TOPOLOGY PROCEEDINGS

Volume 14, 1989
Pages 221-238
http://topology.auburn.edu/tp/

A POINT-PICKING GAME AND SEMI-SELECTIVE FILTERS

by
Alan Dow and Gary Gruenhage

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

A POINT-PICKING GAME AND SEMI-SELECTIVE FILTERS

Alan Dow and Gary Gruenhage

1. Introduction

A. Berner and I. Juhasz [BJ84] introduce the following two person infinite game, $G(X)$, played on a separable space X : at the $n^{\text {th }}$ play, O picks an open set $U_{n} \subset X$, then P picks a point $X_{n} \in U_{n}$. They say O wins if $P^{\prime} s$ points $\left\{x_{n}\right\}_{n \in \omega}$ are dense in X.

Clearly O has a winning strategy in $G(X)$ if X has a countabie π-base. (Recall that a π-base for X is a collection B of non-empty open subsets of X such that every non-empty open subset of X contains some member of B, and that the π-weight, $\pi w(X)$, of X is the least cardinal of a π-base for X.) It is shown in [BJ84] that $\pi w(X)=\omega$ is equivalent to the existence of a winning strategy for O in $G(X)$.

The focus of this paper is on the question of the existence of a space X in which $G(X)$ is undetermined, i.e., neither player has a winning strategy. It is still an open question whether or not such a space exists in 2FC. In [BJ84] such a space is constructed from the axiom \diamond, a consequence of $V=L$, and in [Juh85], Juhász obtains examples from MA $\left(\omega_{1}\right)$ for countable posets. Here we show that such a space exists assuming Martin's Axiom for σ-centered posets (in particular, the continuum hypothesis).

Next we consider irresolvable spaces, i.e., spaces which do not have disjoint dense subsets. We show that the existence of an irresolvable space X for which $G(X)$ is undetermined implies the existence of a semi-selective a-centered filter on ω, the set of natural numbers. (Recall that a filter F on ω is semi-selective if, given $\left\{F_{n}\right\}_{n \in \omega} \subset F$, there exists $F \in F$ with $\left|F \backslash F_{n}\right| \leq n$ for all $n \in \omega$, and that F is σ-centered if $F^{+}=\{A \subset \omega: \omega \backslash A \notin F\}$ can be written as a countable union of subcollections each having the finite intersection property.) K. Kunen [Kun76] showed that if κ_{2} or more random reals are added to a model of CH , then in the resulting model there are no semi-selective ultrafilters. We show that in the same model, there are no semi-selective σ-centered filters, hence no irresolvable spaces X for which $G(X)$ is undetermined. (Note that ultrafilters are o-centered, so our result is an extension of Kunen's.)

Finally we observe that there are also no such filters in Laver's model for the Borel conjecture ([Lav76]). All of our spaces are assumed to be regular and T_{1}.

2. An Undetermined Game

Assuming MA for σ-centered posets, we construct a space X for which $G(X)$ is undetermined. Since we consider irresolvable spaces in Section 3, we construct our X so that it doesn't have disjoint dense subsets. By the next lemma, together with the Berner-Juhasz result, it follows that O has no winning strategy in $G(X)$.

Lemma 2.1. (MA ${ }_{\kappa}$ for countable posets). If X is a separable space without isolated points and $\pi \omega(X) \leq K$, then X has disjoint dense subsets.

Proof. Let B be a π-base for X with $|B| \leq k$. Let Z be a countable dense subset of X. Let the poset P be the set of all pairs $\left(F_{0}, F_{1}\right) \in\left([z]^{<\omega}\right)^{2}$ such that $F_{0} \cap F_{1}=\varnothing$. Define $\left(F_{0}^{\prime}, F_{i}^{\prime}\right) \leq\left(F_{0}, F_{1}\right)$ if $F_{0}^{\prime} \supset F_{0}$ and $F_{i} \supset F_{1}$. Clearly this poset P is countable and a generic filter meeting all sets of the form

$$
D_{B}=\left\{\left(F_{0}, F_{1}\right) \in P: B \cap F_{0} \neq \varnothing \text { and } B \cap F_{1} \neq \varnothing\right\}
$$

for $B \in B$, defines disjoint dense subsets of Z, hence of X.

The set X will be the set ω of natural numbers. The topology, τ, will be the union of topologies $\tau_{\alpha}, \alpha \leq \subseteq$, constructed inductively. The next two lemmas will be needed to get us from stage α to stage $\alpha+1$ in the induction.

Lemma 2.2. (MA ${ }_{K}$ for countable posets). Let (X, τ) be a countable regular space of weight at most K with no isolated points, and let $\mathrm{A} \subset \mathrm{X}$ be dense. Then there is a finer regular topology τ ' of the same weight on X such that ($\mathrm{X}, \mathrm{T}^{\prime}$) has no isolated points and A is open and dense in $\left(X, \tau^{\prime}\right)$.

