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A POINT-PICKING GAME AND
SEMI-SELECTIVE FILTERS

Alan Dow and Gary Gruenhage

1. Introduction

A. Berner and I. Juhdsz [BJ84] introduce the follow-
ing two person infinite game, G(X), played on a separable
space X: at the nth play, O picks an open set U, C X,
then P picks a point X, € Un' They say O wins if P's
points {xn}new are dense in X.

Clearly O has a winning strategy in G(X) if X has a
countable n-base. (Recall that a m-base for X is a col-
lection B of non-empty open subsets of X such that every
non-empty open subset of X contains some member of B,
and that the w-weight, mw(X), of X is the least cardinal
of a rm-base for X.) It is shown in [BJ84] that mw(X) = w
is equivalent to the existence of a winning strategy for
0 in G(X).

The focus of this paper is on the question of the
existence of a space X in which G(X) is undetermined, i.e.,
neither player has a winning strategy. It is still an
open question whether or not such a space exists in ZFC.
In [BJ84] such a space is constructed from the axiom¢, a
consequence of V = L, and in [Juh85], Juhdsz obtains
examples from MA(ml) for countable posets. Here we show
that such a space exists assuming Martin's Axiom for

o~centered posets (in particular, the continuum hypothesis).
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Next we consider <irresolvable spaces, i.e., spaces
which do not have disjoint dense subsets. We show that
the existence of an irresolvable space X for which G(X)
is undetermined implies the existence of a semi-selective
o-centered filter on w, the set of natural numbers.
(Recall that a filter F on w is semi-selective if, given
{rF_}

n" n€uw
n € v, and that F is og-centered if F+ = {A Cow: w\A & F}

C F, there exists F € F with |F\Fn| < n for all

can be written as a countable union of subcollections
each having the finite intersection property.) K. Kunen

[kun76] showed that if N, or more random reals are added

2
to a model of CH, then in the resulting model there are no
semi-selective ultrafilters. We show that in the same
model, there are no semi-selective o-centered filters,
hence no irresolvable spaces X for which G(X) is undeter-
mined. (Note that ultrafilters are g-centered, so our
result is an extension of Kunen's.)

Finally we observe that there are also no such
filters in Laver's model for the Borel conjecture ([Lav76]).

All of our spaces are assumed to be regular and Tl'

2. An Undetermined Game

Assuming MA for o-centered posets, we construct a
space X for which G(X) is undetermined. Since we consider
irresolvable spaces in Section 3, we construct our X so
that it doesn't have disjoint dense subsets. By the next
lemma, together with the Berner-Juhész result, it follows

that O has no winning strategy in G(X).
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Lemma 2.1, (MA'< for countable posets). If X is a
separable space without isolated points and ww(X) < «k,
then X has disjoint dense subsets.

Proof. Let B be a m-base for X with [B| < «. Let 2
be a countable dense subset of X. Let the poset P be the

set of all pairs (Fo,Fl) € ([Z]<w)2 such that F, N Fi = g.

0
a 1 1 ¥ ] 1
Define (Fgy,F) < (Fy,F;) if Fy D Fy and F] D F;. Clearly
this poset P is countable and a generic filter meeting
all sets of the form
DB={(FO,F1)GP:BﬁFo#ﬂandBﬁFl#g}

for B € B, defines disjoint dense subsets of 2z, hence of X.

The set X will be the set w of natural numbers. The
topology, 1, will be the union of topologies Ter @ S Sy
constructed inductively. The next two lemmas will be
needed to get us from stage o to stage o + 1 in the in-

duction.

Lemma 2.2. (MAK for countable posets). Let (X,T)
be a countable regular space of weight at most « with no
tsolated points, and let A C X be dense. Then there is a
finer regular topology T' of the same weight on X such
that (X,1') has no isolated points and A is open and dense
in (X,T').

