TOPOLOGY PROCEEDINGS

Volume 14, 1989 Pages 221–238

http://topology.auburn.edu/tp/

A POINT-PICKING GAME AND SEMI-SELECTIVE FILTERS

by

Alan Dow and Gary Gruenhage

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

A POINT-PICKING GAME AND SEMI-SELECTIVE FILTERS

Alan Dow and Gary Gruenhage

1. Introduction

A. Berner and I. Juhász [BJ84] introduce the following two person infinite game, G(X), played on a separable space X: at the nth play, O picks an open set $U_n \subset X$, then P picks a point $x_n \in U_n$. They say O wins if P's points $\{x_n\}_{n \in \omega}$ are dense in X.

Clearly O has a winning strategy in G(X) if X has a countable π -base. (Recall that a π -base for X is a collection B of non-empty open subsets of X such that every non-empty open subset of X contains some member of B, and that the π -weight, π w(X), of X is the least cardinal of a π -base for X.) It is shown in [BJ84] that π w(X) = ω is equivalent to the existence of a winning strategy for O in G(X).

The focus of this paper is on the question of the existence of a space X in which G(X) is undetermined, i.e., neither player has a winning strategy. It is still an open question whether or not such a space exists in ZFC. In [BJ84] such a space is constructed from the axiom \diamond , a consequence of V = L, and in [Juh85], Juhász obtains examples from MA(ω_1) for countable posets. Here we show that such a space exists assuming Martin's Axiom for σ -centered posets (in particular, the continuum hypothesis).

Next we consider irresolvable spaces, i.e., spaces which do not have disjoint dense subsets. We show that the existence of an irresolvable space X for which G(X) is undetermined implies the existence of a semi-selective σ -centered filter on ω , the set of natural numbers. (Recall that a filter F on ω is *semi-selective* if, given $\{F_n\}_{n\in\omega} \subset F$, there exists $F \in F$ with $|F \setminus F_n| \leq n$ for all $n \in \omega$, and that F is σ -centered if $F^+ = \{A \subset \omega: \omega \setminus A \notin F\}$ can be written as a countable union of subcollections each having the finite intersection property.) K. Kunen [Kun76] showed that if \aleph_2 or more random reals are added to a model of CH, then in the resulting model there are no semi-selective ultrafilters. We show that in the same model, there are no semi-selective o-centered filters, hence no irresolvable spaces X for which G(X) is undetermined. (Note that ultrafilters are σ -centered, so our result is an extension of Kunen's.)

Finally we observe that there are also no such filters in Laver's model for the Borel conjecture ([Lav76]).

All of our spaces are assumed to be regular and T_1 .

2. An Undetermined Game

Assuming MA for σ -centered posets, we construct a space X for which G(X) is undetermined. Since we consider irresolvable spaces in Section 3, we construct our X so that it doesn't have disjoint dense subsets. By the next lemma, together with the Berner-Juhász result, it follows that O has no winning strategy in G(X).

Lemma 2.1. (MA_K for countable posets). If X is a separable space without isolated points and $\pi w(X) \leq \kappa$, then X has disjoint dense subsets.

Proof. Let B be a π -base for X with $|B| \leq \kappa$. Let Z be a countable dense subset of X. Let the poset P be the set of all pairs $(F_0, F_1) \in ([Z]^{<\omega})^2$ such that $F_0 \cap F_1 = \emptyset$. Define $(F_0', F_1') \leq (F_0, F_1)$ if $F_0' \supset F_0$ and $F_1' \supset F_1$. Clearly this poset P is countable and a generic filter meeting all sets of the form

 $\mathsf{D}_{\mathsf{B}} = \{ (\mathsf{F}_0,\mathsf{F}_1) \in \mathsf{P} \colon \mathsf{B} \cap \mathsf{F}_0 \neq \emptyset \text{ and } \mathsf{B} \cap \mathsf{F}_1 \neq \emptyset \}$ for $\mathsf{B} \in \mathfrak{B}$, defines disjoint dense subsets of Z, hence of X.

The set X will be the set ω of natural numbers. The topology, τ , will be the union of topologies τ_{α} , $\alpha \leq \underline{c}$, constructed inductively. The next two lemmas will be needed to get us from stage α to stage α + 1 in the induction.

Lemma 2.2. (MA_K for countable posets). Let (X,τ) be a countable regular space of weight at most κ with no isolated points, and let $A \subset X$ be dense. Then there is a finer regular topology τ' of the same weight on X such that (X,τ') has no isolated points and A is open and dense in (X,τ') .

