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EACH MAP FROM THE CANTOR SET TO THE 

PSEUDO-ARC IS NULL PSEUDO-HOMOTOPIC 

Kazuhiro Kawamura 

1.	 Introduction 

A compact connected metric space is called a 

continuum. K. Kuperberg posed a problem whether the 

pseudo-arc is pseudo-contractible (University of Houston 

Problem Book, Problem 31). See below for the definition. 

In connection with this problem, D. Bellamy [lJ construc

ted a map from the Cantor set onto the pseudo-arc which is 

null pseudo-homotopic. He also asked ([lJ, Question 1) 

whether each map from the Cantor set onto the pseudo-arc 

is null pseudo-homotopic. The purpose of this paper is 

to answer the above question in the affirmative. More 

precisely, we show that each map from the Cantor set to 

the pseudo-arc (not necessarily onto) is null pseudo

homotopic. Moreover, the parameter space can be taken
 

to be the pseudo-arc.
 

2. Preliminaries 

Definition 1. Let X and Y be continua and f,g: X ~ Y 

be maps. We say that f and g are pseudo-homotopic if 

there exist a continuum Z, points a,b E Z and a map 

H: X x Z ~ Y such that H.(x,a) = f(x), H(x,b) = g(x) for
 

each x E X. The continuum Z is called the parameter
 

spaoe of a pseudo-homotopy H.
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A map which is pseudo-homotopic to a constant map is 

said to be nuZZ pseudo-homotopic. If idx: X + X is null 

pseudo-homotopic, then we say that X is pseudo-contrac

tibZe. 

Definition 2. 1) Let U = {Ul , ... ,U } be a collec
n 

tion of sets. The collection U is called a chain provided 

Ui n U ~ ~ if and only if ji-j I ~ 1.j 

2) A function f: {I, .•. ,m} + {I, ... ,n} is called a 

pattern if If(i) - f(i+l) ~ 1 for each i = l, ... ,m - 1.r 

3) Let U = {Ul, ... ,U } and V = {Vl, ... ,V } be m n 

chains, and f: {I, .•. ,m} + {I, ... ,n} 'be a pattern. We 

say that U foZZows f in V if U C Vf(i) for eachi 

i = l, ••. ,m. In this case, a function I: U + V is de

fined by £(U. ) We will identify f and I. 
I. 

= Vf(i) · 

4) Let U = {Ul ' · · · , Un} be a chain cover of a con

tinuum. The links U and U are denoted by first U andl n 

last U respectively. For each k ('l~k~n), i(U ) is defined
k 

by Uk - cl (j~k Uj). 

Definition 3. Let X be a continuum. 

1) X is said to be arc- Zi,ke if,. for each £ > 0, there 

exists a chain cover U of X such that mesh U < E. 

2) X is said to be hereditariZy indeaomposabZe if 

no subcontinuum of X can be represented as the union of 

two of its proper subcontinua. 

3) Hereditarily indecomposable arc-like continuum 

is topologically unique ([3] and [6]), which is called 
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the pseudo-arc. Throughout this paper, the pseudo-arc is 

denoted by P. 

4) Let p and q be points of X. X is said to be 

irreducible between p and q, if X contains no proper sub

continuum which contains both of p and q. 

The following theorem is well known and will be used 

for the proof. 

Theorem 4 ([2 Jand [5 J). Let C = {Cl , ... ,Cd be a
 

chain COVEr of P and x E i(C ), y E i(C ). Suppose that
l n
 

P is irreducible between x and y. fhen for each pattern
 

f: {l, ... ,m} -+- {l, •.. ,n} with f(l) = 1 and f{m) = n,
 

there exists a chain cover V = {Dl, .•. ,D } which follows
 rn
 

f in C, and x E i(Dl ), y E i(D ).

rn 

3. The Main Theorem 

Our main theorem is 

Theorem 5. Each map from the Cantor set to the 

pseudo-arc is null pseudo-homotopic. Furthermore, we can 

take the parameter space of the pseudo-homotopy as the 

pseudo-arc. 

In the rest of this paper, C denote the Cantor set. 

The following theorem is the key step. 

Proposition 6. Suppose that a map f: C -+- P satisfies 

the following condition: 
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there exists a point a O E P such that P is irreducibZe 

between a O and y~ for each y E f(C). 

Then f is pseudo-homotopic to a constant map with the 

parameter space P. 

Proof· Suppose that P is irreducible between x ando 
We can take a sequence of open covers ofYO· (Vn)n>O C 

as follows: 

a) Each V is a mutually disjoint clopen cover of C. n
 

b) V + is a refinement of V for each n.
 n 1 n
 

c) mesh V ~ 0 as n ~
 00. n 

Step 1. For each x E C, there exists a chain cover 

V of P such that x
 

1-1) f(x) E i(first V ) and a O E .i (last V ) •
 x x 

1-2) mesh Vx < 1/4 ( [2], [4]) • 

By c) and the continuity of f, we can take an integer 

n(x) > 0 such that 

1-3) f(Vn(x) (x» C i(first V ),x 

where, Vn(x) (x) denotes the unique member of 

Vn(x) which contains x. 

The collection {Vn(x) (x) x E C} forms an open cover of 

C, so we can take finitely many points x1 , ..• ,x E C such r 
r 

that C = U V ( ) (x. ). Define nl as 
i=l n xi ~ 

1- 4) n1 = max {n (xi) I 1 ~ i ~ r}. 