Proof. Let (X,7) and A C X be as hypothesized. It
follows easily from Lemma 2.1 that A can be written as a

disjoint union of countably many dense sets {An}n De-

€y
fine f: X » w + 1 by f(x) = n if x € Al and f(x) = w if
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x €A, Let X = {.’x,f(x))}xex CXx (w+ 1), Let M: & » X
be the projection. It is easy to check that % has no
isolated points, and H-l(A) is open and dense in . Thus
the lemma follows, with T' being the topology on X in-

duced by 1.

Lemma 2.3. (MA,< for o-centered posets). Let T be a
dense-in-itself topology on w of weight at most k. Let

U be a collection of at most « many dense open subsets of

(w,T). Suppose also that Y: w Y e P(w) s such that y(o)
18 dense for all ¢ € 2. Then there is some o € w¥ such
that

1. range(c) is dense in (w,T):

2. range (o) C* U for every U € U;

3. o(n) € y(ohn) Ffor all n € w.

Proof. Let B be a base for 1t of size at most «, and
let the poset P be the set of all pairs (o,F) satisfying:

1. g € w<w;

2. j € dom(c) = o(j) € wlotj);

3. F e [ul®v;

4. B € F =B N range(c) # #.

Define (¢',F') < (o,F) if ' D o, F* D F, and for
each i € dom(o')\dom(c), we have o'(i) € NF.

Since any two members of P having the same first
coordinate are compatible, P is o-~centered. For B € B,
let DB = {(0,F) € P: B N range(o) # #}; for U € U, let
Dy = {(c,F) € P: U € F}, and for n € w, let D, = {(c,F) €

P: n € dom(o)}. These are easily seen to be dense in P,
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Let G be a filter in P meeting all DB's, DU's, and Dn's.
Then G defines a function o0: w ~+ w such that o(n) € y(otrn)
for all n € w, Because G meets all DB's, range (o) is
dense in (w,t). Pick U € U, and let p = (op,Fp) € G with
U € Fp' Thgn for each i > dom(op), o(i) € U, whence

range (g) C* U.
Now we are ready to construct our example.

Theorem 2.4. (MA for o-centered posets). There is a
countable irresolvable space X such that G(X) 15 undeter-
mined.

Proof. Let {Ea}u<g index P(w), and let {wa}a<E

W, P(w). We inductively define

index all functions y: 2
regular topologies Tyr @ < ¢, on w having weight less than

c and sets {Da: @ < ¢} C P(w) such that, for all 8 < B'

<(y,,
1. (w,TB.) has no isolated points;
. c Cx ;
2 TB TB, and DBl DB
3. DB' is dense in (w,TB.);
4. DB is dense open in (w,TB,);
5. Either EB is not dense in (w,rs+l), or DB+1 C EB;
6. Either wB(o) is not dense in (w,TB+l) for some

o € 2<w' or there is some ¢ € w® such that o(n)

€ y(otn) for all n € w, and D +1 C range (o).

8

To start, let o be a metrizable topology on w with

no isolated points, and let D0 = w. Suppose we have con-

structed 1, and Dg for all f < a, where a < ¢c.

B
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Case 1. a 18 a limit ordinal.

Let T, = ) T By Lemma 2.3, there exists Da Cuw

8"
for all B < a and Da is dense in

B<a

C*
such that Da DB

(w,ra). It is easy to check that conditions (1) - (6)

are satisfied.
Case 2. o =17y + 1.

By Lemma 2.2, there is a topology r& ) TY such that

D, is dense open in (§,7!). Define w;: 2% s P(w) by
setting w;(o) = wY(o) if wY(o) is dense in (w,r&), and
w;(o) = w otherwise. Let ¢ € u* satisfy the conclusion

of Lemma 2.3 with y = w; and let D = {DB}BiY'

range(cg). If E. N D' is not dense in (w,t'), let D = D',
Y o a a a

Let D' =
o

Otherwise let Da = EY N D&. Let Ty o> T& be a regular
dense-in-itself topology of the same weight such that Da
is dense open in (w,ra). It is easy to verify that (1) -
(6) hold. This completes the inductive construction.