Proof. Let (X,τ) and $A \subseteq X$ be as hypothesized. It follows easily from Lemma 2.1 that A can be written as a disjoint union of countably many dense sets $\{A_n\}_{n\in\omega}$. Define f: $X \mapsto \omega + 1$ by f(x) = n if $x \in A_n$ and $f(x) = \omega$ if $x \notin A$. Let $\hat{X} = \{ (x, f(x)) \}_{x \in X} \subset X \times (\omega + 1)$. Let $\Pi: \hat{X} \mapsto X$ be the projection. It is easy to check that \hat{X} has no isolated points, and $\Pi^{-1}(A)$ is open and dense in \hat{X} . Thus the lemma follows, with τ' being the topology on X induced by Π .

Lemma 2.3. (MA_K for σ -centered posets). Let τ be a dense-in-itself topology on ω of weight at most κ . Let U be a collection of at most κ many dense open subsets of (ω, τ) . Suppose also that $\psi: \omega^{<\omega} \mapsto P(\omega)$ is such that $\psi(\sigma)$ is dense for all $\sigma \in 2^{<\omega}$. Then there is some $\sigma \in \omega^{\omega}$ such that

- 1. range(σ) is dense in (ω, τ):
- 2. range(σ) C* U for every U \in U;
- 3. $\sigma(n) \in \psi(\sigma Nn)$ for all $n \in \omega$.

Proof. Let B be a base for τ of size at most κ , and let the poset P be the set of all pairs (σ ,F) satisfying:

1. $\sigma \in \omega^{<\omega}$;

- 2. $j \in dom(\sigma) \Rightarrow \sigma(j) \in \psi(\sigma r j);$
- 3. $F \in [u]^{<\omega}$;

4. $B \in F \Rightarrow B \cap range(\sigma) \neq \emptyset$.

Define $(\sigma', F') \leq (\sigma, F)$ if $\sigma' \supset \sigma$, $F' \supset F$, and for each $i \in dom(\sigma') \setminus dom(\sigma)$, we have $\sigma'(i) \in \cap F$.

Since any two members of P having the same first coordinate are compatible, P is σ -centered. For $B \in B$, let $D_B = \{(\sigma, F) \in P: B \cap range(\sigma) \neq \emptyset\}$; for $U \in U$, let $D_U = \{(\sigma, F) \in P: U \in F\}$, and for $n \in \omega$, let $D_n = \{(\sigma, F) \in P: n \in dom(\sigma)\}$. These are easily seen to be dense in P.

Let G be a filter in P meeting all D_B 's, D_U 's, and D_n 's. Then G defines a function $\sigma: \omega \mapsto \omega$ such that $\sigma(n) \in \psi(\sigma nn)$ for all $n \in \omega$. Because G meets all D_B 's, range (σ) is dense in (ω, τ) . Pick $U \in U$, and let $p = (\sigma_p, F_p) \in G$ with $U \in F_p$. Then for each $i > dom(\sigma_p)$, $\sigma(i) \in U$, whence range $(\sigma) \subset U$.

Now we are ready to construct our example.

Theorem 2.4. (MA for σ -centered posets). There is a countable irresolvable space X such that G(X) is undetermined.

Proof. Let $\{\mathbf{E}_{\alpha}\}_{\alpha < \underline{\mathbf{C}}}$ index $P(\omega)$, and let $\{\psi_{\alpha}\}_{\alpha < \underline{\mathbf{C}}}$ index all functions $\psi: 2^{<\omega} \mapsto P(\omega)$. We inductively define regular topologies τ_{α} , $\alpha < \underline{\mathbf{C}}$, on ω having weight less than $\underline{\mathbf{C}}$ and sets $\{\mathbf{D}_{\alpha}: \alpha < \underline{\mathbf{C}}\} \subset P(\omega)$ such that, for all $\beta < \beta'$ $< \alpha$,

(ω,τ_β,) has no isolated points;
τ_β ⊂ τ_β, and D_β, ⊂* D_β;
D_β, is dense in (ω,τ_β,);
D_β is dense open in (ω,τ_β,);
Either E_β is not dense in (ω,τ_{β+1}), or D_{β+1} ⊂ E_β;
Either ψ_β(σ) is not dense in (ω,τ_{β+1}) for some σ ∈ 2^{<ω}, or there is some σ ∈ ω^ω such that σ(n) ∈ ψ(σtn) for all n ∈ ω, and D_{β+1} ⊂ range(σ).

