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A POINT-PICKING GAME AND
 

SEMI-SELECTIVE FILTERS
 

Alan Dow and Gary Gruenhage 

1. Introduction 

A. Berner and I. Juh~sz [BJ84] introduce the follow

ing two person infinite game, G(X), played on a separable
 

space X: at the nth play, 0 picks an open set U C X,

n
 

then P picks a point x E Un. They say 0 wins if piS

n
 

points {x } E are dense in X.
 nnw
 

Clearly 0 has a winning strategy in G(X) if X has a
 

countable TI-base. (Recall that a TI-base for X is a col

lection B of non-empty open subsets of X such that every
 

non-empty open subset of X contains some member of B,
 

and that the TI-weight, TIw(X) , of X is the least cardinal
 

of a TI-base for X.) It is shown in [BJ84] that TIw(X) = w
 

is equivalent to the existence of a winning strategy for
 

o	 in G(X) .
 

The focus of this paper is on the question of the
 

existence of a space X in which G(X) is undetermined, i.e., 

neither player has a winning strategy. It is still an 

open question whether or not such a space exists in ZFC. 

In [BJ84] such a space is constructed from the axiomO, a 

consequence of V = L, and in [JuhaS], Juhasz obtains 

examples from MA(w ) for countable posets. Here we show
l
 

that such a space exists assuming Martin's Axiom for
 

a-centered posets (in particular, the continuum hypothesis) . 
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Next we consider irresolvable spaces, i.e., spaces
 

which do not have disjoint dense subsets. We show that
 

the existence of an irresolvable space X for which G(X)
 

is undetermined implies the existence of a semi-selective
 

a-centered filter on w, the set of natural numbers.
 

(Recall that a filter F on w is semi-seZective if, given 

{F } E C F, there exists F E F with IF\F I < n for all nnw n 

nEw, and that F is a-centered if F+ = {A C w: w\A ~ F} 

can be written as a countable union of subcollections 

each having the finite intersection property.) K. Kunen 

[Kun76] showed that if ~2 or more random reals are added 

to a model of CH, then in the resulting model there are no 

semi-selective ultrafilters. We show that in "the same 

model, there are no semi-selective a-centered filters, 

hence no irresolvable spaces X for which G(X) is undeter

mined. (Note that ultrafilters are a-centered, so our 

result is an extension of Kunen's.) 

Finally we observe that there are also no such 

filters in Laver's model for the Borel conjecture ([Lav76]). 

All of our spaces are assumed to be regular and T
I

. 

2.	 An Undetermined Game 

Assuming MA for a-centered posets, we construct a 

space X for which G(X) is undetermined. Since we consider 

irresolvable spaces in Section 3, we construct our X so 

that it doesn't have disjoint dense subsets. By the next 

lemma, together with the Berner-Juhasz result, it follows
 

that 0 has no winning strategy in G(X).
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Lemma 2.1. (l1A for countable posets). If X is a 
K 

separable space without isolated points and TIw(X) < K, 

then X has disjoint dense subsets. 

Proof. Let B be a n-base for X with IBI ~ K. Let Z 

be a countable dense subset of X. Let the poset P be the 

set of all pairs (Fa ,F l ) E ([zJ<w)2 such that Fa n F = ~.l 

Define (FO,Fi) < (FO,F l ) if Fa :) Fe and Fi :) Fl· Clearly
-

this poset P is countable and a generic filter meeting 

all sets of the form 

DB = {(FO,F l ) E P: B n Fa ~ ~ and B n PI ~ ~} 

for B E B, defines disjoint dense subsets of Z, hence of X. 

The set X will be the set w of natural numbers. The 

topology, T, will be the union of topologies T , a < £' a 

constructed inductively. The next two lemmas will be 

needed to get us from stage a to stage a + 1 in the in

duction. 

Lemma 2.2. (MA for countable posets). Let (X,T)
K 

be a countable regular space of weight at most K with no 

isolated points, and Zet A C X be dense. Then there is a 

finer reguZar topoZogy T' of the same weight on X such 

that (X,T') has no isoZated points and A is open and dense 

in (X, T ' ) • 

Proof. Let (X,T) and ~ C X be as hypothesized. It 

follows easily from Lemma 2.1 that A can be written as a 

disjoint union of countably many dense sets {An}nEw. De

fine f: X ~ w + 1 by f(x) = n if x E An and f(x) = w if 
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x ~ A~ Let ~ = {!x,f(x» }xEX C X x (w + 1). Let IT: i ~ X 

be the projection. It is easy to check that X has no 

isolated points, and IT-I (A) is open and dense in X. Thus 

the lemma follows, with T I being the topology on X in

duced by IT. 

