noticed 

that the original proof of Theorem 7 can produce another 

very strong result: 

Theorem 8. ([59, Theorem 4] and [23, Lemma]). If X 

is a locaZly connected continuum which has no cut point 
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and is a c~ntinuous image of a compact orderabZe space, 

and A is a countabZe subset of X, then there exists a 

separabZe T-set B in X such that A C B. 

Theorem 8 has an immediate corollary which was never 

stated explicitly: 

CoroZZary 1. Let X be as in Theorem 8. If M is a 

closed and metrizabZe subset of X, then there exists a 

separabZe T-set B in- X such that M C B. 

Corollary 1 was strengthened by the author: 

Theorem 9. (see [37, Theorem 4.9 and Corollary 4.10]). 

Let X be as in Theorem 8 and Corollary 1. If M is a cZosed 

and metrizabZe subset of X, then there exists a metrizabZe 

T-set B in X such that M C B. 

Theorem 9 is strong enough to solve the Hahn­

Mazurkiewicz problem. Before describing a solution we 

need some definitions and facts of the classical cyclic 

element theory (see e.g. [19], [69]; see also [70] and 

[7]), the theory of approximation by finite dendrons, and 

the theory of T-sets. 

Let X be a locally connected continuum. A subset Y 

of X is said to be a cycZic eZement of X if Y is connected 

and maximal with respect to the property: no point 

separa~es Y (i.e., Y - {y} is connected for every y E Y). 

It follows that each cyclic element Z of X is a locally 

connected subcontinuum of X and there exists ~ (unique) 



TOPOLOGY PROCEEDINGS Volume 14 1989 171 

monotone retraction r : X ~ Z. Note that X is the uniquez 

cyclic element of itself if and only if it has no cut 

point. Moreover, if zl,z2 are distinct cyclic elements 

of X then IZI n Z2 1 ~ 1. 

Suppose that x,y E X and let E(x,y) = {z E X: x and 

yare in distinct components of X - {z}}. It is well­

known that E(x,y) U {x,y} is closed in X. Recall that X 

is said to be a cyclic chain from x to y provided 

X = E(x,y) U {x,y} U UH, where H is the family of all 

cyclic elements Z of X such that Iz n (E(x,y) U {x,y}) I 2. 

In 1974 J. L. Cornette noticed that the cyclic ele­

ment theory is a useful tool in some considerations in­

volving continuous images of arcs. He proved the follow­

ing: 

Theorem 10. [7]. Let X be a locally connected con­

tinuum. Then X is a continuous image of an arc if and 

only if each cyclic element of X is a continuous image of 

an arc. 

Another fruitful idea is due to L. E. Ward. First 

recall that a locally connected continuum is said to be a 

dendron (other names: tree, compact tree-like space, 

compact dendritic space, dendrite) if each of its cyclic 

elements consists of a single point. Saying equivalently, 

a continuum X is a dendron if and only if, for any 

x,y E X, x ~ y, there exists z E X such that x,y are in 

distinct components of X - {z}. Metrizable dendrons are 

called dendrites. A point x of a dendron X is an end-point 
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of X if it is a non-cut point of X. A dendron is said 

to be a finite dendron if it has finitely many end-points. 

Obviously, each arc is a finite dendron. 

Let X be a continuum and J a family of finite 

dendrons which are subcontinua of X. We will say, [68], 

that J approximates X provided: 

(i)	 J is directed by inclusion; 

(ii)	 UJ is dense in X; and 

(iii)	 if U is an open covering of X, then there exists 

TU E J such that for each T E J and each component 

S of T - TU there exists V E U such that S C V. 

If, moreover, 

(iii)	 UJ = X, 

then	 we will say that J strongly approximates X, [37]. 

In 1976 L. E. Ward proved the following two theorems: 

Theorem 11. [68, Theorem 1]. If X is a continuum 

which can be approximated by a family of finite dendrons, 

then X is a continuous image of an arc. 

Theopem 12. (see [68, Theorem 2]). If X is a
• 

metpizable and locally connected continuum, then thepe 

exists a countable family of finite dendrites which 

apppoximates X. 

