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A POINT-PICKING GAME AND
 

SEMI-SELECTIVE FILTERS
 

Alan Dow and Gary Gruenhage 

1. Introduction 

A. Berner and I. Juh~sz [BJ84] introduce the follow­

ing two person infinite game, G(X), played on a separable
 

space X: at the nth play, 0 picks an open set U C X,

n
 

then P picks a point x E Un. They say 0 wins if piS

n
 

points {x } E are dense in X.
 nnw
 

Clearly 0 has a winning strategy in G(X) if X has a
 

countable TI-base. (Recall that a TI-base for X is a col­

lection B of non-empty open subsets of X such that every
 

non-empty open subset of X contains some member of B,
 

and that the TI-weight, TIw(X) , of X is the least cardinal
 

of a TI-base for X.) It is shown in [BJ84] that TIw(X) = w
 

is equivalent to the existence of a winning strategy for
 

o	 in G(X) .
 

The focus of this paper is on the question of the
 

existence of a space X in which G(X) is undetermined, i.e., 

neither player has a winning strategy. It is still an 

open question whether or not such a space exists in ZFC. 

In [BJ84] such a space is constructed from the axiomO, a 

consequence of V = L, and in [JuhaS], Juhasz obtains 

examples from MA(w ) for countable posets. Here we show
l
 

that such a space exists assuming Martin's Axiom for
 

a-centered posets (in particular, the continuum hypothesis) . 
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Next we consider irresolvable spaces, i.e., spaces
 

which do not have disjoint dense subsets. We show that
 

the existence of an irresolvable space X for which G(X)
 

is undetermined implies the existence of a semi-selective
 

a-centered filter on w, the set of natural numbers.
 

(Recall that a filter F on w is semi-seZective if, given 

{F } E C F, there exists F E F with IF\F I < n for all nnw n ­

nEw, and that F is a-centered if F+ = {A C w: w\A ~ F} 

can be written as a countable union of subcollections 

each having the finite intersection property.) K. Kunen 

[Kun76] showed that if ~2 or more random reals are added 

to a model of CH, then in the resulting model there are no 

semi-selective ultrafilters. We show that in "the same 

model, there are no semi-selective a-centered filters, 

hence no irresolvable spaces X for which G(X) is undeter­

mined. (Note that ultrafilters are a-centered, so our 

result is an extension of Kunen's.) 

Finally we observe that there are also no such 

filters in Laver's model for the Borel conjecture ([Lav76]). 

All of our spaces are assumed to be regular and T
I

. 

2.	 An Undetermined Game 

Assuming MA for a-centered posets, we construct a 

space X for which G(X) is undetermined. Since we consider 

irresolvable spaces in Section 3, we construct our X so 

that it doesn't have disjoint dense subsets. By the next 

lemma, together with the Berner-Juhasz result, it follows
 

that 0 has no winning strategy in G(X).
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Lemma 2.1. (l1A for countable posets). If X is a 
K 

separable space without isolated points and TIw(X) < K, 

then X has disjoint dense subsets. 

Proof. Let B be a n-base for X with IBI ~ K. Let Z 

be a countable dense subset of X. Let the poset P be the 

set of all pairs (Fa ,F l ) E ([zJ<w)2 such that Fa n F = ~.l 

Define (FO,Fi) < (FO,F l ) if Fa :) Fe and Fi :) Fl· Clearly
-

this poset P is countable and a generic filter meeting 

all sets of the form 

DB = {(FO,F l ) E P: B n Fa ~ ~ and B n PI ~ ~} 

for B E B, defines disjoint dense subsets of Z, hence of X. 

The set X will be the set w of natural numbers. The 

topology, T, will be the union of topologies T , a < £' a 

constructed inductively. The next two lemmas will be 

needed to get us from stage a to stage a + 1 in the in­

duction. 

Lemma 2.2. (MA for countable posets). Let (X,T)
K 

be a countable regular space of weight at most K with no 

isolated points, and Zet A C X be dense. Then there is a 

finer reguZar topoZogy T' of the same weight on X such 

that (X,T') has no isoZated points and A is open and dense 

in (X, T ' ) • 

Proof. Let (X,T) and ~ C X be as hypothesized. It 

follows easily from Lemma 2.1 that A can be written as a 

disjoint union of countably many dense sets {An}nEw. De­

fine f: X ~ w + 1 by f(x) = n if x E An and f(x) = w if 
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x ~ A~ Let ~ = {!x,f(x» }xEX C X x (w + 1). Let IT: i ~ X 

be the projection. It is easy to check that X has no 

isolated points, and IT-I (A) is open and dense in X. Thus 

the lemma follows, with T I being the topology on X in­

duced by IT. 