To start, let τ_0 be a metrizable topology on ω with no isolated points, and let $D_0 = \omega$. Suppose we have constructed τ_β and D_β for all $\beta < \alpha$, where $\alpha < \underline{c}$. Case 1. a is a limit ordinal.

Let $\tau_{\alpha} = \bigcup_{\beta < \alpha} \tau_{\beta}$. By Lemma 2.3, there exists $D_{\alpha} \subset \omega$ such that $D_{\alpha} \subset D_{\beta}$ for all $\beta < \alpha$ and D_{α} is dense in (ω, τ_{α}) . It is easy to check that conditions (1) - (6) are satisfied.

Case 2. $\alpha = \gamma + 1$.

By Lemma 2.2, there is a topology $\tau_{\alpha}^{*} \supset \tau_{\gamma}$ such that D_{γ} is dense open in $(\delta, \tau_{\alpha}^{*})$. Define ψ_{γ}^{*} : $2^{<\omega} \mapsto P(\omega)$ by setting $\psi_{\gamma}^{*}(\sigma) = \psi_{\gamma}(\sigma)$ if $\psi_{\gamma}(\sigma)$ is dense in $(\omega, \tau_{\alpha}^{*})$, and $\psi_{\gamma}^{*}(\sigma) = \omega$ otherwise. Let $\sigma \in \omega^{\omega}$ satisfy the conclusion of Lemma 2.3 with $\psi = \psi_{\gamma}^{*}$ and let $\mathcal{P} = \{D_{\beta}\}_{\beta \leq \gamma}$. Let $D_{\alpha}^{*} =$ range (σ) . If $E_{\gamma} \cap D_{\alpha}^{*}$ is not dense in $(\omega, \tau_{\alpha}^{*})$, let $D_{\alpha} = D_{\alpha}^{*}$. Otherwise let $D_{\alpha} = E_{\gamma} \cap D_{\alpha}^{*}$. Let $\tau_{\alpha} \supset \tau_{\alpha}^{*}$ be a regular dense-in-itself topology of the same weight such that D_{α} is dense open in (ω, τ_{α}) . It is easy to verify that (1) -(6) hold. This completes the inductive construction.

Let $\tau = \bigcup \{\tau_{\alpha}: \alpha < \underline{c}\}$. We claim that (ω, τ) is a regular irresolvable space in which neither O nor P has a winning strategy. Note that all D_{α} 's are dense open in (ω, τ) . By (5), every dense subset of (ω, τ) contains some D_{α} ; thus (ω, τ) is irresolvable. Clearly, (ω, τ) is regular and dense-in-itself because each τ_{α} , $\alpha < \underline{c}$, is. By Lemma 2.1, $\pi w(\omega, \tau) = \underline{c}$, so by the Berner-Juhász result, O has no winning strategy.

Finally, suppose P plays according to a strategy s. Let $D_{a} = \{s(\langle U \rangle) : U \in \tau \setminus \{a\}\}$. For each $n \in D_{a}$, pick U(n) such that s(U(n)) = n; for $\tau \notin D_g$, let $U(n) = \omega$. Now, for each $n \in \omega$, let

$$\begin{split} D_{(n)} &= \{ s(\langle U(n), n, U \rangle) : U \in \tau \setminus \{ \emptyset \} \}. \end{split}$$
For each $m \in D_{(n)}$, pick U(n,m) such that $s(\langle U(n), n, U(n,m) \rangle) = m$; if $m \not\in D_{(n)}$, let $U(n,m) = \omega$. Define

 $D_{(n,m)} = \{s(U(n), n, U(n,m), m, U) : U \in \tau \setminus \{\emptyset\}\}.$ Continuing in this way, we define for each $\sigma \in \omega^{<\omega}$ a dense subset D_{σ} of (ω, τ) such that if $\sigma \in \omega^{\omega}$ and $\sigma(n) \in D_{\sigma}$ for all n, then O can make P choose range (σ) .

The function $\psi: 2^{<\omega} \mapsto \mathcal{P}(\omega)$ defined by $\psi(\sigma) = D_{\sigma}$ is equal to some ψ_{α} . Then $\psi_{\alpha}(\sigma)$ is dense in $(\omega, \tau_{\alpha+1})$ for all $\sigma \in 2^{<\omega}$, hence there is some $\sigma \in \omega^{\omega}$ such that $\sigma(n) \in$ $\psi(\sigma \land n)$ for all n and $D_{\alpha+1} \subset \operatorname{range}(\sigma)$. So O can make P choose range (σ) , and range (σ) is dense in (ω, τ) . Thus s is not a winning strategy. Since s was arbitrary, P has no winning strategy.