The method of T-sets was introduced by L. B. Treybig 

in his 1986 paper [59] in order to study continuous images 

of arcs. Treybig's method is very useful in such consid­

erations. It was further developed in the author's 

papers [37] and [38]. 
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Let X,Y be locally connected continua, A a T-set in 

X and f: X ~ Y a function. We will say, [38], that f is 

a T-map with respect to A if the following conditions are 

satisfied: 

(i)	 f is a continuous surjection; 

(ii)	 B = f(A) is a T-set in Y and fl A is a homeomorphism 

from A onto B; 

(iii)	 each, component of Y - B is homeomorphic to ]0,1[; 

and 

(iv)	 for each component 0 of Y - B there is the unique 

component Po of X - A such that f(P ) C cl(O), andO
each component of X - A is a Po for some component 

o of	 Y - B. 

Theorem 13. (see [59, Theorem 6], see also [38, 

Lemma 2.2]). If X is a locally connected continuum and 

A is a T-set in X, then there are a locally connected con­

tinuum XA and a function f: X ~ XA such that f is aT-map 

with respect to A. Moreover, XA is determined uniquely 

up to a homeomorphism. 

Roughly speaking, each component of X - A is re­

placed by a copy of ]O,l[ in XA• 

Let Y be a locally connected continuum which is the 

unique cyclic element of itself (i.e., Y has no cut point) 

and let A = (Al ,A2 , ••• ) be a sequence of T-sets in Y. We 

will say, [38], that A T-appro%imates Y provided 

(i) A C A ••• ;l	 2 C 
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(ii)	 if Pis a component of Y - An' n = 1,2, ••• , then 

the set of all cut points of cl(P) is contained in 

An+l ; 

(iii)	 if P is a component of Y - An' n = 1,2, ••. , and C 

is a nondegenerate cyclic element of cl(P), then the 

set C n A +l is metrizable and consists of at least n
 
3 points; and
 

(iv)	 Al is metrizable. 

It turns out that if a sequence A of T-subsets of 

Y fulfills the conditions (i) and (ii) of the definition 

of T-approximation and has the following property (iii'): 

(iii') if P is a component of Y - A , n = 1,2, ••• , and C n 

is a pondegenerate cyclic element of cl(P), then 

the set C n A +l contains at least 3 points,n 
then A = UOO 

1 A is a dense subset of Y (see [37, Lemma n=	 n 

3.4]) • 

Note also that if Y is a locally connected continuum 

which has no cut point, A is a T-set in Y, and P is a 

component of Y - A, bd{P) = {p,q}, then cl(P) is a cyclic 

chain from p to q. 

Now,	 we are ready to state the main result of [37]. 

Theopem 14. (see [37, Theorem 1.1, p. 92J). If X 

is a continuum, then the foZZowing conditions ape equiva-

Zent: 

(i)	 X is a continuous image of an apc; 

(ii)	 X is a continuous image of a compact opdepabZe space 

and X is ZocaZZy connected; 
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(iii)	 X can be strongly approzimated by a family of finite 

dendrons; 

(iv)	 X can be approximated by a family of finite dendrons; 

(v)	 X is locally connected and for each cyclic element 

Y of X the follo~ing conditions hold: 

(a)	 if p,q,r E Y, then there is a separable T-set 

E in Y such that p,q,r E E, 

(b)	 if E C E' C Y and E' is separable, then E is 

also separable, and 

(c)	 if E' is an image of Y under a continuous map 

and E is a separable continuum in E', then E is 

metriaable; 

(vi)	 X is locally connected, and if Y is a cyclic element 

of X and p,q,r E Y, then there is a metriaable T-set 

A in Y such that p,q,r E Ai 

(vii)	 X is locally connected and each cyclic-element Y of 

X can be T-approximated by a sequence of T-subsets 

of Y. 