Let 1 = U{Ta: o < c}. We claim that (w,T) is a
regular irresolvable space in which neither O nor P has
a winning strategy. Note that all Du's are dense open in
(w,Tt). By (5), every dense subset of (w,Tt) contains some
Du; thus (w,t) is irresolvable. Clearly, (w,t) is regular
and dense-in-itself because each Tyr & < G, is. By
Lemma 2.1, nmw(w,t) = ¢, so by the Berner-Juhdsz result,
0 has no winning strategy.

Finally, suppose P plays according to a strategy s.

Let Dy = {sitw): U € 1\{g}}. For each n € Dy, Pick U(n)
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such that s(U(n)) = n; for t & Dg’ let U(n) = w. Now,
for each n € w, let
Diny = {s{Uu(n),n,®): U € 1\ {g}}.

For each m € D<n), pick U(n,m) such that s U(n),n,U(n,m)))
=m; if m & D let U(n,m) = w. Define

Dn,m = {s(U(n),n,U(n,m),m,W): U E 1\ (g}}.
Continuing in this way, we define for each o € Y a
dense subset D, of (w,t) such that if ¢ € " and o(n) €
Dcrn for all n, then O can make P choose range (o).

‘The function V¥: 2<wl+ P(w) defined by ¢y (o) = Dc is
equal to some wa. Then wa(c) is dense in (w,ra+l) for
all ¢ € 2<w, hence there is some ¢ € w" such that o(n) €

Y (otn) for all n and D C range(c). So O can make P

a+l
choose range(c), and range(c) is dense in (w,t). Thus s
is not a winning strategy. Since s was arbitrary, P has

no winning strategy.

3. Semi-Selective Filters and Irresolvable Spaces

Our task in this section is to show that the exis-
tence of an irresolvable space X for which G(X) is unde-
termined implies the existence of a semi-selective o-
centered filter on w. In the next section we will discuss
models in which no such filters exist.

Let us say that X is strongly irresolvable if every

open subspace of X is irresolvable.

Lemma 3.1. If X is irresolvable, then X contains an

open strongly irresolvable subset.
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Proof. Let U be a maximal disjoint family of oven
resolvable subsets of X. Then the interior of X\WU is

non-empty and strongly irresolvable.

Lemma 3.2. If Y is open in X, and P has a winning
strategy in G(Y), then P has a winning strategy in G(X).

Proof. Clear.

Lemma 3.3. If there is an irresolvable space X for
which G(X) is undetermined, then there is one which is
strongly irresolvable.

Proof. Let X be irresolvable with G(X) undetermined.
Let Y C X be open and strongly irresolvable. By Lemma 3.2
P has no winning strategy in Y. By Lemma 2.1, mw(Y¥) > w,

so 0 has no winning strategy either.

Lemma 3.4. If X is regular and G(X) is undetermined,
then G(Y) is undetermined for any countable dense Y C X.

Proof. Let X satisfy the hypotheses, and let Y be a
countable dense subset of X. By regularity mw(Y) = 7mw(X)
> w, SO0 O has no winning strategy in G(Y). And again one
easily sees that P does not have a winning strategy in

G(Y) because otherwise P would have one in G(X) as well.

Lemma 3.5. If there is an irresolvable space X with
G(X) undetermined, then there is a countable strongly
irresolvable such X.

Proof. Let X be irresolvable with G(X) undetermined.

By 3.3, we may assume that X is strongly irresolvable.
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Let Y be a countable dense subset of X. By 3.4, G(Y) is
undetermined. Clearly Y is strongly irresolvable, since

Y is dense in a strongly irresolvable space.

Lemma 3.6. Let X be a countable strongly irresolv-
able space with G(X) undetermined. Let F be the collec-
tion of dense subsets of X. Then F is a o-centered semi-
selective filter on the set X.

Proof. If F € F, then X\F is not dense in any open
set, i.e., X\F is nowhere dense. Thus F contains the
dense open set X\ (X\F). It follows that F is a filter.

Let F' = {a: X\A € F}. Then every A € F is somewhere
dense, hence int A # g. For x € X, let F; = {a€erf
X € int A}. Then F' = Uxex F;, so is o=-centered.