Proof. Let (X, τ) and $A \subset X$ be as hypothesized. It follows easily from Lemma 2.1 that A can be written as a disjoint union of countably many dense sets $\left\{A_{n}\right\}_{n} \in_{\omega}$. Define $f: X \leftrightarrow \omega+1$ by $f(x)=n$ if $x \in A_{n}$ and $f(x)=\omega$ if
$x \notin A$. Let $\hat{X}=\{(x, f(x))\}_{x \in X} \subset X \times(\omega+1)$. Let $\Pi: \hat{X} \rightarrow x$ be the projection. It is easy to check that \hat{X} has no isolated points, and $\Pi^{-1}(A)$ is open and dense in \hat{X}. Thus the lemma follows, with τ ' being the topology on X induced by π.

Lemma 2.3. (MA_{K} for σ-centered posets). Let τ be a dense-in-itself topology on ω of weight at most k. Let U be a collection of at most x many dense open subsets of (ω, τ). Suppose also that $\psi: \omega^{<\omega} \mapsto P(\omega)$ is such that $\psi(\sigma)$ is dense for alz. $\sigma \in 2^{<\omega}$. Then there is some $\sigma \in \omega^{\omega}$ such that

1. range (σ) is dense in (ω, τ) :
2. range (σ) C* u for every $U \in U$;
3. $\sigma(\mathrm{n}) \in \psi(\sigma \mathrm{n})$ for all $\mathrm{n} \in \omega$.

Proof. Let B be a base for τ of size at most k, and let the poset P be the set of all pairs (σ, F) satisfying:

1. $\sigma \in \omega^{<\omega}$;
2. $j \in \operatorname{dom}(\sigma) \Rightarrow \sigma(j) \in \psi(\sigma r j)$;
3. $F \in[u]^{<\omega}$;
4. $B \in F \Rightarrow B \cap$ range $(\sigma) \neq \varnothing$.

Define $\left(\sigma^{\prime}, F^{\prime}\right) \leq(\sigma, F)$ if $\sigma^{\prime} \supset \sigma, F^{\prime} \supset F$, and for each $i \in \operatorname{dom}\left(\sigma^{\prime}\right) \backslash \operatorname{dom}(\sigma)$, we have $\sigma^{\prime}(i) \in \cap F$.

Since any two members of P having the same first coordinate are compatible, P is σ-centered. For $\mathrm{B} \in \mathrm{B}$, let $D_{B}=\{(\sigma, F) \in P: B \cap$ range $(\sigma) \neq \varnothing\}$; for $U \in U$, let $D_{U}=\{(\sigma, F) \in P: U \in F\}$, and for $n \in \omega$, let $D_{n}=\{(\sigma, F) \in$ $\mathrm{P}: \mathrm{n} \in \operatorname{dom}(\sigma)\}$. These are easily seen to be dense in P .

Let G be a filter in P meeting all $D_{B}^{\prime \prime s}, D_{U}^{\prime \prime s}$, and $D_{n}^{\prime} s$. Then G defines a function $\sigma: \omega \rightarrow \omega$ such that $\sigma(n) \in \psi(\sigma \wedge n)$ for all $n \in \omega$. Because G meets all $D_{B}{ }^{\prime} s$, range (σ) is dense in (ω, τ). Pick $U \in U$, and let $p=\left(\sigma_{p}, F_{p}\right) \in G$ with $U \in F_{p}$. Then for each $i>\operatorname{dom}\left(\sigma_{p}\right), \sigma(i) \in U$, whence range (σ) C* U.

Now we are ready to construct our example.

Theorem 2.4. (MA for σ-centered posets). There is a countable irresolvable space X such that $G(X)$ is undetermined.

Proof. Let $\left\{E_{\alpha}\right\}_{\alpha<c}$ index $P(\omega)$, and let $\left\{\psi_{\alpha}\right\}_{\alpha<\underline{c}}$ index all functions $\psi: 2^{<\omega} \rightarrow P(\omega)$. We inductively define regular topologies τ_{α}, $\alpha<\underline{c}$, on ω having weight less than c and sets $\left\{D_{\alpha}: \alpha<\underline{c}\right\} \subset P(w)$ such that, for all $\beta<\beta^{\prime}$ $<\alpha$,
l. $\left(\omega, \tau_{\beta},\right)$ has no isolated points;
2. $\quad \tau_{\beta} \subset \tau_{\beta}$, and $D_{\beta}, \subset * D_{\beta}$;
3. D_{β}, is dense in $\left(\omega, \tau_{\beta},\right)$;
4. D_{β} is dense open in $\left(\omega, \tau_{\beta},\right)$;
5. Either E_{β} is not dense in $\left(\omega, \tau_{\beta+1}\right)$, or $D_{\beta+1} \subset E_{\beta}$;
6. Either $\psi_{\beta}(\sigma)$ is not dense in $\left(\omega, \tau_{\beta+1}\right)$ for some $\sigma \in 2^{<\omega}$, or there is some $\sigma \in \omega^{\omega}$ such that $\sigma(n)$ $\in \psi(\sigma \mid n)$ for all $n \in \omega$, and $D_{\beta+1} \subset$ range (σ).