Lemma 2. 3. (MA for a-centered posets). Le t T be a 
K 

dense-in-itself topology on w of weight at most K. Let 

U be a collection of at most K many dense open subsets of 

(W,T). Suppose also that w: w<w 1"+ pew) is such that w(a) 

is dens e for all· a E 2 <w . Then there is some 0 E W
W such 

that 

1. range (0) is dense in (W,T): 

2. range (a) c* U for every U E U; 

3. a(n) E w(a~n) for all nEw. 

Proof· Let B be a base for T of size at most K, and 

let the poset P be the set of all pairs (a , F) satisfying: 

<w1. a E W 

2. j E dom(a) ~ a(j) E 1JJ (ar j ) ; 

3. F E [uJ<w; 

4. B E F ~ B n range (a) ~ ~. 

De fine (a I , F I) < (a, F), if a' ::> a, F' ::> F, and for 

each i E dom(a')\dom(o), we have a' (i) E nF. 

Since any two members of P having the same first 

coordinate are compatible, P is a-centered. For B E B, 

let DB = {(a,F) E P: B n range (a) ~ ~}; for U E U, let 

D {(a,F) E P: U E F}, and for nEw, let D = {(a,F) EU n 

P: n E dom(a)}. These are easily seen to be dense in P. 
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Let G be a filter in P meeting all DB's, outs, and On's. 

Then G defines a function a: w t~ w such that a(n) E ~(a~n) 

for all nEw. Because G meets all DB's, range (a) is 

dense in (W,T). Pick U E U, and let p = (a ,F ) E G with
P P 

U E F. Then for each i > dom(a ), a(i) E U, whence 
p	 p 

range (a) c* u. 

Now we are ready to construct our example. 

Theorem 2.4. (MA for a-centered posets). Thepe is a 

countable irresolvabZe space X such that G(X) is undetep­

mined. 

Proof. Let {E } < index P(w), and let {~ } < a a c a a c 
-<w 

index all functions ~: 2 I~ P(w). We inductively define 

regular topologies T , a < £' on w having weight less than a 

_c and sets {D : a < c} C pew) such that, for all B < 8' 
a ­

< a, 

1.	 (W,T ') has no isolated points;
S

2.	 TS C TS' and OS' c* OS; 

3.	 OS' is dense in (W,T S'); 

4.	 Os is dense open in (W,T S'); 

5.	 Either ES is not dense in (w,LS+l)' or 0S+1 C ES ; 

6.	 Either ~S(a) is not dense in (w,LS+l) for some 

a E 2<w, or there is some a E WW such that a(n) 

E ~(arn) for all nEw, and 0 + C range (a) •
8 1 

To start, let TO be a metrizable topology on w with 

no i~olated points, and let DO = w. Suppose we have con­

structed T
8 

and Os for all 8 < a, where a < c. 
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Case 1. a is a Zimit ordinaZ. 

Let T = U T6 • By Lemma 2.3, there exists D C w 
a 6<0. a 

such that Do. C* Os for all 6 < a and D is dense in 
a. 

(w, Ta.) · It is easy to check that conditions (1) - (6 ) 

are satisfied. 

Case 2. a. = y + 1. 

By Lemma 2.2, there is a topology T' ~ T such that a y 

D is dense open in (O,T~). Define ljJ~: 2<w I~ pew) byy 

setting ~'(a) = ~ (a) if ~ (a) is dense in (W,T~), and y y y ~ 

~'(a) = w otherwise. Let a E WW satisfy the conclusion y 

of Lemma 2.3 with ~ = ~~ and let V = {DS}S~Y. Let O~ 

range (a) • If Ey n D~ is not dense in (W,T~), let 0a. = D~. 

Otherwise let Do. = E n D~. Let Ta. ~ T~ be a regulary 

dense-in-itself topology of the same weight such that Da. 

is dense open in (W,T ). It is easy to verify that (1) ­o. 

(6) hold. This completes the inductive construction. 