Lemma 2. 3. (MA for a-centered posets). Le t T be a 
K 

dense-in-itself topology on w of weight at most K. Let 

U be a collection of at most K many dense open subsets of 

(W,T). Suppose also that w: w<w 1"+ pew) is such that w(a) 

is dens e for all· a E 2 <w . Then there is some 0 E W
W such 

that 

1. range (0) is dense in (W,T): 

2. range (a) c* U for every U E U; 

3. a(n) E w(a~n) for all nEw. 

Proof· Let B be a base for T of size at most K, and 

let the poset P be the set of all pairs (a , F) satisfying: 

<w1. a E W 

2. j E dom(a) ~ a(j) E 1JJ (ar j ) ; 

3. F E [uJ<w; 

4. B E F ~ B n range (a) ~ ~. 

De fine (a I , F I) < (a, F), if a' ::> a, F' ::> F, and for 

each i E dom(a')\dom(o), we have a' (i) E nF. 

Since any two members of P having the same first 

coordinate are compatible, P is a-centered. For B E B, 

let DB = {(a,F) E P: B n range (a) ~ ~}; for U E U, let 

D {(a,F) E P: U E F}, and for nEw, let D = {(a,F) EU n 

P: n E dom(a)}. These are easily seen to be dense in P. 
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Let G be a filter in P meeting all DB's, outs, and On's. 

Then G defines a function a: w t~ w such that a(n) E ~(a~n) 

for all nEw. Because G meets all DB's, range (a) is 

dense in (W,T). Pick U E U, and let p = (a ,F ) E G with
P P 

U E F. Then for each i > dom(a ), a(i) E U, whence 
p	 p 

range (a) c* u. 

Now we are ready to construct our example. 

Theorem 2.4. (MA for a-centered posets). Thepe is a 

countable irresolvabZe space X such that G(X) is undetep

mined. 

Proof. Let {E } < index P(w), and let {~ } < a a c a a c 
-<w 

index all functions ~: 2 I~ P(w). We inductively define 

regular topologies T , a < £' on w having weight less than a 

_c and sets {D : a < c} C pew) such that, for all B < 8' 
a 

< a, 

1.	 (W,T ') has no isolated points;
S

2.	 TS C TS' and OS' c* OS; 

3.	 OS' is dense in (W,T S'); 

4.	 Os is dense open in (W,T S'); 

5.	 Either ES is not dense in (w,LS+l)' or 0S+1 C ES ; 

6.	 Either ~S(a) is not dense in (w,LS+l) for some 

a E 2<w, or there is some a E WW such that a(n) 

E ~(arn) for all nEw, and 0 + C range (a) •
8 1 

To start, let TO be a metrizable topology on w with 

no i~olated points, and let DO = w. Suppose we have con

structed T
8 

and Os for all 8 < a, where a < c. 
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Case 1. a is a Zimit ordinaZ. 

Let T = U T6 • By Lemma 2.3, there exists D C w 
a 6<0. a 

such that Do. C* Os for all 6 < a and D is dense in 
a. 

(w, Ta.) · It is easy to check that conditions (1) - (6 ) 

are satisfied. 

Case 2. a. = y + 1. 

By Lemma 2.2, there is a topology T' ~ T such that a y 

D is dense open in (O,T~). Define ljJ~: 2<w I~ pew) byy 

setting ~'(a) = ~ (a) if ~ (a) is dense in (W,T~), and y y y ~ 

~'(a) = w otherwise. Let a E WW satisfy the conclusion y 

of Lemma 2.3 with ~ = ~~ and let V = {DS}S~Y. Let O~ 

range (a) • If Ey n D~ is not dense in (W,T~), let 0a. = D~. 

Otherwise let Do. = E n D~. Let Ta. ~ T~ be a regulary 

dense-in-itself topology of the same weight such that Da. 

is dense open in (W,T ). It is easy to verify that (1) o. 

(6) hold. This completes the inductive construction. 