To start, let τ_{0} be a metrizable topology on ω with no iscolated points, and let $D_{0}=\omega$. Suppose we have constructed τ_{β} and D_{β} for all $\beta<\alpha$, where $\alpha<\underline{c}$.

Case 1. α is a limit ordinal.

Let $\tau_{\alpha}=U_{\beta<\alpha} \tau_{\beta}$. By Lemma 2.3, there exists $D_{\alpha} \subset \omega$ such that $D_{\alpha} C^{*} D_{\beta}$ for all $\beta<\alpha$ and D_{α} is dense in $\left(\omega, \tau_{\alpha}\right)$. It is easy to check that conditions (1) - (6) are satisfied.

Case 2. $\alpha=\gamma+1$.

By Lemma 2.2, there is a topology $\tau_{\alpha}^{:} \supset \tau_{\gamma}$ such that D_{γ} is dense open in $\left(\delta, \tau_{\alpha}^{\prime}\right)$. Define $\psi_{\gamma}^{\prime}: 2^{<\omega}{ }_{i \rightarrow} P(\omega)$ by setting $\psi_{\gamma}^{\prime}(\sigma)=\psi_{\gamma}(\sigma)$ if $\psi_{\gamma}(\sigma)$ is dense in $\left(\omega, \tau_{\alpha}^{\prime}\right)$, and $\psi_{\gamma}^{\prime}(\sigma)=\omega$ otherwise. Let $\sigma \in \omega^{\omega}$ satisfy the conclusion of Lemma 2.3 with $\psi=\psi_{\gamma}^{\prime}$ and let $D=\left\{D_{\beta}\right\}_{\beta \leq \gamma}$. Let $D_{\alpha}^{\prime}=$ range (σ). If $E_{\gamma} \cap D_{\alpha}^{\prime}$ is not dense in ($\omega, \tau_{\alpha}^{\prime}$), let $D_{\alpha}=D_{\alpha}^{\prime}$. Otherwise let $D_{\alpha}=E_{\gamma} \cap D_{\alpha}^{\prime}$. Let $\tau_{\alpha} \supset \tau_{\alpha}^{\prime}$ be a regular dense-in-itself topology of the same weight such that D_{α} is dense open in $\left(\omega, \tau_{\alpha}\right)$. It is easy to verify that (1) -
(6) hold. This completes the inductive construction.

Let $\tau=U\left\{\tau_{\alpha}: \alpha<\underline{c}\right\}$. We claim that (ω, τ) is a regular irresolvable space in which neither o nor P has a winning strategy. Note that all D_{α} 's are dense open in (ω, τ). By (5), every dense subset of (ω, τ) contains some D_{α}; thus (ω, τ) is irresolvable. Clearly, (ω, τ) is regular and dense-in-itself because each $\tau_{\alpha}, \alpha<$ c, is. By Lemma 2.1, $\pi w(w, \tau)=\underline{c}$, so by the Berner-Juhasz result, O has no winning strategy.

Finally, suppose P plays according to a strategy s. Let $D_{\varnothing}=\{s((U\rangle): U \in \tau \backslash\{\varnothing\}\}$. For each $n \in D_{\varnothing}$, pick $U(n)$
such that $s(U(n))=n$; for $\tau \notin D_{\emptyset}$, let $U(n)=\omega$. Now, for each $\mathrm{n} \in \omega$, let

$$
D_{\langle n\rangle}=\{s(\langle U(n), n, U\rangle): U \in \tau \backslash\{\varnothing\}\} .
$$

For each $m \in D_{(n)}$, pick $U(n, m)$ such that $s(\langle U(n), n, U(n, m)))$
$=m$; if $m \notin D_{(n\rangle}$, let $U(n, m)=\omega$. Define

$$
\left.D_{(n, m)}=\{s(U(n), n, U(n, m), m, U)): U \in \tau \backslash\{\varnothing\}\right\} .
$$

Continuing in this way, we define for each $\sigma \in \omega^{<\omega}$ a dense subset D_{σ} of (ω, τ) such that if $\sigma \in \omega^{\omega}$ and $\sigma(n) \in$ $D_{\sigma i n}$ for all n, then O can make P choose range (σ).

The function $\psi: 2^{<\omega} \rightarrow P(\omega)$ defined by $\psi(\sigma)=D_{\sigma}$ is equal to some ψ_{α}. Then $\psi_{\alpha}(\sigma)$ is dense in $\left(\omega, \tau_{\alpha+1}\right)$ for all $\sigma \in 2^{<\omega}$, hence there is some $\sigma \in \omega^{\omega}$ such that $\sigma(n) \in$ $\psi(\sigma \wedge n)$ for all n and $D_{\alpha+1} \subset$ range (σ). So O can make P choose range (σ), and range (σ) is dense in (ω, τ). Thus s is not a winning strategy. Since s was arbitrary, P has no winning strategy.