3. Semi-Selective Filters and Irresolvable Spaces

Our task in this section is to show that the existence of an irresolvable space X for which G(X) is undetermined implies the existence of a semi-selective σ centered filter on ω . In the next section we will discuss models in which no such filters exist.

Let us say that X is *strongly irresolvable* if every open subspace of X is irresolvable.

Lemma 3.1. If X is irresolvable, then X contains an open strongly irresolvable subset.

Proof. Let U be a maximal disjoint family of open resolvable subsets of X. Then the interior of $X \cup U$ is non-empty and strongly irresolvable.

Lemma 3.2. If Y is open in X, and P has a winning strategy in G(Y), then P has a winning strategy in G(X). Proof. Clear.

Lemma 3.3. If there is an irresolvable space X for which G(X) is undetermined, then there is one which is strongly irresolvable.

Proof. Let X be irresolvable with G(X) undetermined. Let $Y \subset X$ be open and strongly irresolvable. By Lemma 3.2 P has no winning strategy in Y. By Lemma 2.1, $\pi w(Y) > \omega$, so 0 has no winning strategy either.

Lemma 3.4. If X is regular and G(X) is undetermined, then G(Y) is undetermined for any countable dense $Y \subset X$.

Proof. Let X satisfy the hypotheses, and let Y be a countable dense subset of X. By regularity $\pi w(Y) = \pi w(X)$. > ω , so O has no winning strategy in G(Y). And again one easily sees that P does not have a winning strategy in G(Y) because otherwise P would have one in G(X) as well.

Lemma 3.5. If there is an irresolvable space X with G(X) undetermined, then there is a countable strongly irresolvable such X.

Proof. Let X be irresolvable with G(X) undetermined. By 3.3, we may assume that X is strongly irresolvable.

Let Y be a countable dense subset of X. By 3.4, G(Y) is undetermined. Clearly Y is strongly irresolvable, since Y is dense in a strongly irresolvable space.

Lemma 3.6. Let X be a countable strongly irresolvable space with G(X) undetermined. Let F be the collection of dense subsets of X. Then F is a g-centered semiselective filter on the set X.

Proof. If $F \in F$, then X\F is not dense in any open set, i.e., X\F is nowhere dense. Thus F contains the dense open set X\($\overline{X\setminus F}$). It follows that F is a filter.

Let $F^+ = \{A: X \setminus A \notin F\}$. Then every $A \in F$ is somewhere dense, hence int $A \neq \emptyset$. For $x \in X$, let $F_x^+ = \{A \in F^+: x \in int A\}$. Then $F^+ = \bigcup_{x \in X} F_x^+$, so is σ -centered.

Finally, to see that F is semi-selective, suppose $F_n \in F$ for each $n < \omega$. Consider any strategy for P which picks a point in $\cap_{i \leq n} F_i$ on the n^{th} move. Since the strategy is not winning, there exists $x_n \in \cap_{i \leq n} F_i$ such that $F = \{x_n\}_{n \in \omega}$ is dense. Then $F \in F$ and $|F \setminus F_n| \leq n$ for all n.

Corollary 3.7. If there are no semi-selective σ -centered filters on ω , then G(X) is determined for any irresolvable space X.

4. No Semi-Selective Filters

A filter F on ω is said to be *rapid* if, given any function f: $\omega \mapsto \omega$, there exist n(k) > f(k) such that $\{n(k): k \in \omega\} \in F$. It is easy to see that semi-selective

filters are rapid. In the model constructed by R. Laver [Lav76] which demonstrated the consistency of the Borel conjecture, it is known [Mil80] that there are no rapid filters. So in this model, G(X) is determined for any irresolvable space X.

K. Kunen [Kun76] showed that if one adds at least \aleph_2 random reals to a model of CH, then there are no semiselective ultrafilters in the resulting model. We show that in fact there are no semi-selective σ -centered filters in this model. Since ultrafilters are trivially σ -centered, this extends Kunen's result.

It will be convenient to use the following characterization of σ -centered filters.

Lemma 4.1. A filter is σ -centered iff there are ultrafilters F_n , $n \in \omega$, such that $F = \bigcap_{n \in \omega} F_n$.