Let T = U{Ta.: a. < £}. We claim that (W,T) is a 

regular irresolvable space in which neither 0 nor P has 

a winning strategy. Note that alIDa'S are dense open in 

(W,T). By (5), every dense subset of (W,T) contains some 

0a.; thus (W,T) is irresolvable. Clearly, (W,T) is regular 

and dense-in-itself because each T , a. < £' is. Bya 

Lemma 2.1, TIW(W,T) = £, so by the Berner-Juh~sz result, 

o has no winning strategy. 

Finally, suppose P plays according to a strategy s. 

Let Og = {s«U»: U E T\{g}}. For each n E 0g' pick U(n) 
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such that s(U(n)) = ni for T ~ D~, let U(n) w. Now, 

for each nEw, let 

o(n) = {s ( U (n) ,n, U) ): U E T \ {~} } • 

For each m E ~~, pick U(n,m) such that s(U(n) ,n,U(n,m)) 

= mi if m ~ D(n> , let U(n,m) = w. Define 

D( n, m> {s (U (n) ,n, U (n, m) ,m, U) ): U E T \ {.0} } • 

Continuing in this way, we define for each 0 E w<w a 

dense subset Do of (W,T) such that if 0 E WW and o(n) E 

Do~n for all n, then 0 can make P choose range (0) • 

2<w 
I~"The function W: P(w) defined by W(o) = Do is 

equal to some W . Then Wa(o) is dense in (w,T + l ) for a a

all 0 E 2<w, hence there is some o E ww such that o(n) E 

w(o~n) for all nand D +1 C range (0) . So 0 can make P a 

choose range(o) , and range(o) is dense in (W,T). Thus s 

is not a winning strategy. Since s was arbitrary, P has 

nb winning strategy. 

3.	 Semi-Selective Filters and Irresolvable Spaces 

Our task in this section is to show that the exis­

tence of an irresolvable space X for which G(X) is unde­

termined implies the existence of a semi-selective 0­

centered filter on w. In the next section we will discuss 

models in which no such filters exist. 

Let us say that X is strongly irresolvable if every 

open subspace of X is irresolvable. 

Lemma 3.1. If X is irresolvable, then X contains an 

open strongly irresolvable subset. 
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Proof. Let U be a maximal disjoint family of open 

resolvable subsets of X. Then the interior of X\UU is 

non-empty and strongly irresolvable. 

Lemma 3.2. If Y is open in X, and P has a winning 

strategy in G(Y)~ then P has a winning strategy in G(X). 

Proof. Clear. 

Lemma 3.3. If there is an irresolvable space X for 

which G(X) is undetermined, then there is one which is 

strongly irresolvable. 

Proof. Let X be irresolvable with G(X) undetermined. 

Let Y C X be open and strongly irresolvable. By Lemma 3.2 

P has no winning strategy in Y. By Lemma 2.1, TIw(Y) > w, 

so 0 has no winning strategy either. 

Lemma 3.4. If X is regular and G(X) is undetermined~ 

then G(Y) is undetermined for any countable dense Y C x. 

Proof. Let X satisfy the hypotheses, and let Y be a 

countable dense subset of X. By regularity TIw(Y) = TIw(X). 

> W, so 0 has no winning strategy in G(Y). And again one 

easily sees that P does not have a winning strategy in 

G(Y) because otherwise P would have one in G(X) as well. 

Lemma 3.5. If there is an irresolvable space X with 

G(X) undetermined, then there is a countable strongly 

irresolvable such x. 

Proof. Let X be irresolvable with G·(X) undetermined. 

By 3.3, we may assume that X is strongly irresolvable. 
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Let Y be a countable dense subset of X. By 3.4, G(Y) is 

undetermined. Clearly Y is strongly irresolvable, since 

Y is dense in a strongly irresolvable space. 

Lemma 3.6. Let X be a countable strongly irresolv­

able space with G(X) undetermined. Let F be the colZec­

tion of dense subsets of X. Then F is a a-centered semi-

selective filter on the set X. 

Proof. If F E F, then X\F is not dense in any open 

set,	 i.e., X\F is nowhere dense. Thus F contains the 

dense	 open set X\ (X\ F) . It follows that F is a filter. 