The proof of Theorem 14 is very hard. It makes a 

use of many results and methods of L. B. Treybig and 

L. E.	 Ward. 

Theorem 14 is a solution of the Hahn-Mazurkiewicz 

problem. Moreover, the implication (ii) ~ (i) answers 

affirmatively another question of Mardesic and Papic, [32, 

Problem 18], and the implication (i) ~ (iv) shows that a 

conjecture of L. E. Ward is true ([68, p. 371 ; see also 
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[61, Problem 2, p. 100]). Recall that the implication 

(ii) - (i) was proved independently by L. B. Treybig, 

[60, Theorem 3]. Recall also that the proof of (iv) • (i) 

is due to L. E. Ward (Theorem 11, above) and the proof of 

(ii) • (v) can be found in Treybig's papers [57], [58] 

and [59]. 

In [37], the condition (v) (c) of Theorem 14 was 

stated for continuous and monotone maps. Unfortunately, 

in general, this form is too restrictive to give the de­

sired equivalence. 

Another solution of the Hahn-Mazurkiewicz problem was 

given in 1984 by W. Bula and M. Turza6ski, [6]. Unfortu­

nately, no application has been found to their theorems 

yet. 

The condition (vii) of Theorem 14 can be used to 

prove many properties of continuous images of arcs (see 

e.g. Theorems 17 and 19, below). It was a little bit 

modified in [39]: 

Theorem 15. (see [39, Theorem 4]). A locally con­

nected continuum X is a continuous image of an arc if and 

only if for each cyclic element Y of X there exists a 

sequence (AY
l ,A

Y
2 , ••• ) of T-subsets of Y such that 

(Ai,A~, ••• ) T-approximates Y~ and for each positive inte­

Y ger n and each component Z of Y - An the set of all cut 

points of cl(Z) is not metrisable. 
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4.	 Further properties of continuous images of arcs 

Let Y be a continuous image of an arc and suppose 

that Y has no cut point. We will say, [38], that the rank 

of Y is less than or equal to a positive integer m, de­

noted r(Y) ~ m, provided there is a sequence (A ,A
2 

, ••• )l 

of T-subsets of Y such that (Al ,A
2 

, ••• ) T-approximates Y 

and Am = Y. 

Recall that a continuum is said to be rim-finite 

(another name: regular) if it has a basis of open sets 

with finite boundaries. It is well-known that each den­

dron is a rim-finite continuum. Moreover, each rim-finite 

continuum is locally connected. Actually, a much stronger 

result holds: each rim-finite co~tinuum is a continuous 

image of an arc (see [50], [67], [64] and [42]). 

In [38, Example 4.1] a rim-finite continuum Yis con­

structed such that Y has no cut point and r(Y) = ~, i.e., 

there is no positive integer m such that r(Y) < m. Thus 

continuous images of arcs of infinite rank do exist. They 

are rather complicated spaces. However, inverse limit 

techniques together with Treybig's method of T-maps can be 

applied to describe them as inverse limits of simpler 

spaces. 

Theorem 16. [38, Theorem 3.2]. Let Y be a oontinuum 

without out points whioh is a oontinuous image of an aro. 

If (AI ,A2 , ••• ) is a sequence of T-subsets of Y which 

T-appro~imates Y, then 
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(i) r(Y ) ~ n fop n = 1,2, ••• (the	 meaning of YA isA n	 n 

explained in Theorem 13, above); 

(ii) there are functions f : Y ~ YA	 and g : Y ~ YA ' n n n An+l n 

n = 1,2, ••• , such that 

(a) each f is aT-map with respect	 to 
n	 

An' 

(b) each gn is aT-map with respect to fn+l"(A ) , n

0(c) g f +l = f for n = 1,2, ••• ,	 and n	 n n 

(d)	 y is homeomorphic to lim inv (YA ,gn) • 
n+l 

Recently the author has constructed a rim-finite 

continuum Y such that, in particular, Y has no cut point 

and no one of functions f,g of Theorem 16 can be mono­
n n 

tone (see [46]). Y is constructed by a method somewhat 

similar to that of [38, Example 4.1]. The example was 

produced in order to show that there are many false re­

sults in some papers which were sent to the author. 