Proof. If $F = \bigcap_n F_n$, where each F_n is an ultrafilter, then one easily sees that $F^+ = \bigcup_{n \in \omega} F_n$; so F is σ -centered.

Conversely, if $F^+ = \bigcup_{n \in \omega} F_n$, where each F_n is centered, let F'_n be an ultrafilter containing $F_n \cup F$. It is easy to check that $F = \bigcap_{n \in \omega} F'_n$.

Lemma 4.2. If there are no semi-selective ultrafilters on ω and if $F = \bigcap_{n \in \omega} F_n$ is a semi-selective filter on ω where each F_n is an ultrafilter, then every element of $\bigcup_{n \in \omega} F_n$ is in infinitely many of the F_n 's.

Proof. Let $A \in F_k$ for some $k \in \omega$, and suppose that H = {n: $A \in F_n$ } is finite. Since $F^A = \{F \cap A: F \in F\}$ is

semi-selective, it cannot be an ultrafilter. Thus there is an ultrafilter $F' \not\in \{F_n\}_{n \in H}$ extending F with $A \in F'$. There exists $A' \subseteq A$ with $A' \in F' \setminus \bigcup_{n \in H} F_n$. Now $A' \in F^+ = \bigcup_{n \in \omega} F_n$, so A', and hence A, is in some F_n with $n \notin H$. This is a contradiction.

Let $V \models CH$, let B_{λ} be the product measure algebra on 2^{λ} , and let G be B_{ω_2} -generic over V. Suppose that in V[G], F is a semi-selective σ -centered filter on ω . Then $F = \bigcap_{n \in \omega} F_n$, where each F_n is an ultrafilter. Since B_{ω_2} is ccc and CH holds in V, we can reflect these conditions, as well as the conclusion of Lemma 4.2, to $V[G|B_{\lambda}]$ for some $\lambda < \omega_2$. (See the proof of Corollary 4.4 for more. details).

Proposition 4.3. In V, suppose that $F = \bigcap_{n \in \omega} F_n$ is semi-selective, where each F_n is an ultrafilter on ω , and that $A \in F_k$ for any $k \in \omega$ implies A is in infinitely many F_n 's. Let G be B_{ω_2} -generic over V. Then in V[G], there do not exist ultrafilters F_n^* extending F_n such that $\bigcap_{n \in \omega} F_n^*$ is semi-selective.

Proof. Assume the contrary. Then without loss of generality we may assume that there are B_{ω_2} -names \dot{F}_n , $n < \omega$, and \dot{F} such that 1 forces

1. \dot{F}_n is an ultrafilter extending F_n ; 2. $\dot{F} = \bigcap_{n \in \omega} \dot{F}_n$ is semi-selective. Let μ be the product measure on B_{ω_2} . Fact 1. For each $\epsilon > 0$ and $n < \omega,$ there is a B_{ω_2} -name $\overset{\bullet}{X}$ such that

 $\| \| - \| \dot{\mathbf{x}} \in \dot{\mathbf{F}}_n \text{ and } \mu[[m \in \dot{\mathbf{x}}]] < \varepsilon \text{ for all } m \in \omega^{"}.$

Proof. Let $\varepsilon > 0$ and $n < \omega$. Let $\operatorname{Fn}(\omega_2, 2)$ denote the set of all functions from a finite subset of ω_2 to 2. If $b \in \operatorname{Fn}(\omega_2, 2)$, let $[b] \in \operatorname{B}_{\omega_2}$ denote the equivalence class of $\{f \in 2^{\omega_2}: f \supset b\}$. Choose $k \in \omega$ such that $1/2^k < \varepsilon/2$. Choose disjoint subsets $\{A(m)\}_{m < \omega}$ of ω_2 with |A(m)| = k, and let $\{b_{m,i}: i < 2^k\}$ index $2^{A(m)}$. For each $i < 2^k$, let \dot{x}_i be defined by $[[m \in \dot{x}_i]] = [b_{m,i}]$, and let $c_i = [[\dot{x}_i \in \operatorname{F}_n]]$. Since $V\{[b_{m,i}]: i < 2^k\} = 1$, it is forced by 1 that $\cup\{\dot{x}_i: i < 2^k\} = \omega$. Since $\{[b_{m,i}]: i < 2^k\}$ is an antichain, it is forced by 1 that $\dot{x}_i \cap \dot{x}_j = \emptyset$ if $i \neq j$. Thus, $V_{i < 2k} c_i = 1$ and $c_i \wedge c_j = 0$ if $i \neq j$.