Let F+ = {A: X\A ~ F}. Then every A E F is somewhere 
+ 

dense, hence int A ~ ~. For x E X, let F = {A E F+ 
x
 

x F+ F+
E int	 A}. Then so is a-centered.= UxEX x' 
Finally, to see that F is semi-selective, ,suppose 

F E	 F for each n < w. €onsider any strategy for P which n 

picks a point in ni<n Pi on the nth move. Since the 

strategy is not winning, there exists x E ni<n Fi such n 
that F {x } E is dense. Then F E F and IF\~ I < n for nnw n -


all n.
 

Corollary 3.7. If there are no semi-selective a-

centered filters on w, then G(X) is determined for any 

irresolvable space x. 

4.	 No Semi-Selective Filters 

A filter F on w is said to be rapid if, given any 

function f: w ~ w, there exist n(k) > f(k) such that 

{n(k): k E w} E F. It is easy to see that semi-selective 
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filters are rapid. In the model constructed by R. Laver 

[Lav76] which demonstrated the consistency of the Borel 

conjecture, it is known [Mil80] that there are no rapid 

filters. So in this model, G(X) is determined for any 

irresolvable space X. 

K. Kunen [Kun76] showed that if one adds at least ~2 

random reals to a model of CH, then there are no semi-

selective ultrafilters in the resulting model. We show 

that in fact there are no semi-selective a-centered 

filters in this model. Since ultrafilters are trivially 

a-centered, this extends Kunen's result. 

It will be convenient to use the following charac­

terization of a-centered filters. 

Lemma 4.1. A filter is a-centered iff there are 

ultrafilters F , nEw, such that F = nnEw F .n n 

Proof. If F = nn F , where each F is an ultra­n n 

filter, then one easily sees that F+ F ; so F is= UnEw n 

a-centered. 

Conversely, if F+ = U F , where each F isnEw n n 

centered, let F~ be an ultrafilter containing F U F. It n 

is easy to check that F = nnEw F~. 

Lemma 4.2. If there are no semi-selective ultra-

filters on wand if F = nnEw F is a semi-selective filtern 

on w where each F is an ultrafilter, then every element 
n 

F is in infiniteZy many of the Fn's.of unEw n 

Proof. Let A E Fk for some k E w, and suppose that 

H {n: A E F } is finite. Since F~A = {F n A: F E F} is n 
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semi-selective, it cannot be an ultrafilter. Thus there 

is an ultrafilter FI ~ {Fn}nEH extending F with A E Fl. 

There exists AI C A with A' E F 1\ u
nEH Fn· Now AI E F+ 

U F so AI, and hence A, is in some F with n ~ H.nEw n' n 

This is a contradiction. 

Let V F CH, let BA be the product measure algebra on 

2A, and let G be Bw2 -generic over V. Suppose that in 

V[G], F is a semi-selective a-centered filter on w. Then 

F = nnEw F , where each F is an ultrafilter. Since BW2n n 

is ccc and CH holds in V, we can reflect these conditions, 

as well as the conclusion of Lemma 4.2, to V[GIB A] for 

some A < w
2 

• (See the proof of Corollary 4.4 for more· 

details) . 

Proposition 4.3. In V, suppose that F = nnEw F is n 

semi-selective, where each F is an ultrafilter on w, and 
n 

that A E F for any k E w implies A is in' infinitely many
k 

Fn's. Let G be Bw2 -generic over V. Then in V[G], there 

do not exist ultrafilters F~ extending F such that n 

nnEw	 F~ is semi-selective. 

Proof. Assume the contrary. Then without loss of . 
generality we may assume that there are BW2 -narnes F ,

n 

n < w, and F such that 1 forces . 
1.	 F is an ultrafilter extending Fni .n . 
2.	 F = nnEw F is semi-selective. n 

Let ~ be the product measure on Bw • 
2 
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Fact	 1. For each E > 0 and n < w~ there is a BW2 ­. 
name	 X such that 

1"-"* E ~ n and u[[m EX]] < E for all mEw". 

Proof. Let E > 0 and n < w. Let Fn(w 2 ,2) denote the 

set of all functions from a finite subset of w2 to 2. If 

b E Fn(w ,2) , let [b] E B denote the equivalence class2 w2 

of {f E 2w2: f :J b}. Choose k E w such that 1/2k < E/2. 

Choose disjoint subsets {A(m)}m<w of w2 with IA(m) I k, 

and let {b .: i < 2k } index 2A (m). For each i < 2k , let 
m, l. 