3. Semi-Selective Filters and Irresolvable Spaces

Our task in this section is to show that the existence of an irresolvable space X for which $G(X)$ is undetermined implies the existence of a semi-selective σ centered filter on ω. In the next section we will discuss models in which no such filters exist.

Let us say that x is strongly irresolvable if every open subspace of X is irresolvable.

Lemma 3.1. If X is irresolvable, then X contains an open strongly irresolvable subset.

Proof. Let U be a maximal disjoint family of open resolvable subsets of x. Then the interior of $x \backslash U u$ is non-empty and strongly irresolvable.

Lemma 3.2. If Y is open in X , and P has a winning strategy in $G(Y)$, then P has a winning strategy in $G(X)$.

Proof. Clear.

Lemma 3.3. If there is an irresolvable space X for which $\mathrm{G}(\mathrm{X})$ is undetermined, then there is one which is strongly irresolvable.

Proof. Let X be irresolvable with $G(X)$ undetermined. Let $Y \subset X$ be open and strongly irresolvable. By Lemma 3.2 P has no winning strategy in Y. By Lemma 2.1, $\pi w(Y)>\omega$, so 0 has no winning strategy either.

Lemma 3.4. If X is regular and $\mathrm{G}(\mathrm{X})$ is undetermined, then $\mathrm{G}(\mathrm{Y})$ is undetermined for any countable dense $\mathrm{Y} \subset \mathrm{X}$.

Proof. Let X satisfy the hypotheses, and let Y be a countable dense subset of X. By regularity $\pi w(Y)=\pi w(X)$. > ω, so 0 has no winning strategy in $G(Y)$. And again one easily sees that P does not have a winning strategy in $G(Y)$ because otherwise P would have one in $G(X)$ as well.

Lemma 3.5. If there is an irresolvable space X with $G(X)$ undetermined, then there is a countable strongly irresolvable such X .

Proof. Let X be irresolvable with $G(X)$ undetermined. By 3.3, we may assume that X is strongly irresolvable.

Let Y be a countable dense subset of X. By 3.4, $G(Y)$ is undetermined. Clearly Y is strongly irresolvable, since Y is dense in a strongly irresolvable space.

Lemma 3.6. Let X be a countable strongiy irresolvable space with $G(X)$ undetermined. Let F be the collection of dense subsets of X . Then F is a o-centered semiselective fitter on the set X.

Proof. If $F \in F$, then $X \backslash F$ is not dense in any open set, i.e., $X \backslash F$ is nowhere dense. Thus F contains the dense open set $X \backslash(\overline{X \backslash F})$. It follows that F is a filter.

Let $F^{+}=\{A: X \backslash A \notin F\}$. Then every $A \in F$ is somewhere dense, hence int $A \neq \varnothing$. For $x \in X$, let $F_{x}^{+}=\left\{A \in F^{+}\right.$: $x \in$ int $A\}$. Then $F^{+}=U_{x \in X} F_{x}^{+}$, so is o-centered.

Finally, to see that F is semi-selective, suppose $F_{n} \in F$ for each $n<\omega$. Consider any strategy for P which picks a point in $\cap_{i \leq n} F_{i}$ on the $n^{\text {th }}$ move. Since the strategy is not winning, there exists $x_{n} \in \cap_{i \leq n} F_{i}$ such that $F=\left\{x_{n}\right\}_{n \in \omega}$ is dense. Then $F \in F$ and $\left|F_{\backslash_{n}}\right| \leq n$ for all n .

Corollary 3.7. If there are no semi-selective ocentered filters on ω, then $G(X)$ is determined for any irresolvable space X.

4. No Semi-Selective Filters

A filter F on ω is said to be rapid if, given any function $f: \omega \rightarrow \omega$, there exist $n(k)>f(k)$ such that $\{n(k): k \in \omega\} \in F . \quad$ It is easy to see that semi-selective
filters are rapid. In the model constructed by R. Laver [Lav76] which demonstrated the consistency of the Borel conjecture, it is known [Mi180] that there are no rapid filters. So in this model, $G(X)$ is determined for any irresolvable space X.
K. Kunen [Kun76] showed that if one adds at least \mathbb{N}_{2} random reals to a model of CH , then there are no semiselective ultrafilters in the resulting model. We show that in fact there are no semi-selective o-centered filters in this model. Since ultrafilters are trivially o-centered, this extends Kunen's result.

It will be convenient to use the following characterization of σ-centered filters.

Lemma 4.1. A filter is o-centered iff there are uZtrafilters $F_{n}, n \in \omega$, such that $F=\cap_{n \in \omega} F_{n}$.

Proof. If $F=\cap_{n} F_{n}$, where each F_{n} is an ultrafilter, then one easily sees that $F^{+}=U_{n} \in_{\omega} F_{n}$; so F is σ-centered.