Let $\varepsilon_i = \mu(c_i)$. We claim that there are $M_i < \omega$ such that

 $m > M_i \Rightarrow \mu(c_i \land [b_{m,i}]) < \epsilon_i / 2^{k-1}.$

To see this choose a finite subset S of $\operatorname{Fn}(\omega_2, 2)$ such that if $c = \cup\{[s]: s \in S\}$, then $\mu(c \Delta c_i) < \frac{\varepsilon_i}{2^{k+1}}$. Choose M_i such that if $m > M_i$, then $\operatorname{dom}(b_{m,i}) \cap \operatorname{dom}(s) = \emptyset$ for all $s \in S$. Then $\mu([b_{m,i}] \land c) = 1/2^k \cdot \mu(c)$. Since $[b_{m,i}] \land c_i < ([b_{m,i}] \land c) \lor (c_i \land c)$, it is easy to check that $\mu([b_{m,i}] \land c_i) < \varepsilon_i/2^{k-1}$.

Now define \dot{x} so that for each $i < 2^k$ and $m < M_i$, $c_i \land [[m \in \dot{x}]] = 0$, and for $m > M_i$, $c_i \land [[m \in \dot{x}]] =$ $a \land [[b_{m,i}]] = c_i \land [[m \in \dot{x}_i]].$ Then $1 \parallel - "\dot{x} \in F_n$ " since $c_i \parallel - \parallel \dot{x} = \dot{x}_i \setminus M_i \parallel$. And $m > max\{M_i: i < 2^k\}$ implies

$$[[m \in \dot{x}]] = \bigvee \{c_i \wedge b_{m,i} : i < 2^k\} < \sum_{i=0}^{2^k-1} \frac{\varepsilon_i}{2^{k-1}} = \frac{1}{2^{k-1}} \sum_{i=0}^{2^k-1} \varepsilon_i = \frac{1}{2^{k-1}} < \varepsilon.$$

Thus Fact 1 follows.

Fact 2. For each $\varepsilon > 0$, there exists a B_{ω_2} -name $\dot{\mathbf{x}}$ such that for each $m < \omega$, $\mu[[m \in \dot{x}]] < \varepsilon$ and $1 \parallel - "\dot{x} \in \mathring{F}"$.

Proof. Let $\varepsilon > 0$, and for each n < ω , by Fact 2 choose $\dot{\mathbf{x}}_n$ such that $1 \| - \| \dot{\mathbf{x}}_n \in \dot{\mathbf{F}}_n \|$ and for each $m \in \omega$, $\mu[[m \in \dot{x}_n]] < \epsilon/2^{n+1}$. Let \dot{x} be such that $1 \parallel - "\dot{x} =$ $\cup_{n\in\omega} \dot{x}_n". \text{ Then } 1\|- "\dot{x} \in \cap_{n\in\omega} \dot{F}_n = \dot{F}", \text{ and } [[m \in \dot{x}]] =$ $\forall_{n\in\omega}[[\mathfrak{m}\in\dot{x}_{n}]], \text{ som} \mu[[\mathfrak{m}\in\dot{x}]] < \Sigma_{n\in\omega} \epsilon/2^{n+1} = \epsilon. \text{ That}$ completes the proof of Fact 2.

Recall that if F is a filter on ω and $\{z_n\}_{n < \omega}$ is a sequence of numbers, the "F-lim $z_n = l$ " means that $\{n: |z_n - \ell| < \epsilon\} \in F \text{ for each } \epsilon > 0.$

Fact 3. For each $n \in \omega$, there is a B_{ω_2} -name \dot{X}_n such that

$$||- "\dot{x}_n \in \dot{F}" \text{ and } F_n - \lim\{\mu[[m \in \dot{x}_n]]\}_{m \in \omega} = 0.$$

Proof. Let us assume without loss of generality that n = 0. Choose $I_1 \in F_1 \setminus F_0$. Let $n_2 > 1$ be the least such that $I_1 \notin F_{n_2}$. Such an n_2 exists because $\omega \setminus I_1$ must

be in F_m for infinitely many $m \in \omega$. Choose $I_2 \in F_n_2 \cap F_n_2 \cap F_n_2 \cap I_1 = \emptyset$. Let $n_3 > n_2$ be least such that $(I_1 \cup I_2) \notin F_n_3$, and pick $I_3 \in F_n_3 \cap F_0$ with $I_3 \cap (I_1 \cup I_2)$ $= \emptyset$. Continuing in this manner, we can choose disjoint subsets I_1, I_2, \ldots of ω such that for each m > 0, $i_k \in F_m$ for some k. Clearly we can also ensure that $\omega = \cup \{I_k: 1 \leq k < \omega\}$.