X. be defined by [em E X.]] = [b .], and let c. = [[X. E
l. l. . m,l. l. l. 

F ]]. Since V{[b .]: i < 2k } = 1, it is forced by 1 n m, l. 

that U{X.: i < 2k } = w. Since {[b .]: i < 2k } is an
l. m,l. 

antichain, it is forced by 1 that X.
l. 

n X.
] 

~ if i ~ j. 

Thus,	 Vi <2k c i = 1 and c i A C j = 0 if i ~ j. 

Let E = U(c i ). We claim that there are M < w suchi i 

that 

k-l 
m > M. - U(c; A[b .]) < El../2 • 

~ • m,~ 

To see this choose a finite subset S of Fn(w ,2) such that2
E. 

if c U{[s]: s E S}, then ~(C8C;) < ---~- Choose M such
• 2k+1· i 

that if m > M;, then dom(b .) n domes) = ~ for all s E S.• m,~ 

Then	 l.1([b ,.;] A c) l/2k • l.1(c). Since [b .]" c. < m •	 l.m,~ 

([b	 .] A c) v (c. " c), it is easy to check that 
m,~ ~ 

k-l
1.1([] A < •b . C;) E./2m,l. • ~ 

Now define X so that for each i < 2k and m < Mi , 

C A	 [em EX]] = 0, and for m > Mi , A [em E x]J = i	 C i 
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a /\ [[b .]] = C. /\ [em E X.l' ]]. Then 111- "X E F " sincem,.l .1 n 
kci~- "X = Xi\Mi'~. And m > maX{Mi : i < 2 } implies 

k2 -l E·
.1

[[m EX] ] {c. /\ b i < 2k } < LV .1 m,i · k-li=O 2 

1 
2k-l 1r E. < E.

k-l .1 k-l2 i=O 2 

Thus Fact 1 follows. 

Fact 2. For each E > O~ there exists a B -name X 
w2 

such t hat for e a c h m < w~ II [ [m E X]] < E and 111 - "X E ~". 

Proof. Let E > 0, and for each n < w, by Fact 2 

choose X such that 111- "X E F " and for each mEw,
n n n 

u[[m EX]] < E/2n+ l . Let X be such that 111- "X n 

X " Then 111- "X E nnEw F = F", and [em EX]]UnEw n n 
• • n+lvnew[[m E xn ]], so-u[[m EX]] < LnEW E/2 = E. That 

completes the proof of Fact 2. 

Recall that if F is a filter on wand {z} is a n n<w 

sequence of numbers, the "F-lim zn i" means that 

{n: Iz - i I < E} E 1= for each E > O. n 

Fact 3. For each nEw, there is a B -name X such
w2 n 

that 

111- "X E F" and F -1 im{u [ [m E X ]] }mEw = O. n n n 

Proof· Let us assume without loss of generality 

that n = O. Choose I E Fl \ FO. Let n > 1 be the least
l 2 

such that I ~ F . Such an n exists because w\I must
l 2 ln 2 
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be in F for infinitely many mEw. Choose 1 E F \F 
m 2 n 2 0 

with 1 n II =~. Let n > n be least such that2 3 2 

(I U I ) ~ F , and pick I E F \F with I n (I u I )
1 2 3 o 3 1 2n3 n3 

=~. Continuing in this manner, we can choose disjoint 

subsets II' I ... of w such that for each m > 0, i E F2 , k m 

for some k. Clearly we can also ensure that w = U{Ik : 

1 < k < w}. 

By Fact 2, for k > 1, we can choose Xk such that 

111- "X E F" and jJ [[m E X ] ] < k1 
for each m < w. Nowk k 

define Xo so that [ [m E XO]] [[m E X
k

]] if m E I k · 

Clearly FO-lim{~[[m E 'Xo]]}mEw = 0, so we· need only 

check that 111 - "X0 E F". 
Let 0 < i < w, and let k > 1 be such that I E F .k i 

By definition of XO' 111- "X0 
n I

k = Xk 
n I k " But 

111- "X E F· " , so 111- "X n I E F Hence
k l. 0 k i " 

111- "X " If bll- "X . , then
0 

E ni>O F
1. 0 ~ FO " 

bll- "w\ X E Fo\Ui>o 
. 
F· " , which is a contradiction to

0 l. 