Let T = U{Ta.: a. < £}. We claim that (W,T) is a 

regular irresolvable space in which neither 0 nor P has 

a winning strategy. Note that alIDa'S are dense open in 

(W,T). By (5), every dense subset of (W,T) contains some 

0a.; thus (W,T) is irresolvable. Clearly, (W,T) is regular 

and dense-in-itself because each T , a. < £' is. Bya 

Lemma 2.1, TIW(W,T) = £, so by the Berner-Juh~sz result, 

o has no winning strategy. 

Finally, suppose P plays according to a strategy s. 

Let Og = {s«U»: U E T\{g}}. For each n E 0g' pick U(n) 
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such that s(U(n)) = ni for T ~ D~, let U(n) w. Now, 

for each nEw, let 

o(n) = {s ( U (n) ,n, U) ): U E T \ {~} } • 

For each m E ~~, pick U(n,m) such that s(U(n) ,n,U(n,m)) 

= mi if m ~ D(n> , let U(n,m) = w. Define 

D( n, m> {s (U (n) ,n, U (n, m) ,m, U) ): U E T \ {.0} } • 

Continuing in this way, we define for each 0 E w<w a 

dense subset Do of (W,T) such that if 0 E WW and o(n) E 

Do~n for all n, then 0 can make P choose range (0) • 

2<w 
I~"The function W: P(w) defined by W(o) = Do is 

equal to some W . Then Wa(o) is dense in (w,T + l ) for a a

all 0 E 2<w, hence there is some o E ww such that o(n) E 

w(o~n) for all nand D +1 C range (0) . So 0 can make P a 

choose range(o) , and range(o) is dense in (W,T). Thus s 

is not a winning strategy. Since s was arbitrary, P has 

nb winning strategy. 

3.	 Semi-Selective Filters and Irresolvable Spaces 

Our task in this section is to show that the exis

tence of an irresolvable space X for which G(X) is unde

termined implies the existence of a semi-selective 0

centered filter on w. In the next section we will discuss 

models in which no such filters exist. 

Let us say that X is strongly irresolvable if every 

open subspace of X is irresolvable. 

Lemma 3.1. If X is irresolvable, then X contains an 

open strongly irresolvable subset. 
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Proof. Let U be a maximal disjoint family of open 

resolvable subsets of X. Then the interior of X\UU is 

non-empty and strongly irresolvable. 

Lemma 3.2. If Y is open in X, and P has a winning 

strategy in G(Y)~ then P has a winning strategy in G(X). 

Proof. Clear. 

Lemma 3.3. If there is an irresolvable space X for 

which G(X) is undetermined, then there is one which is 

strongly irresolvable. 

Proof. Let X be irresolvable with G(X) undetermined. 

Let Y C X be open and strongly irresolvable. By Lemma 3.2 

P has no winning strategy in Y. By Lemma 2.1, TIw(Y) > w, 

so 0 has no winning strategy either. 

Lemma 3.4. If X is regular and G(X) is undetermined~ 

then G(Y) is undetermined for any countable dense Y C x. 

Proof. Let X satisfy the hypotheses, and let Y be a 

countable dense subset of X. By regularity TIw(Y) = TIw(X). 

> W, so 0 has no winning strategy in G(Y). And again one 

easily sees that P does not have a winning strategy in 

G(Y) because otherwise P would have one in G(X) as well. 

Lemma 3.5. If there is an irresolvable space X with 

G(X) undetermined, then there is a countable strongly 

irresolvable such x. 

Proof. Let X be irresolvable with G·(X) undetermined. 

By 3.3, we may assume that X is strongly irresolvable. 
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Let Y be a countable dense subset of X. By 3.4, G(Y) is 

undetermined. Clearly Y is strongly irresolvable, since 

Y is dense in a strongly irresolvable space. 

Lemma 3.6. Let X be a countable strongly irresolv

able space with G(X) undetermined. Let F be the colZec

tion of dense subsets of X. Then F is a a-centered semi-

selective filter on the set X. 

Proof. If F E F, then X\F is not dense in any open 

set,	 i.e., X\F is nowhere dense. Thus F contains the 

dense	 open set X\ (X\ F) . It follows that F is a filter. 