Conversely, if $F^{+}=U_{n} \in_{\omega} F_{n}$, where each F_{n} is centered, let F_{n}^{\prime} be an ultrafilter containing $F_{n} \cup F_{\text {. }}$ It is easy to check that $F=\cap_{n \in \omega} F_{n}^{\prime}$.

Lemma 4.2. If there are no semi-selective ultrafilters on ω and if $F=\cap_{n \in \omega} F_{n}$ is a semi-selective fizter on w where each F_{n} is an ultrafilter, then every element of $U_{\mathrm{n}} \in_{\omega} F_{\mathrm{n}}$ is in infinitely many of the F_{n} 's.

Proof. Let $A \in F_{k}$ for some $k \in \omega$, and suppose that $H=\left\{n: A \in F_{n}\right\}$ is finite. Since $F A A=\{F \cap A: F \in F\}$ is
semi-selective, it cannot be an ultrafilter. Thus there is an ultrafilter $F^{\prime} \notin\left\{F_{n}\right\}_{n \in H}$ extending F with $A \in F^{\prime}$. There exists $A^{\prime} \subset A$ with $A^{\prime} \in F^{\prime} \backslash U_{n \in H} F_{n}$. Now $A^{\prime} \in F^{+}=$ $U_{n \in \omega} F_{n}$, so A^{\prime}, and hence A, is in some F_{n} with $n \notin H$. This is a contradiction.

Let $V=C H$, let B_{λ} be the product measure algebra on 2^{λ}, and let G be $B_{\omega_{2}}$-generic over V. Suppose that in $\mathrm{V}[G], F$ is a semi-selective σ-centered filter on ω. Then $F=\cap_{n \in \omega} F_{n}$, where each F_{n} is an ultrafilter. Since $B_{\omega_{2}}$ is Ccc and CH holds in V , we can reflect these conditions, as well as the conclusion of Lemma 4.2 , to $V\left[G \mid B_{\lambda}\right]$ for some $\lambda<\omega_{2}$. (See the proof of Corollary 4.4 for more. details).

Proposition 4.3. In V, suppose that $F=\cap_{n \in \omega} F_{n}$ is semi-selective, where each F_{n} is an ultrafilter on ω, and that $A \in F_{k}$ for any $k \in \omega$ implies A is in infinitely many F_{n} 's. Let G be $\mathrm{B}_{\omega_{2}}$-generic over V . Then in $\mathrm{V}[\mathrm{G}]$, there do not exist ultrafilters $\mathrm{F}_{\mathrm{n}}^{*}$ extending F_{n} such that $\cap_{n \in \omega} F_{n}^{*}$ is semi-selective.

Proof. Assume the contrary. Then without loss of generality we may assume that there are $B_{\omega_{2}}$-names \dot{F}_{n}, $n<\omega$, and \dot{F} such that 1 forces

1. \dot{F}_{n} is an ultrafilter extending F_{n};
2. $\dot{F}=\cap_{n} \epsilon_{\omega} \dot{F}_{\mathrm{n}}$ is semi-selective.

Let μ be the product measure on $B_{\omega_{2}}$.

Fact 1. For each $\varepsilon>0$ and $\mathrm{n}<\omega$, there is a $B_{\omega_{2}}$ name $\dot{\mathrm{X}}$ such that

$$
1 \|-n \dot{x} \in \dot{F}_{\mathrm{n}} \text { and } \mu[[\mathrm{m} \in \dot{\mathrm{x}}]]<\varepsilon \text { for all } \mathrm{m} \in \omega " \text {. }
$$

Proof. Let $\varepsilon>0$ and $n<\omega$. Let $\operatorname{Fn}\left(\omega_{2}, 2\right)$ denote the set of all functions from a finite subset of ω_{2} to 2 . If $b \in F n\left(\omega_{2}, 2\right)$, let $[b] \in B_{\omega_{2}}$ denote the equivalence class of $\left\{f \in 2^{\omega} 2: f \partial b\right\}$. Choose $k \in \omega$ such that $1 / 2^{k}<\varepsilon / 2$. Choose disjoint subsets $\{A(m)\}_{m<\omega}$ of ω_{2} with $|A(m)|=k$, and let $\left\{b_{m, i}: i<2^{k}\right\}$ index $2^{A(m)}$. For each $i<2^{k}$, let \dot{x}_{i} be defined by $\left[\left[m \in \dot{x}_{i}\right]\right]=\left[b_{m, i}\right]$, and let $c_{i}=\left[\left[\dot{x}_{i} \in\right.\right.$ $\left.\left.F_{n}\right]\right]$. Since $V\left\{\left[b_{m, i}\right]: i<2^{k}\right\}=1$, it is forced by l that $\cup\left\{\dot{x}_{i}: i<2^{k}\right\}=\omega$. Since $\left\{\left[b_{m, i}\right]\right.$: $\left.i<2^{k}\right\}$ is an antichain, it is forced by l that $\dot{x}_{i} \cap \dot{x}_{j}=\varnothing$ if ifj. Thus, $v_{i<2 k} c_{i}=1$ and $c_{i} \wedge c_{j}=0$ if i $\neq j$.