Lemm:a 4.2. Thus 111- "X E 1=" , and the proof of Fact 3
0 

is complete. 

Now fix a family {X : nEw} as in Fact 3. Since n 

111- "1: is semi-selective", there is a name X such that 

111- "X E j: and Ix\ X I < n for all nEw". 
n 

Fact 4. For each nEw, Fn-lim{~[[m E xJ]}mEw = o. 

Proof. Suppose on the contrary that A E F and n 

~[[m E X]] ~ E for all mEA. We may assume ~[[m E X ]] < n 

E/2 for each mEA, and hence ~[[m E x\x ]] > E/2 for each n 
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mEA. But then b = AmEH[[m E X\X ]] ~ 0 for some subset n 

H of w of size n, whence bll- "15<:\x I > nit, a contradiction.
n' 

This completes the proof of Fact 4. 

Now we aim for a contradiction that will complete the 

proof of the Proposition. We know by Fact 4, that for each 

k E w, the set Fk = {m E w: ~[[rn EX]] < 1/2k } is in F. 

Since F is semi-selective, there is an F E F such that 

IF\Fkl < k for all k E w. This implies that the series 

~[[m E X]] converges. Our contradiction will be thatrmEF 

111- "Ix n FI < wIt. Let b = [[x n (F\k) ~ ~]]. Note
k 

that ~(bk) decreases to 0 as k ~ 00. Let G be an arbitrary 

B -generic filter. Since w2 

{b E B 3n (b A b = O)}w n2 

is dense, bk 
E G for some k, whence V[G] F X n (F\ k) ~.G 

Corollary 4.4. If ~2 random reals are added to a 

model of CH, then there are no semi-selective a-centered 

filters in the resulting model. 

Proof· Suppose CH holds in V, G is B -generic over w
2 

V, and in V[G], F = n < F is semi-selective, where each n w n 
F is an ultrafilter. Let F and F , nEw, be B -names 
n n w

2 

for F and the F IS. 
n 

Each p E B is the equivalence class modulo sets of w2 w 
measure 0 of a subset of 2 2 of the form 

w2{x E 2 : x ~A E y} 
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Afor some countable A C w2 and Y C 2. For each p, pick 

some such A with sup A minimal and call it the support of 

p, denoted supp(p). For a nice name TI of a subset of w, 

let 

supp (;r) = U{supp (p): (3n) «n,p) E TI)}. 

Then \supp(;r) I ~ w. 

We may assume that each name N for a subset of P(w) 

is a set of pairs of the form (;r,p) where TI is a nice 

name for a subset of wand p E B • For a < w let
2

,w2 

G ~ a = {p E G: supp{p) C 'a} 

and 

Nr a {(;r,p) E N: supp{;r) U supp(p) C a}. 

Note that G ~ a is B -generic over V, and N ~ a is a a

Ba-name for a subset of P(w). (By abuse of notation, we 

use p and it" to denote members of Band B -names, as w2 w2 

well as the corresponding members of B and Ba-names, as a 

long as their supports are contained in a.) 

Using the fact that ,B is ccc and that V[G ~ a] F CH w2 

for each a < w ' by a standard closing up argument we can2 

find A < w2 with cofinality w such that:l 

1. for each nEw and A E P(w) n V[G ~A] (i.e. A 

has a BA-name, say TI) , there is a BA-name TIt 

such that 

111- "TIt E F and either TIt C it" or n 
TIt n TI = II;" 
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2. for each countable subco11ection {F. }'< of]. ]. W 

F n V[G ~ A], there exists F E V[G ~ A] such that 

IF.\Fj <	 i for each i;
]. 

3. if k E wand A E F n V[G r A], then A E F n
k n 

V[G ~ A] for infinitely many n; 

4. the	 sequence of names {F} is in V[G j. A] . n n<w 

From (1) it follows'that F n V[G r A] = (F ~ A)G E 
n n
 

V[Gr A] and that F n V[G r A] is an ultrafilter. From
 
n
 

(2), (3) and (4), it follows that F n V[G r A] = n E F n
 n w n
 

V[G ~ A] is a semi-selective a-centered filter in V[G.~ A]
 

such that each A E F n V[G ~ A] is in infinitely many 

F n V[G	 ~A]. Thus the conditions of Proposition 4.3 are 
n 

satisfied with V = V[G r A], and we have a contradiction. 
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