Finally, to see that F is semi-selective, suppose
Fn € F for each n < w. Consider any strategy for P which
th

F. on the n move. Since the

. X in . .
picks a point in i<n Fi

strategy is not winning, there exists xn € niin Fi such
= i \.
that F = {x } . is dense. Then F € F and [F\F_ | < n for

all n.

Corollary 3.7. If there are no semi-selective O-
centered filters on w, then G(X) is determined for any

irresolvable space X.

4. No Semi-Selective Filters

A filter F on w is said to be rapid if, given any
function f: w » w, there exist n(k) > f£(k) such that

{n(k): k € w} € F. It is easy to see that semi-selective
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filters are rapid. In the model constructed by R. Laver
[Lav76] which demonstrated the consistency of the Borel
conjecture, it is known [Mil80] that there are no rapid
filters. So in this model, G(X) is determined for any
irresolvable space X.

K. Kunen [Kun76] showed that if one adds at least NZ
random reals to a model of CH, then there are no semi-
selective ultrafilters in the resulting model. We show
that in fact there are no semi-selective o-centered
filters in this model. Since ultrafilters are trivially
oc-centered, this extends Kunen's result.

It will be convenient to use the following charac-

terization of o-centered filters.

Lemma 4.1. A filter is o-centered 1ff there are

ultrafilters Fn’ n € w, such that F = mnew Fn‘

Proof. If F = ﬁn Fn’ where each Fn is an ultra-

. . + ,
filter, then one easily sees that F' = UnEw Fn; so F is
o-centered,

. U .
Conversely, if F' = bnew Fn’ where each Fn is
centered, let Fﬁ be an ultrafilter containing Fn U F., It

i = N '
is easy to check that F heEw Fn.

Lemma 4.2. If there are no semi-selective ultra-

filters on w and 2f F = N Fn 18 a semi-selective filter

n€uw
on w where each Fn 18 an ultrafilter, then every element
U s .
of he€w Fn 18 in infinitely many of the Fn s.
Proof. Let A € Fk for some k € w, and suppose that

H= {n: A € Fn} is finite. Since F*a = {F NA: F € F} is
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semi~selective, it cannot be an ultrafilter. Thus there
is an ultrafilter F' & {Fn}nGH extending F with A € F',

There exists A' C A with A' € F'\U ey Fne Now A' € Fro-
ncH n

. . ,
UnGw Fn’ so A', and hence A, is in some Fn with n & H.

This is a contradiction.

Let V | CH, let BX be the product measure algebra on

ZX, and let G be sz-generic over V. Suppose that in
v[G], F is a semi-selective o-centered filter on w. Then
F = ﬂnew Fo» where each F_ is an ultrafilter. Since By,
is ccc and CH holds in V, we can reflect these conditions,

as well as the conclusion of Lemma 4.2, to V[G[BX] for

some A < Wy (See the proof of Corocllary 4.4 for more.
details).
. A .
Proposition 4.3. In V, suppose that F hEw Fn is

semi-selective, where each Fn is an ultrafilter on w, and
that A € Fk for any k € w implies A is in infinitely many
Fn's. Let G be sz-generic over V. Then in V[G], there
do not extist ultrafilters F; extending Fn such that

n * . -- . )

n€w Fn 18 semi-selective.

Proof. Assume the contrary. Then without loss of

-names F

generality we may assume that there are sz n’

n < w, and % such that 1 forces

1. Fn is an ultrafilter extending Fn;

. > - n ry . - .
2 F hew Fn is semi-selective.

Let u be the product measure on B, .
2
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Faet 1. For each € > 0 and n < w, there is a sz-
name i such that

1l-rx € %n and u[[m € X]] < € for all m € w".

Proof. Let € > 0 and n < w. Let Fn(w2,2) denote the
set of all functions from a finite subset of w, to 2. If

b € Fn(w,,2), let [b] € B, denote the equivalence class
2

of {f € 2¥2; £ D b}. Choose k € w such that l/2k < eg/2.