Let $\varepsilon_{i}=\mu\left(c_{i}\right)$. We claim that there are $M_{i}<\omega$ such that

$$
m>M_{i} \Rightarrow \mu\left(c_{i} \wedge\left[b_{m, i}\right]\right)<\varepsilon_{i} / 2^{k-1} .
$$

To see this choose a finite subset S of $F n\left(\omega_{2}, 2\right)$ such that if $c=U[s]: s \in S\}$, then $\mu\left(c \Delta c_{i}\right)<\frac{\varepsilon_{i}}{2^{k+1}}$. Choose M_{i} such that if $m>M_{i}$, then $\operatorname{dom}\left(b_{m, i}\right) \cap \operatorname{dom}(s)=\emptyset$ for all $s \in S$. Then $\mu\left(\left[b_{m, i}\right] \wedge c\right)=1 / 2^{k} \cdot \mu(c)$. Since $\left[b_{m, i}\right] \wedge c_{i}<$ $\left(\left[b_{m, i}\right] \wedge c\right) \vee\left(c_{i} \wedge c\right)$, it is easy to check that $\mu\left(\left[b_{m, i}\right] \wedge c_{i}\right)<\varepsilon_{i} / 2^{k-1}$.

Now define \dot{x} so that for each $i<2^{k}$ and $m<M_{i}$, $c_{i} \wedge[[m \in \dot{x}]]=0$, and for $m>M_{i}, c_{i} \wedge[[m \in \dot{x}]]=$

$a \wedge\left[\left[b_{m, i}\right]\right]=c_{i} \wedge\left[\left[m \in \dot{x}_{i}\right]\right]$. Then $1 \|-" \dot{X} \in F_{n} "$ since $c_{i} \|-" \dot{X}=\dot{X}_{i} \backslash M_{i} "$. And $m>\max \left\{M_{i}: i<2^{k}\right\}$ implies

$$
\begin{aligned}
{[[m \in \dot{X}]]=} & \vee\left\{c_{i} \wedge b_{m, i}: i<2^{k}\right\}<\sum_{i=0}^{2^{k}-1} \frac{\varepsilon_{i}}{2^{k-1}}= \\
& \frac{1}{2^{k-1}} \sum_{i=0}^{2^{k}-1} \varepsilon_{i}=\frac{1}{2^{k-1}}<\varepsilon .
\end{aligned}
$$

Thus Fact 1 follows.

Fact 2. For each $\varepsilon>0$, there exists a $B_{\omega_{2}}$ name $\dot{\mathrm{X}}$ such that for each $m<\omega, \mu[[m \in \dot{\mathrm{x}}]]<\varepsilon$ and $1 \|-$ " $\dot{\mathrm{X}} \in \mathrm{F}^{\prime}$.

Proof. Let $\varepsilon>0$, and for each $n<\omega$, by Fact 2 choose \dot{X}_{n} such that $l \|-" \dot{X}_{n} \in \dot{F}_{n} "$ and for each $m \in \omega$, $\mu\left[\left[m \in \dot{x}_{n}\right]\right]<\varepsilon / 2^{n+1}$. Let $\dot{\mathrm{X}}$ be such that $1 \|-" \dot{\mathrm{x}}=$ $U_{n \in \omega} \dot{X}_{n} "$. Then $l \|-" \dot{x} \in \cap_{n \in \omega} \dot{F}_{n}=\dot{F} "$, and $[[m \in \dot{X}]]=$ $V_{n \in \omega}\left[\left[m \in \dot{X}_{n}\right]\right], \operatorname{s} \sigma \mu[[m \in \dot{X}]]<\Sigma_{n \in \omega} \varepsilon / 2^{n+1}=\varepsilon$. That completes the proof of Fact 2.

Recall that if F is a filter on ω and $\left\{z_{n}\right\}_{n<\omega}$ is a sequence of numbers, the "F-lim $z_{n}=\ell$ " means that $\left\{n:\left|z_{n}-\ell\right|<\varepsilon\right\} \in \dot{F}$ for each $\varepsilon>0$.

Fact 3. For each $\mathrm{n} \in \omega$, there is a $B_{\omega_{2}}$-name $\dot{\mathrm{X}}_{\mathrm{n}}$ such that
$1 \|-" \dot{X}_{n} \in \dot{F} " \quad$ and $F_{n}-\lim \left\{\mu\left[\left[m \in \dot{X}_{n}\right]\right]\right\}_{m \in}=0$.
Proof. Let us assume without loss of generality
that $n=0$. Choose $I_{1} \in F_{1} \backslash F_{0}$. Let $n_{2}>1$ be the least such that $I_{1} \notin F_{n_{2}}$. Such an n_{2} exists because $w \backslash I_{1}$ must
be in F_{m} for infinitely many $\mathrm{m} \in \omega$. Choose $I_{2} \in F_{n_{2}} \backslash F_{0}$ with $I_{2} \cap I_{1}=\varnothing$. Let $n_{3}>n_{2}$ be least such that $\left(I_{1} \cup I_{2}\right) \notin F_{n_{3}}$, and pick $I_{3} \in F_{n_{3}} \backslash F_{0}$ with $I_{3} \cap\left(I_{1} \cup I_{2}\right)$ $=\varnothing$. Continuing in this manner, we can choose disjoint subsets I_{1}, I_{2}, \ldots of ω such that for each $m>0, i_{k} \in F_{m}$ for some k. Clearly we can also ensure that $\omega=U\left\{I_{k}\right.$: $1 \leq k<\omega\}$.