The following Theorem 17·was proved as an application 

of the condition (vii) of Theorem 14: 

Theorem 17. [39, Theorem 6]. If X is a continuous 

image of an arc andxO E X, then there exists a partial 

ordeping < on X such that 

(1)	 < is a closed subset of X x X; 

(ii)	 for each x E X the set {y E X: y ~ x} is connected; 

and 

(iii)	 X is the least element of (x,~).o 
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The result of Theorem 17 is well-known in the case 

of X being a metrizable locally connected continuum, [18]. 

It does not hold for arbitrary locally connected continua 

(see e.g. [39, pp. 361-362]). Note that Theorem 17 shows
 

that a conjecture of L. B. Treybig and L. E. Ward (see
 

[61, p. 102]) is true.
 

5.	 The Hahn-Mazurkiewicz theorem for some classes of 

continua 

Let X be a continuum. We will say (see [20] and [64]) 

that X is finitely Suslinian provided, for any open cover­

ing U of X and any family A of pairwise disjoint subcon­

tinua of X, the family {Y E A: Y is not contained in any 

V E U} is finite. Recall that X is said to be hepeditapily 

locally connected if each of its subcontinua is locally 

connected, and X is said to be pim-countable (another 

name: rational) if it has a basis B such that bd(U) is 

countable for each U E B. 

Each rim-finite continuum is finitely Suslinian and 

each finitely Suslinian continuum is hereditarily locally 

connected (see e.g. [64, Lemma 2]). Moreover, it is well ­

known that each metrizable hereditarily locally connected 

continuum is rim-countable (see e.g. [69, Theorem 3.3 of 

Chapter V]). About 1974 A. E. Brouwer, J. L. Cornette 

and B. J. Pearson proved that each dendron is a continuous 

image of an arc: [3], [7] and [49]. Then B.J. Pearson and 

L.E. Ward showed that each rim-finite continuum is a con­

tinuous image of an ~rc; [50] and [67]. A year later, E.D. 

Tymchatyn proved that each finitely Suslinian continuum 
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is a continuous image of an arc, [64]. And in 1988 the 

author proved the strongest result in this direction: 

Theorem 18. [42, Theorem 3.4]. Each hereditarily 

ZocaZZy connected continuum is a continuous image of an 

arc. 

The proof of Theorem 18 which was given in [42] is an 

application of some inverse limit methods. It depends on 

general facts developed by the author in [44]. In [45] 

another proof of Theorem 18 can be found. That alterna­

tive proof applies a transfinite induction on weights of 

hereditarily locally connected continua under the consid­

eration. It uses Lemma 3.3 of [42], Theorem 3 of [24] and 

some results of [26]. 

Hereditarily locally connected continua were studied 

by J. N. Simone (see e.g. [54], [55] and [56]) and B. J. 

Pearson (see e.g. [51]). However, their internal struc­

ture had been almost unknown before Theorem 18 was proved. 

In particular, in [55, Theorem 9] it was proved that if X 

is a hereditarily locally connected continuum which is a 

continuous image of a compact orderable space, then the 

small inductive dimension of X does not exceed 3, 

ind X < 3. The latter fact can be strengthened. 

Theorem 19. [42, Theorem 4.1]. Each hereditarily 

locally connected continuum is rim-countable. Hence its 

smalZ inductive dimension is equaZ to 1. 

Theorem 19 is a nontrivial generalization of the 

analo'gous fact for metrizable hereditarily locally 
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connected continua. Its proof applied Theorem 18 and then 

the powerful condition (vii) of Theorem 14. 

8. Some open problems 

Let us start with the following Problem 1 which is
 

related to the preaeding considerations:
 

ProbZem 1. Suppose that X is a locally connected
 

and rim-countable continuum. Is X a continuous image of
 

an arc?
 