Choose disjoint subsets {A(m)} _ ~of w, with [A(m)] = k,

A (m}

and let {bm it i< Zk} index 2 For each i <« Zk, let

X; be defined by [[m € Xi]J = [bm,i]’ and let c; = [[Xi €

Fn]]. Since V{[b J: i< X3 = 1, it is forced by 1

m,i
that U{ii: i< Zk} = w. Since {[b i]: i< Zk} is an
’

=]

antichain, it is forced by 1 that ii N Xj =g if 1 # 3.
Thus, Vi<2k c; = 1 and ¢y A cj =0 if i # jJ.
Let e, = u(ci). We claim that there are Mi < w such
that
k-1
m> M, = ulc; A[bm'i]) < g;/2 .

To see this choose a finite subset S of Fn(w2,2) such that

€.
1

2k+l'

if ¢ = U{[s]: s € s}, then plchcy) < Choose M, such

that if m > Mi’ then dom(bm i) N dom(s) = g for all s € S,
’

k .
172"+ u(c). Since [bm,i] AcC, <

Then U([bmri] A C) i

([bm i] A c) v (e; A c), it is easy to check that
’
k-1
”([bm,i] Acy) < gg/20
Now define X so that for each i < 2k and m < Mi’

c; A [[m € X]] = 0, and for m > M., c; A [[m € x]] =
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a A [[bm,i]] =c; A [[m € Xi]]. Then 1l- "X € Fn since
. . . k \ .
- " = n .
ciH X Xi\Mi" And m > max{Mi. i < 2™} implies
. k 2k‘l Ei
[[m € X]] = v {ci A bm,i: i <27} < -E - =
i=0 2
2k-1
—l_ Z I = l < €
2k-l 120 i 2k-l

Thus Fact 1 follows.

Faet 2. For each € > 0, there exists a sz-name X
such that for each m < w, pl[m € X]] < ¢ and 1l- "X € F+,
Proof. Let ¢ > 0, and for each n < w, by Fact 2

choose Xn such that 1l- "in (S %n" and for each m € w,

wllm € % 11 < £/2™. Let X be such that 1I- "%

Yae, in". Then 1l- "X € O %n = F", and [[m € X]] =
. . +1
Vnew[[m € Xn]]' soul[[m € x]] <« Lney e/2""" = ¢, That

completes the proof of Fact 2.

Recall that if F is a filter on w and {z_} is a
n n<w

sequence of numbers, the "F-lim z, = 2" means that

{n: |z - 2| < e} € F for each e > 0.
Faet 3. For each n € w, there 1s a Bw2-name in such
that
- ny i -13 Y =
1 X € F" and Fr lim{u[[m € Xn]]}me 0.

Proof. Let us assume without loss of generality

that n = 0. Choose I, € Fl\FO. Let n, > 1 be the least

1
such that Il € F . Such ann
n2

2

exists because w\I, must

2 1
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be in F_ for infinitely many m € w. Choose I, € F_ \F
m 2 n,

with I2 N Il = @g. Let n, > n, be least such that

3 2
€ F_\F, with I
n 0
3
= fg. Continuing in this manner, we can choose disjoint

(1 n (Il U I2)

3

U .
I,) # Fn3' and pick I 3

1

subsets I,, I,, ... of w such that for each m > 0, i, € F
1 2 k m

for some k. Clearly we can also ensure that w = U{Ik:

1 <k < wl.

By Fact 2, for k > 1, we can choose Xk such that
1l- "kk € " and u[[m € ik]] < % for each m < w. Now
define XO so that [[m € Xo]] = [[m € ik]] ifmé€r.

Clearly Fo-llm{u[[m E'Xo]]}mew = 0, so we need only

check that 1l - "io € .
Let 0 < i < w, and let k > 1 be such that Ik € Fi.
inition X - ny = nI.".

By definition of Xy, 11 X, n 1. X I, But

- ny T n - unvy N Tt
11 Xy € F;"/ so 1l Xy I, € F;". Hence

- uy " - ny Lo
1l Xg €Ny o Fy"e If bl X, & Fy"/+ then

bl- "w\io € %O\U , which is a contradiction to

i>0 Fi
Lemma 4.2. Thus 1ll- "io € f", and the proof of Fact 3
is complete.