By Fact 2 , for $k \geq 1$, we can choose \dot{X}_{k} such that $1 \|-" \dot{x}_{k} \in \dot{F}^{\prime \prime}$ and $\mu\left[\left[m \in \dot{X}_{k}\right]\right]<\frac{1}{k}$ for each $m<\omega$. Now define \dot{X}_{0} so that $\left[\left[m \in \dot{X}_{0}\right]\right]=\left[\left[m \in \dot{X}_{k}\right]\right]$ if $m \in I_{k}$.

Clearly $F_{0}-\lim \left\{\mu\left[\left[m \in \dot{x}_{0}\right]\right]_{m \in \omega}=0\right.$, so we need only check that $1 \|-" \dot{x}_{0} \in \dot{F} "$.

Let $0<i<\omega$, and let $k \geq 1$ be such that $I_{k} \in F_{i}$. By definitior: of $\dot{X}_{0}, 1 \|-" \dot{x}_{0} \cap I_{k}=X_{k} \cap I_{k} "$. But $1 \|-" \dot{X}_{k} \in \dot{F}_{i} "$, so $1\|-\| \dot{X}_{0} \cap I_{k} \in \dot{F}_{i} "$. Hence $1 \|-" \dot{x}_{0} \in \cap_{i>0} F_{i} "$. If $b \|-" \dot{x}_{0} \notin \dot{F}_{0} "$, then b\|-" $\omega \backslash \dot{X}_{0} \in \dot{F}_{0} \backslash U_{i>0} \dot{F}_{i} "$, which is a contradiction to Lemmia 4.2. Thus $1 \|-" \dot{X}_{0} \in \dot{F} "$, and the proof of fact 3 is complete.

Now fix a family $\left\{\dot{X}_{n}: n \in \omega\right\}$ as in Fact 3 . Since lll- " \dot{F} is semi-selective", there is a name \dot{X} such that $1 \|-" \dot{x} \in \dot{F}$ and $\left|\dot{x} \backslash \dot{X}_{n}\right|<n$ for all $n \in \omega "$.

Fact 4. For each $n \in \omega, F_{n}-\lim \{\mu[[m \in \dot{x}]]\}_{m \in}=0$.
Proof. Suppose on the contrary that $A \in F_{n}$ and $\mu[[m \in \dot{x}]] \geq \varepsilon$ for all $m \in A$. We may assume $\mu\left[\left[m \in \dot{X}_{n}\right]\right]<$ $\varepsilon / 2$ for each $m \in A$, and hence $\mu\left[\left[m \in \dot{x} \backslash \dot{x}_{n}\right]\right]>\varepsilon / 2$ for each
$m \in A$. But then $b=\wedge_{m \in}\left[\left[m \in \dot{x} \backslash \dot{X}_{n}\right]\right] \neq 0$ for some subset H of ω of size n, whence $b \|-"\left|\dot{x} \dot{x}_{n}\right|>n ", ~ a ~ c o n t r a d i c t i o n . ~$ This completes the proof of Fact 4.

Now we aim for a contradiction that will complete the proof of the Proposition. We know by Fact 4, that for each $k \in \omega$, the set $\left.F_{k}=\{m \in \omega: \mu[m \in \dot{X}]]<1 / 2^{k}\right\}$ is in F. Since F is semi-selective, there is an $F \in F$ such that $\left|F \backslash F_{k}\right|<k$ for all $k \in \omega$. This implies that the series $\sum_{m \in F} \mu[[m \in \dot{x}]]$ converges. Our contradiction will be that lil- $\||\dot{x} \cap F|<\omega "$. Let $b_{k}=[[\dot{x} \cap(F \backslash k) \neq \varnothing]]$. Note that $\mu\left(b_{k}\right)$ decreases to 0 as $k \rightarrow \infty$. Let G be an arbitrary ${ }^{B} \omega_{\omega_{2}}$-generic filter. Since

$$
\left\{b \in B_{\omega_{2}}: \exists n\left(b \wedge b_{n}=0\right)\right\}
$$

is dense, $b_{k} \in G$ for some k, whence $V[G] \vDash \dot{X}_{G} \cap(F \backslash k)=\varnothing$.

Corollary 4.4. If K_{2} random reals are added to a model of CH , then there are no semi-selective o-centered filters in the resulting model.