Problem 1 was posed by E. D. Tymchatyn during the 

Sacramento State Topology Conference in 1987, and then it 

was repeated in [42, Remark 4.2]. Concerning Problem 1 it 

is worth to note that in [11] a locally connected con­

tinuum X can be found such that X is a continuous image 

of no arc and X admits a basis B such that bd(U) is 

metrizable and zero~dimensional for each U E B (that 

example is constructed with the use of Continuum Hypothe­

sis) • 

We will say that a space X is rim-metrizabZe if it
 

admits a basis B such that bd(U) is metrizable for each
 

U E B. 

In 1967 S. Mardesic proved that each continuous image 

of a compact orderable space is rim-metrizable, [28]. 

Moreover, he gave in [28] a simple example of a locally 

connected rim-metrizable continuum which is a continuous 

image of no arc. In19a7 E. D. Tymchatyn proposed to 

investigate rim-metrizable continua. In particular he 

posed the following: 
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ProbZem 2. Suppose that f: X + Y is a continuous 

map of a locally connected rim-metrizab1e continuum X onto 

a space Y. Does it follow that Y is rim-metrizable? 

Some results concerning Problem 2 can be found in 

[42, Remark 4.2], [62] and [63]. 

n 

ProbZem 3. (see [38, Problem 4.4], [40, Problem 2]). 

Suppose that T (X ,f )
n n 

is an inverse sequence such that 

all the spaces X are continuous images of arcs and all 

the bonding maps f : X + X 1 are ~onotone surjections.n n n-
Does it follow that lim inv T is a continuous image of an 

arc? 

If all the spaces X are, moreover, hereditarily
n 

locally connected continua then Corollary 3.5 of [42] gives 

the positive answer to Problem 3. 

Note that some questions of [32] are still open. 

Probably Theorem 14 can be applied to solve them. In par­

ticular, it seems to the author that the condition (vii) 

of Theorem 14 can be used to give the positive answer to 

the following: 

ProbZem 4. [32, Problem 14]. Do dim X, ind X, and 

Ind X coincide for each space X which is a continuous 

image of an arc? a continuous image of a compact orderable 

space? 

There exist some generalizations of dyadic spaces 

(see e.g. [36], [9]). Recall that a space is said to be 
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m-adic (resp. ~-adic), [36], provided it, is a continuous 

image of some power of the space A (resp. we;»~, where m 
'Am denotes the one-point compactification of the discrete 

space of cardinality m, and W(~) denotes the set of all 

ordinal numbers not exceeding the ordinal number ~ with 

its usual order topology. Therefore the following 

Problem 5 might be of some interest. 

PpobZem 5. Investigate the class of all spaces 

which are continuous images of arbitrary products of com­

pact orderable spaces. 

Note that even the case of continuous images of pro­

ducts of finitely many compact orderable spaces is rather 

interesting. In fact, the following old question of 

S. Mardesic is still open: 

PpobZem 6. (see [30, Conjecture on p. 163]; see 

also [40, Problem 3]). Let m,n be positive integers, 

Xl, ••• ,Xm+n be infinite compact spaces, Kl, ••• ,Km be com­

pact orderable spaces, and f: Kl x ••• x K + Xl x ••• x m 
Xm+n be a continuous surjection. Does it follow that there 

are at least n+l metrizable factors Xi? 

Recall that a space is said to be subopdepabZe if it 

can be embedded into an orderable one. It is well-known 

that there exist suborderable spaces which are not order­

able (for example the Sorgenfrey line is such a space, 

see e.g. [21, pp. 269-270]). 
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Theorem 20. (see [4, Corollary 2]). If a compact 

spaae is an image of a suborderabZe space under a cZosed 

continuous map~ then it is a continuous image of a compact 

o'l'de'l'abZe spaae. 

Theorem 20 shows that the following general Problem 7 

is related to our considerations of continuous images of 

compact orderable spaces. 

P'l'obZem 7. Investigate the class of all spaces which 

are images of suborderable spaces under continuous and 

closed surjections. 

We will say, [16], that a space X is monotonicaZZy 

nO'l'maZ provided for each point x in an open subset U of X 

there is an open set H(x,U) such that 

(i)	 x E H(x,U) C u, 

(ii)	 if x E U C V and U,V are open then H(x,U) C H(x,V), 

and 

(iii)	 if x,y E X and x ~ y then H(x,X-{y}) n H(y,X-{x}) = 
Sf. 