Now fix a family {Xn: n € w} as in Fact 3. Since

1l- " is semi-selective", there is a name X such that

1l- "X € £ and |i\in| < n for all n € u".

-1i € X =0
Fact 4. For each n € w, Fn lim{p[[m X]]}mem .
Proof. Suppose on the contrary that A € Fn and
ullm € %]1] > e for all m € A. We may assume p[[m € in]] <

€/2 for each m € A, and hence u[[m € k\in]] > g¢/2 for each
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€ = € X\ X
m € A. But then b AmEH[[m X xn]] # 0 for some subset
H of w of size n, whence bl- "]X\Rn[ > n", a contradiction.

This completes the proof of Fact 4.

Now we aim for a contradiction that will complete the
proof of the Proposition. We know by Fact 4, that for each

k € w, the set F, = {m € w: u[[m € X]] < l/zk} is in F.

Since F is semi-selective, there is an F € F such that
[F\FkI < k for all k € w. This implies that the series
LR u[[m € X]] converges. Our contradiction will be that
M- "[x 0Pl <w'. Let b= [[X N (F\x) # #]]. Note
that u(bk) decreases to 0 as k » », Let G be an arbitrary

Bw -generic filter. Since
2

{b € Bw 3n (b A bn = 0)}

2

is dense, b € G for some k, whence ViG]l E X. N (F\k) = 4.

G

Corollary 4.4. If 32 random reals are added to a
model of CH, then there are no semi-selective O-centered
filters in the resulting model.

Proof. Suppose CH holds in V, G is Bw ~-generic over

2

VvV, and in V[G], F = nn<w Fn is semi-selective, where each

Fn is an ultrafilter. Let F and #n’ n € w, be Bw -names
2
for F and the Fn's.

Each p € Bw is the equivalence class modulo sets of

2
w
measure 0 of a subset of 2 2 of the form
w
{x €2 2: x MA € Y}
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for some countable A C wy and ¥ C 2A. For each p, pick
some such A with sup A minimal and call it the support of
p, denoted supp(p). For a nice name m of a subset of w,
let
supp(m) = U{supp(p): (3n) ((h,p) € m)}.
Then |supp(T)| < w.
We may assume that each name N for a subset of P(w)

is a set of pairs of the form (m,p) where m is a nice

name for a subset of w and p € Bw - For a < wy, let
2

Grta = {p € G: supp(p) C a}

and
Nta = {(7,p) € N: supp(m) U supp(p) C a}.
Note that G ta is Ba-generic over V, and Nta is a
Ba—name for a subset of P(w). (By abuse of notation, we

and B -names, as
2 w2

well as the corresponding members of Ba and Ba-names, as

use p and T to denote members of Bw

long as their supports are contained in a.)

Using the fact that Bw is ccc and that V[G'!a] | CH
2

for each a < Wo s by a standard closing up argument we can
find ) < wy with cofinality wy such that:
1. for each n € w and A € P(w) N V[G tA] (i.e. A
has a BA—name, say T), there is a BA—name !
such that

- g € Fn and either n' C 1 or

TN o= g
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2. for each countable subcollection {Fi}i<w of

F Nnv[G r A], there exists F € V[G t A] such that
lFi\FI < i for each i;

3. if k € » and A € Fk N v[G t1], then A € Fn N
v[G M A] for infinitely many n; .

4. the sequence of names {Fn}n<w is in v[G nA]J.

From (1) it follows that F_ N vicgta] = (?nP Mg €

v[G't 2] and that Fon v[Gt x] is an ultrafilter. From

(2), (3) and (4), it follows that F N V[G tA] = nnEw Fn N

V[Gt 1] is a semi-selective c-centered filter in V[G-* A]
such that each A € F N V[Gt A] is in infinitely many
Fn N v[e Mx]. Thus the conditions of Proposition 4.3 are

satisfied with v = V[G! 1], and we have a contradiction.
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