Let F+ = {A: X\A ~ F}. Then every A E F is somewhere 
+ 

dense, hence int A ~ ~. For x E X, let F = {A E F+ 
x
 

x F+ F+
E int	 A}. Then so is a-centered.= UxEX x' 
Finally, to see that F is semi-selective, ,suppose 

F E	 F for each n < w. €onsider any strategy for P which n 

picks a point in ni<n Pi on the nth move. Since the 

strategy is not winning, there exists x E ni<n Fi such n 
that F {x } E is dense. Then F E F and IF\~ I < n for nnw n -


all n.
 

Corollary 3.7. If there are no semi-selective a-

centered filters on w, then G(X) is determined for any 

irresolvable space x. 

4.	 No Semi-Selective Filters 

A filter F on w is said to be rapid if, given any 

function f: w ~ w, there exist n(k) > f(k) such that 

{n(k): k E w} E F. It is easy to see that semi-selective 
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filters are rapid. In the model constructed by R. Laver 

[Lav76] which demonstrated the consistency of the Borel 

conjecture, it is known [Mil80] that there are no rapid 

filters. So in this model, G(X) is determined for any 

irresolvable space X. 

K. Kunen [Kun76] showed that if one adds at least ~2 

random reals to a model of CH, then there are no semi-

selective ultrafilters in the resulting model. We show 

that in fact there are no semi-selective a-centered 

filters in this model. Since ultrafilters are trivially 

a-centered, this extends Kunen's result. 

It will be convenient to use the following charac

terization of a-centered filters. 

Lemma 4.1. A filter is a-centered iff there are 

ultrafilters F , nEw, such that F = nnEw F .n n 

Proof. If F = nn F , where each F is an ultran n 

filter, then one easily sees that F+ F ; so F is= UnEw n 

a-centered. 

Conversely, if F+ = U F , where each F isnEw n n 

centered, let F~ be an ultrafilter containing F U F. It n 

is easy to check that F = nnEw F~. 

Lemma 4.2. If there are no semi-selective ultra-

filters on wand if F = nnEw F is a semi-selective filtern 

on w where each F is an ultrafilter, then every element 
n 

F is in infiniteZy many of the Fn's.of unEw n 

Proof. Let A E Fk for some k E w, and suppose that 

H {n: A E F } is finite. Since F~A = {F n A: F E F} is n 
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semi-selective, it cannot be an ultrafilter. Thus there 

is an ultrafilter FI ~ {Fn}nEH extending F with A E Fl. 

There exists AI C A with A' E F 1\ u
nEH Fn· Now AI E F+ 

U F so AI, and hence A, is in some F with n ~ H.nEw n' n 

This is a contradiction. 

Let V F CH, let BA be the product measure algebra on 

2A, and let G be Bw2 -generic over V. Suppose that in 

V[G], F is a semi-selective a-centered filter on w. Then 

F = nnEw F , where each F is an ultrafilter. Since BW2n n 

is ccc and CH holds in V, we can reflect these conditions, 

as well as the conclusion of Lemma 4.2, to V[GIB A] for 

some A < w
2 

• (See the proof of Corollary 4.4 for more· 

details) . 

Proposition 4.3. In V, suppose that F = nnEw F is n 

semi-selective, where each F is an ultrafilter on w, and 
n 

that A E F for any k E w implies A is in' infinitely many
k 

Fn's. Let G be Bw2 -generic over V. Then in V[G], there 

do not exist ultrafilters F~ extending F such that n 

nnEw	 F~ is semi-selective. 

Proof. Assume the contrary. Then without loss of . 
generality we may assume that there are BW2 -narnes F ,

n 

n < w, and F such that 1 forces . 
1.	 F is an ultrafilter extending Fni .n . 
2.	 F = nnEw F is semi-selective. n 

Let ~ be the product measure on Bw • 
2 
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Fact	 1. For each E > 0 and n < w~ there is a BW2 . 
name	 X such that 

1"-"* E ~ n and u[[m EX]] < E for all mEw". 

Proof. Let E > 0 and n < w. Let Fn(w 2 ,2) denote the 

set of all functions from a finite subset of w2 to 2. If 

b E Fn(w ,2) , let [b] E B denote the equivalence class2 w2 

of {f E 2w2: f :J b}. Choose k E w such that 1/2k < E/2. 

Choose disjoint subsets {A(m)}m<w of w2 with IA(m) I k, 

and let {b .: i < 2k } index 2A (m). For each i < 2k , let 
m, l. 