Recall that monotone normality is a strong separation 

property. Indeed, each monotonically normal space is 

collectionwise normal, [16]. Moreover, monotone normality 

is a hereditary property. 

Theo'l'em 21. (see [16]). Eaah spaae which is a con­

tinuous image of a aompaat o'l'derabZe spaae is monotoniaaZZy 

normaZ. 
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PpobZem 8. ([40, Problem 6]; see also [47, p. 38]). 

Is every compact and monotonically normal space a con­

tinuous image of a compact orderable space? 

Recall the following two results which relate 

Problem 8 to subsequent Problems 9 and 10. 

Theopem 22. (see [41, Theorem 2.1]). Each zepo­

dimensionaZ space which is a continuous image of a com­

pact opdepabZe space can be embedded into a dendpon. 

Theopem 23. (see [41, Theorem 3.1] and [47, 

Theorem 3]). Each sepapabZe and zero-dimensional space 

which is a continuous image of a compact orderable space 

is ordepabZe. 

PpobZem 9. [40, Problem 5]. Can a compact, mono­

tonically normal and zero-dimensional space be embedded 

into a dendron? 

Problems 8 and 9 were solved by P. Nyikos and 

S. Purisch in 1987 under the additional very strong 

assumption that the considered spaces are scattered. 

Namely: 

Theorem 24. [73, Theorem 2]. A space is monoton­

icaZly nopmaZ, compact and scattered if and only if it is 

a continuous image of a compact well-ordered space. 

NOW, let us recall an old question of S. Purisch: 
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ProbZem 10. (see [53, p. 63], [22, Question 1], 

[52] and [40, Problem 4]). Let X be a compact, monoton­

ically normal, separable and zero-dimensional space. Is 

then X orderable? 

Let X be a set and A be a family of its subsets. 

We will say that A is binary provided, for every subfamily 

B of A, if nB g, then there are C,D E B such that 

C n D =~. We will write A.A to denote the family of all 

finite intersections of members of A. 

Recall that a space is said to be 8upercompact if 

it admits a subbase S for closed sets such that S is a 

binary family (by the well-known Alexander's Lemma, 

each supercompact space is compact, however the converse 

does not hold--see e.g. [34J). Moreover, a space is said 

to be reguZar 8upercompact if it admits a subbase T for 

closed sets such that T is a binary family and A.T con­

sists of closed domains (i.e., cl(int(A» = A for each 

A E A.T). 

Recall the following author's result which was 

proved in order to solve a question of J. van Mill, [34]: 

Theorem 25. [43, Corollary 6.9J. A compact subset 

of a dendron is reguZar supercompact. 

By Theorem 22, we have the following immediate 

corollary: 
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CoroZZary 2. Each zero-dimensionaZ space which is 

a continuous image of a compact orderabZe space is 

reguZar supercompact. 

Now, recall two problems on supercompactness and 

continuous images of compact orderable spaces: 

ProbZem 11. [34, Question 1.5.24]. Are rim-finite 

continua supercompact? 

ProbZem 12. (see [40, Problem 7]). Let X be a con­

tinuous image of a compact orderable space. Does it 

follow that X is supercompact? regular compact? 

Finally, let us pose the following problem of a dif ­

ferent nature than those above: 

ProbZem 13. Find a simpler proof of Theorem 9. 
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ADDED IN PROOF: 1. Problem 4 has been recently solved in the 

paper: J. Nikiel, H. M. Tuncali and E. D. Tymchatyn, On 

the pim-stpuetupe of eontinuous images of opdeped eompaeta, 

Pacific J. Math., to appear; -where the following fact is proved:
 

If X is a continuous image of a compact orderable space and
 

X is not zero-dimensional, then dim X ind X = Ind X =
 
max {I, sup {dim Z: Z is a closed and metrizable subset
 

of X}}.
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