Then noticing b), we have 

11-5) for each D E V , there exists a chain cover Vn D1 

such that f(O) C i(first V~) and a O E i(last V~) 
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For each member D of V , we define a chain cover n l 

U~ of P as follows. 

l
1-6) (The number of links of U ) (The number of

D 

links of V~) 
1 1

1-7) X E i(first UD) and YO E i(last U ).o D

Now we have an open cover D x u~ of D x P, for each 

D E V 
n l 

Step 2. Fix a member D of V • For each x E D
l

,
l n l 

we can take a chain cover V2 of P such that 
x 

2-1) f('x) E i(first V2 ) and a E i(last V2 ) • 
x O x 

2-2) mesh V2 
< 1/8 and V2 is a closure refinement 

x x 

Vl 2
of (that is, for each V E V there existsx'Dl 

U E Vl
D such that cl(V) C U) • 

l 

Again by c), there exists an integer m(x) > 0 such 

that 

2
2-3) f(V ()(x» Ci(first V ).m x x 

The collection {Vm(x) (x) I x E 0l} forms an open cover of 

° so there exist finitely many points Yl, •.. ,Y E D1 , s l 
s

such that 01 U V ( ) (y.).
j=l m Yj J 

Repeating these processes for all members of V ,n l 
we obtain finitely many points YI' •.. 'Y and chain coverst
 

2 2
V , ••• ,V • Define n as
2Yl Yt 

2- 4 ) n 2 = max { m (Y j) I 1 < j < t}. 

Then we have 
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2-5) for each 02 E V , there exists a chain cover n2 

V2 such that f(02) c i(first V2 ) and 
O2 o~ 

a O E i(last V; ).

2
 

Next, we define a pattern as follows. For each 

D2 E V ,take the unique 01 E V which contains 02. n2 nl 

Then by the ch~ice of V; 
2 

(2-2) ,5)), V
D

2 
2 

is a closure 

1refinement of V . So we can find a patterno
1 

f O 0 : V + V such thato2 1 2 °1
 

f D2Dl (first V; ) first Vl and

02 1 

1f D2Dl (last V; ) = last V . (Recall the remarko2 1 

in Oefinition 2). 

Applying Theorem 4, there exists a chain cover U2 of P 
°2 

such that 

U2 12-6) follows f D in · o UDD2 2 1 1 

2-7) x E i(first U~ ) and E i(last U2 ).o YO D2 2 

Now, we have a covering D2 
x Un2 of D 2 x P, for each 

2 

D2 E V n2 

Step 3. Continuing these processes, we obtain a 

subsequence (nk)k>l satisfying the following conditions. 

3-1) Xo E i(;irst u~ ) and YO E i(last u~ ). 
k k 

3-2) f(Dk ) C i(first V~ ) and a O E i(last V~ ). 
k k 
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3-3) For each Ok ~ Dk+l (D E On ' a = k,k+l),a a 
lthere exists a pattern f D D such that Uk+

k+l k Dk+l 
(Vk +l resp.) follows f D in uk (Vk resp.),o o o°k+l k+l k k k 

. k+l k3-4) f (f1rst UD ) = first UD ' and
 
Dk+lDk k+l k
 

k+l k
f (last UD ) = last U · DDk+lDk k+l	 k 
k l kThe same conditions hold for V + and ·VDDk+l k 

3-5) mesh Vk < 1/2k+l for each k > 1.Dk 

There are then more and more chains, both V's and 

U's at each stage than there were before. Each chain at 

the k-level has several different refining chains at 

(k+l)-level. 

Finally, we define H: C x P + P as follows. For 

each x E C, there exists the unique sequence Dl(X) ~ D2 (X) 

~ with Dk(X) E V such that {x} = k~lDk(x). nk 
k

Then we have two sequences {UOk(X}}k>l and 

{V~k(X}}k~l of chain covers of P. By the standard method 

of constructing a map between the pseudo-arcs, we have a 

map Hlx x P: x x P + P such that 

3-6) H(x x U~k(i)} c st{V~k(X) (i), V~k(X» for each 

U~k (x) (i) E U~k (x) · 

Notice the following. 

3-7) If x,y E D E V , then Ui Ui andk nk Di (x) D (y)i 
Vi Vi for each i = 1, ... ,k.D (x) Di(y)i 
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Using this fact, it is easy to see that the map H defined 

as above is continuous and H(X,X ) = f(x), H(X,yO) = a OO


for each x E e. This completes the proof.
 

Proof of Theorem 5. 

Let f: e ~ P be a map. Take a nondegenerate proper 

subcontinuum Q of P. By [3J, Q is a retract of P. Fix a 

retraction r: P ~ Q and a homeomorphism h: P ~ Q. Fix a 

point a O of P which lies in a different composant from Q. 

Applying Proposition 6 to h 0 f: e ~ Q and aO' we have a 

map H: e x P ~ P and points Xo and Yo E P such that 

Hje x X h 0 f and Hie x Yo a O• Define F: e x P ~ P o
 
as F = h-1 r H. Then Fie x X f and Fie x y =
0 0 o	 0 
-1h (a ). This c"ompletes the proof of Theorem 5.

O

Corollary 7. Any Cantor set in the pseudo-arc P is 

pseudo-contractible in P. 
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