X. be defined by [em E X.]] = [b .], and let c. = [[X. E
l. l. . m,l. l. l. 

F ]]. Since V{[b .]: i < 2k } = 1, it is forced by 1 n m, l. 

that U{X.: i < 2k } = w. Since {[b .]: i < 2k } is an
l. m,l. 

antichain, it is forced by 1 that X.
l. 

n X.
] 

~ if i ~ j. 

Thus,	 Vi <2k c i = 1 and c i A C j = 0 if i ~ j. 

Let E = U(c i ). We claim that there are M < w suchi i 

that 

k-l 
m > M. - U(c; A[b .]) < El../2 • 

~ • m,~ 

To see this choose a finite subset S of Fn(w ,2) such that2
E. 

if c U{[s]: s E S}, then ~(C8C;) < ---~- Choose M such
• 2k+1· i 

that if m > M;, then dom(b .) n domes) = ~ for all s E S.• m,~ 

Then	 l.1([b ,.;] A c) l/2k • l.1(c). Since [b .]" c. < m •	 l.m,~ 

([b	 .] A c) v (c. " c), it is easy to check that 
m,~ ~ 

k-l
1.1([] A < •b . C;) E./2m,l. • ~ 

Now define X so that for each i < 2k and m < Mi , 

C A	 [em EX]] = 0, and for m > Mi , A [em E x]J = i	 C i 
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a /\ [[b .]] = C. /\ [em E X.l' ]]. Then 111- "X E F " sincem,.l .1 n 
kci~- "X = Xi\Mi'~. And m > maX{Mi : i < 2 } implies 

k2 -l E·
.1

[[m EX] ] {c. /\ b i < 2k } < LV .1 m,i · k-li=O 2 

1 
2k-l 1r E. < E.

k-l .1 k-l2 i=O 2 

Thus Fact 1 follows. 

Fact 2. For each E > O~ there exists a B -name X 
w2 

such t hat for e a c h m < w~ II [ [m E X]] < E and 111 - "X E ~". 

Proof. Let E > 0, and for each n < w, by Fact 2 

choose X such that 111- "X E F " and for each mEw,
n n n 

u[[m EX]] < E/2n+ l . Let X be such that 111- "X n 

X " Then 111- "X E nnEw F = F", and [em EX]]UnEw n n 
• • n+lvnew[[m E xn ]], so-u[[m EX]] < LnEW E/2 = E. That 

completes the proof of Fact 2. 

Recall that if F is a filter on wand {z} is a n n<w 

sequence of numbers, the "F-lim zn i" means that 

{n: Iz - i I < E} E 1= for each E > O. n 

Fact 3. For each nEw, there is a B -name X such
w2 n 

that 

111- "X E F" and F -1 im{u [ [m E X ]] }mEw = O. n n n 

Proof· Let us assume without loss of generality 

that n = O. Choose I E Fl \ FO. Let n > 1 be the least
l 2 

such that I ~ F . Such an n exists because w\I must
l 2 ln 2 
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be in F for infinitely many mEw. Choose 1 E F \F 
m 2 n 2 0 

with 1 n II =~. Let n > n be least such that2 3 2 

(I U I ) ~ F , and pick I E F \F with I n (I u I )
1 2 3 o 3 1 2n3 n3 

=~. Continuing in this manner, we can choose disjoint 

subsets II' I ... of w such that for each m > 0, i E F2 , k m 

for some k. Clearly we can also ensure that w = U{Ik : 

1 < k < w}. 

By Fact 2, for k > 1, we can choose Xk such that 

111- "X E F" and jJ [[m E X ] ] < k1 
for each m < w. Nowk k 

define Xo so that [ [m E XO]] [[m E X
k

]] if m E I k · 

Clearly FO-lim{~[[m E 'Xo]]}mEw = 0, so we· need only 

check that 111 - "X0 E F". 
Let 0 < i < w, and let k > 1 be such that I E F .k i 

By definition of XO' 111- "X0 
n I

k = Xk 
n I k " But 

111- "X E F· " , so 111- "X n I E F Hence
k l. 0 k i " 

111- "X " If bll- "X . , then
0 

E ni>O F
1. 0 ~ FO " 

bll- "w\ X E Fo\Ui>o 
. 
F· " , which is a contradiction to

0 l. 