By Fact 2, for $k \ge 1$, we can choose \dot{x}_k such that $l = "\dot{x}_k \in \dot{F}"$ and $\mu[[m \in \dot{x}_k]] < \frac{1}{k}$ for each $m < \omega$. Now define \dot{x}_0 so that $[[m \in \dot{x}_0]] = [[m \in \dot{x}_k]]$ if $m \in I_k$.

Clearly $F_0 - \lim \{\mu[[m \in \dot{x}_0]]\}_{m \in \omega} = 0$, so we need only check that $1 \parallel - "\dot{x}_0 \in \dot{F}"$.

Let $0 < i < \omega$, and let $k \ge 1$ be such that $I_k \in F_i$. By definition of \dot{x}_0 , $1 \parallel - "\dot{x}_0 \cap I_k = X_k \cap I_k"$. But $1 \parallel - "\dot{x}_k \in \dot{F}_i"$, so $1 \parallel - "\dot{x}_0 \cap I_k \in \dot{F}_i"$. Hence $1 \parallel - "\dot{x}_0 \in \cap_{i>0} F_i"$. If $b \parallel - "\dot{x}_0 \not\in \dot{F}_0"$, then $b \parallel - "\omega \cdot \dot{x}_0 \in \dot{F}_0 \setminus \cup_{i>0} \dot{F}_i"$, which is a contradiction to Lemma 4.2. Thus $1 \parallel - "\dot{x}_0 \in \dot{F}"$, and the proof of Fact 3 is complete.

Now fix a family $\{\dot{\mathbf{x}}_n : n \in \omega\}$ as in Fact 3. Since $\| - \ddot{\mathbf{r}} \|$ is semi-selective", there is a name $\dot{\mathbf{x}}$ such that $\| - \ddot{\mathbf{x}} \in \dot{\mathbf{r}}$ and $| \dot{\mathbf{x}} \rangle \dot{\mathbf{x}}_n | < n$ for all $n \in \omega$ ".

Fact 4. For each $n \in \omega$, $F_n - \lim\{\mu[[m \in \dot{x}]]\}_{m \in \omega} = 0$.

Proof. Suppose on the contrary that $A \in F_n$ and $\mu[[m \in \dot{X}]] \ge \varepsilon$ for all $m \in A$. We may assume $\mu[[m \in \dot{X}_n]] < \varepsilon/2$ for each $m \in A$, and hence $\mu[[m \in \dot{X} \setminus \dot{X}_n]] > \varepsilon/2$ for each $m \in A$. But then $b = \wedge_{m \in H} [[m \in \dot{x} \setminus \dot{x}_n]] \neq 0$ for some subset H of ω of size n, whence $b^{\parallel} - "|\dot{x} \setminus \dot{x}_n| > n$ ", a contradiction. This completes the proof of Fact 4.

Now we aim for a contradiction that will complete the proof of the Proposition. We know by Fact 4, that for each $k \in \omega$, the set $F_k = \{m \in \omega: \mu[[m \in \dot{x}]] < 1/2^k\}$ is in F. Since F is semi-selective, there is an $F \in F$ such that $|F \setminus F_k| < k$ for all $k \in \omega$. This implies that the series $\sum_{m \in F} \mu[[m \in \dot{x}]]$ converges. Our contradiction will be that $1 \parallel - \|\dot{x} \cap F\| < \omega^{"}$. Let $b_k = [[\dot{x} \cap (F \setminus k) \neq \emptyset]]$. Note that $\mu(b_k)$ decreases to 0 as $k \neq \infty$. Let G be an arbitrary B_{ω_n} -generic filter. Since

 $\{b \in \mathcal{B}_{\omega_2} : \exists n \ (b \land b_n = 0)\}$

is dense, $b_k \in G$ for some k, whence $V[G] \models \dot{X}_G \cap (F \setminus k) = \emptyset$.

Corollary 4.4. If \aleph_2 random reals are added to a model of CH, then there are no semi-selective σ -centered filters in the resulting model.