Proof. Suppose $C H$ holds in V, G is $B_{\omega_{2}}$-generic over V, and in $V[G], F=\cap_{n<\omega} F_{n}$ is semi-selective, where each F_{n} is an ultrafilter. Let \dot{F} and $\dot{F}_{n}, n \in \omega$, be $B_{\omega_{2}}$-names for F and the F_{n} 's.

Each $p \in B_{\omega_{2}}$ is the equivalence class modulo sets of measure 0 of a subset of $2^{\omega_{2}}$ of the form

$$
\left\{x \in 2^{\omega}: X \wedge A \in Y\right\}
$$

for some countable $A \subset \omega_{2}$ and $Y \subset 2^{A}$. For each p, pick some such A with sup A minimal and call it the support of p, denoted $\operatorname{supp}(p)$. For a nice name π of a subset of ω, let

$$
\operatorname{supp}(\pi)=\cup\{\operatorname{supp}(p):(\exists n)((\hat{n}, p) \in \pi)\}
$$

Then $|\operatorname{supp}(\pi)| \leq \omega$.
We may assume that each name \dot{N} for a subset of $P(\omega)$ is a set of pairs of the form (π, p) where π is a nice name for a subset of ω and $p \in B_{\omega_{2}}$. For $\alpha<\omega_{2}$, let

$$
G \wedge \alpha=\{p \in G: \operatorname{supp}(p) \subset \alpha\}
$$

and

$$
\dot{N} \upharpoonright \alpha=\{(\pi, p) \in \dot{N}: \operatorname{supp}(\pi) \cup \operatorname{supp}(p) \subset \alpha\} .
$$

Note that $G \wedge \alpha$ is $B_{\alpha} \rightarrow$ generic over V, and \dot{N} ' α is a B_{α}-name for a subset of $P(\omega)$. (By abuse of notation, we use p and π to denote members of $B_{\omega_{2}}$ and $B_{\omega_{2}}$-names, as well as the corresponding members of B_{α} and B_{α}-names, as long as their supports are contained in α.)

Using the fact that $B_{\omega_{2}}$ is ccc and that $V[G \cap \alpha]=C H$ for each $\alpha<\omega_{2}$, by a standard closing up argument we can find $\lambda<\omega_{2}$ with cofinality ω_{1} such that:

1. for each $n \in \omega$ and $A \in P(\omega) \cap V[G \wedge \lambda]$ (i.e. A has a B_{λ}-name, say π), there is a B_{λ}-name π ' such that

$$
\begin{gathered}
\text { I\|- " } \pi^{\prime} \in F_{n} \text { and either } \pi^{\prime} \subset \pi \text { or } \\
\pi^{\prime} \cap \pi=\varnothing ; "
\end{gathered}
$$

2. for each countable subcollection $\left\{F_{i}\right\}_{i<\omega}$ of $F \cap V[G \vee \lambda]$, there exists $F \in V[G: \lambda]$ such that $\left|F_{i} \backslash F\right| \leq i$ for each i;
3. if $k \in \omega$ and $A \in F_{k} \cap V[G \mid \lambda]$, then $A \in F_{n} \cap$ $\mathrm{V}[\mathrm{G} \upharpoonright \lambda]$ for infinitely many n ;
4. the sequence of names $\left\{\dot{F}_{n}\right\}_{n<\omega}$ is in $V[G i \lambda]$.

From (1) it follows that $F_{n} \cap V[G \mid \lambda]=\left(\dot{F}_{\mathrm{n}} ; \lambda\right)_{G} \in$ $\mathrm{V}[G \vdash \lambda]$ and that $F_{\mathrm{n}} \cap \mathrm{V}[\mathrm{G} \mid \lambda]$ is an ultrafilter. From (2), (3) and (4), it follows that $F \cap V[G: \lambda]=\cap_{n \in \omega} F_{n} \cap$ $\mathrm{V}[\mathrm{G} \mid \lambda]$ is a semi-selective σ-centered filter in $\mathrm{V}[\mathrm{G} \wedge \lambda]$ such that each $A \in F \cap V[G \wedge \lambda]$ is in infinitely many $F_{n} \cap V[G \cap \lambda]$. Thus the conditions of Proposition 4.3 are satisfied with $V=V[G \mid \lambda]$, and we have a contradiction.

References

[BJ84] A. Berner and I. Juhász, Point-picking games and HFD's, Models and Sets, Lecture Notes in Mathematics, 53-66, 1984.
[Juh85] I. Juhasz, On point-picking games, Top. Proc., 103-110, 1985.
[Kun76] K. Kunen, Some points in BN, Math. Proc. Cambridge Phil. Soc., 385-398, 1976.
[Lav76] R. Laver, On the consistency of Borel's Conjecture, Acta Math., 151-169, 1976.
[Mi180] A. W. Miller, There are no Q-points in Laver's Model for the Borel Conjecture, Proc. AMS, l03106, 1980.

York University
North York, Ontario CANADA M3J lP3

Auburn University
Auburn, Alabama 36849