Lemm:a 4.2. Thus 111- "X E 1=" , and the proof of Fact 3
0 

is complete. 

Now fix a family {X : nEw} as in Fact 3. Since n 

111- "1: is semi-selective", there is a name X such that 

111- "X E j: and Ix\ X I < n for all nEw". 
n 

Fact 4. For each nEw, Fn-lim{~[[m E xJ]}mEw = o. 

Proof. Suppose on the contrary that A E F and n 

~[[m E X]] ~ E for all mEA. We may assume ~[[m E X ]] < n 

E/2 for each mEA, and hence ~[[m E x\x ]] > E/2 for each n 
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mEA. But then b = AmEH[[m E X\X ]] ~ 0 for some subset n 

H of w of size n, whence bll- "15<:\x I > nit, a contradiction.
n' 

This completes the proof of Fact 4. 

Now we aim for a contradiction that will complete the 

proof of the Proposition. We know by Fact 4, that for each 

k E w, the set Fk = {m E w: ~[[rn EX]] < 1/2k } is in F. 

Since F is semi-selective, there is an F E F such that 

IF\Fkl < k for all k E w. This implies that the series 

~[[m E X]] converges. Our contradiction will be thatrmEF 

111- "Ix n FI < wIt. Let b = [[x n (F\k) ~ ~]]. Note
k 

that ~(bk) decreases to 0 as k ~ 00. Let G be an arbitrary 

B -generic filter. Since w2 

{b E B 3n (b A b = O)}w n2 

is dense, bk 
E G for some k, whence V[G] F X n (F\ k) ~.G 

Corollary 4.4. If ~2 random reals are added to a 

model of CH, then there are no semi-selective a-centered 

filters in the resulting model. 

Proof· Suppose CH holds in V, G is B -generic over w
2 

V, and in V[G], F = n < F is semi-selective, where each n w n 
F is an ultrafilter. Let F and F , nEw, be B -names 
n n w

2 

for F and the F IS. 
n 

Each p E B is the equivalence class modulo sets of w2 w 
measure 0 of a subset of 2 2 of the form 

w2{x E 2 : x ~A E y} 
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Afor some countable A C w2 and Y C 2. For each p, pick 

some such A with sup A minimal and call it the support of 

p, denoted supp(p). For a nice name TI of a subset of w, 

let 

supp (;r) = U{supp (p): (3n) «n,p) E TI)}. 

Then \supp(;r) I ~ w. 

We may assume that each name N for a subset of P(w) 

is a set of pairs of the form (;r,p) where TI is a nice 

name for a subset of wand p E B • For a < w let
2

,w2 

G ~ a = {p E G: supp{p) C 'a} 

and 

Nr a {(;r,p) E N: supp{;r) U supp(p) C a}. 

Note that G ~ a is B -generic over V, and N ~ a is a a

Ba-name for a subset of P(w). (By abuse of notation, we 

use p and it" to denote members of Band B -names, as w2 w2 

well as the corresponding members of B and Ba-names, as a 

long as their supports are contained in a.) 

Using the fact that ,B is ccc and that V[G ~ a] F CH w2 

for each a < w ' by a standard closing up argument we can2 

find A < w2 with cofinality w such that:l 

1. for each nEw and A E P(w) n V[G ~A] (i.e. A 

has a BA-name, say TI) , there is a BA-name TIt 

such that 

111- "TIt E F and either TIt C it" or n 
TIt n TI = II;" 
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2. for each countable subco11ection {F. }'< of]. ]. W 

F n V[G ~ A], there exists F E V[G ~ A] such that 

IF.\Fj <	 i for each i;
]. 

3. if k E wand A E F n V[G r A], then A E F n
k n 

V[G ~ A] for infinitely many n; 

4. the	 sequence of names {F} is in V[G j. A] . n n<w 

From (1) it follows'that F n V[G r A] = (F ~ A)G E 
n n
 

V[Gr A] and that F n V[G r A] is an ultrafilter. From
 
n
 

(2), (3) and (4), it follows that F n V[G r A] = n E F n
 n w n
 

V[G ~ A] is a semi-selective a-centered filter in V[G.~ A]
 

such that each A E F n V[G ~ A] is in infinitely many 

F n V[G	 ~A]. Thus the conditions of Proposition 4.3 are 
n 

satisfied with V = V[G r A], and we have a contradiction. 
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