Proof. Suppose CH holds in V, G is B_{ω_2} -generic over V, and in V[G], $F = \bigcap_{n < \omega} F_n$ is semi-selective, where each F_n is an ultrafilter. Let \dot{F} and \dot{F}_n , $n \in \omega$, be B_{ω_2} -names for F and the F_n 's.

Each $p \in B_{\omega_2}$ is the equivalence class modulo sets of measure 0 of a subset of 2^{ω_2} of the form $\{x \in 2^{\omega_2} : x \land A \in Y\}$

for some countable $A \subseteq \omega_2$ and $Y \subseteq 2^A$. For each p, pick some such A with sup A minimal and call it the support of p, denoted supp(p). For a nice name π of a subset of ω , let

 $supp(\pi) = \cup \{supp(p): (\exists n) ((\check{n}, p) \in \pi) \}.$ Then $|supp(\pi)| \leq \omega$.

We may assume that each name \mathring{N} for a subset of $P(\omega)$ is a set of pairs of the form (π, p) where π is a nice name for a subset of ω and $p \in B_{\omega_n}$. For $\alpha < \omega_2$, let

 $G \land \alpha = \{p \in G: supp(p) \subset \alpha\}$

and

 $\dot{N} \land \alpha = \{ (\pi, p) \in \dot{N}: \operatorname{supp}(\pi) \cup \operatorname{supp}(p) \subset \alpha \}.$

Note that $G \upharpoonright \alpha$ is B_{α} -generic over V, and $N \upharpoonright \alpha$ is a B_{α} -name for a subset of $P(\omega)$. (By abuse of notation, we use p and π to denote members of B_{ω_2} and B_{ω_2} -names, as well as the corresponding members of B_{α} and B_{α} -names, as long as their supports are contained in α .)

Using the fact that \mathcal{B}_{ω_2} is ccc and that $\mathcal{V}[\mathsf{G} \upharpoonright \alpha] \models \mathsf{CH}$ for each $\alpha < \omega_2$, by a standard closing up argument we can find $\lambda < \omega_2$ with cofinality ω_1 such that:

1. for each $n \in \omega$ and $A \in P(\omega) \cap V[G \land \lambda]$ (i.e. A has a B_{λ} -name, say π), there is a B_{λ} -name π ' such that

 $|\|- "\pi' \in F_n \text{ and either } \pi' \subset \pi \text{ or}$ $\pi' \cap \pi = \emptyset; "$

- 2. for each countable subcollection $\{F_i\}_{i < \omega}$ of $F \cap V[G \land \lambda]$, there exists $F \in V[G \land \lambda]$ such that $|F_i \setminus F| \leq i$ for each i;
- 3. if $k \in \omega$ and $A \in F_k \cap V[G \land \lambda]$, then $A \in F_n \cap V[G \land \lambda]$ for infinitely many n;
- 4. the sequence of names $\{\dot{F}_n\}_{n<\omega}$ is in V[G N λ].

From (1) it follows that $F_n \cap V[G \upharpoonright \lambda] = (\dot{F}_n \upharpoonright \lambda)_G \in V[G \upharpoonright \lambda]$ and that $F_n \cap V[G \upharpoonright \lambda]$ is an ultrafilter. From (2), (3) and (4), it follows that $F \cap V[G \upharpoonright \lambda] = \bigcap_{n \in \omega} F_n \cap V[G \upharpoonright \lambda]$ is a semi-selective σ -centered filter in $V[G \upharpoonright \lambda]$ such that each $A \in F \cap V[G \upharpoonright \lambda]$ is in infinitely many $F_n \cap V[G \upharpoonright \lambda]$. Thus the conditions of Proposition 4.3 are satisfied with $V = V[G \upharpoonright \lambda]$, and we have a contradiction.

References

[BJ84]	A. Berner and I. Juhász, Point-picking games and
	HFD's, Models and Sets, Lecture Notes in Mathe-
	matics, 53-66, 1984.
[Juh85]	I. Juhász, On point-picking games, Top. Proc.,
	103-110, 1985.
[Kun76]	K. Kunen, Some points in βN , Math. Proc. Cambridge
	Phil. Soc., 385-398, 1976.
[Lav76]	R. Laver, On the consistency of Borel's Conjecture,
	Acta Math., 151-169, 1976.
[Mi180]	A. W. Miller, There are no Q-points in Laver's
	Model for the Borel Conjecture, Proc. AMS, 103-
	106, 1980.

Dow and Gruenhage

York University

North York, Ontario CANADA M3J 1P3

Auburn University

Auburn, Alabama 36849