TOPOLOGY
PROCEEDINGS

Volume 14, 1989
Pages 239-247

http://topology.auburn.edu/tp/

EACH MAP FROM THE CANTOR SET TO
THE PSEUDO-ARC IS NULL
PSEUDO-HOMOTOPIC

by

KAZUHIRO KAWAMURA

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@Qauburn.edu
ISSN: 0146-4124

COPYRIGHT (© by Topology Proceedings. All rights reserved.



TOPOLOGY PROCEEDINGS Volume 14 1989 239

EACH MAP FROM THE CANTOR SET TO THE
PSEUDO-ARC IS NULL PSEUDO-HOMOTOPIC

Kazuhiro Kawamura

1. Introduction
A compact connected metric space is called a

continuum. K. Kuperberg posed a problem whether the
pseudo-arc is pseudo-contractible (University of Houston
Problem Book, Problem 31). See below for the definition.
In connection with this problem, D. Bellamy [l1] construc-
ted a map from the Cantor set onto the pseudo-arc which is
null pseudo-homotopic. He also asked ([l], Question 1)
whether each map from the Cantor set onto the pseudo-arc
is null pseudo-homotopic. The purpose of this paper is
to answer the above question in the affirmative. More
precisely, we show that each map from the Cantor set to
the pseudo-arc (not necessarily onto) is null pseudo-
homotopic. Moreover, the parameter space can be taken

to be the pseudo-arc.

2. Preliminaries

Definition 1. Let X and Y be continua and f,g: X +~ Y
be maps. We say that f and g are pseudo-homotopic if
there exist a continuum Z, points a,b € Z and a map
H: ¥ x 2 + Y such that H(x,a) = £(x), H(x,b) = g(x) for
each x € X. The continuum Z is called the parameter

space of a pseudo-homotopy H.
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A map which is pseudo-homotopic to a constant map is
said to be null pseudo-homotopie. If idy: X » X is null
pseudo-homotopic, then we say that X is pseudo-contrac-

tible.

Definition 2. 1) Let U = {Ul,...,Un} be a collec-
tion of sets. The collection U is called a chain provided

Uy N U # g if and only if ji-j| < 1.

2) A function f: (1,...,m} - {1,...,n} is called a
pattern if |[f(i) - £(i+l)]| < 1 for each i = 1,...,m - 1.
3) Let U = {Ul,...,Um} and V = {Vl,...,Vn} be

chains, and f: {1,...,m} > {1,...,n} be a pattern. We

say that U follows f in V if Ui cv for each

£(i)
i=1,,..,m, In this case, a function £: U + UV is de-

fined by f(Ui) = Vg We will identify f and F.

(i)°

4) Let U = {U ,Un} be a chain cover of a con-

17

tinuum. The links Ul and Un are denoted by first U and

last U respectively. For each k (l<k<n), i(Uk) is defined

b - . ).
y Uk cl (j;& Uj)

Definition 3. Let X be a continuum.

1) X is said to be arc-like if, for each ¢ > 0, there
exists a chain cover U of X such that mesh U < ¢,

2) X is said to be hereditarily indecomposable if
no subcontinuum of X can be represented as the union of
two of its proper subcontinua.

3) Hereditarily indecomposable arc-like continuum

is topologically unique ([3] and [6]), which is called
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the pseudo-arce. Throughout this paper, the pseudo-arc is
denoted by P.

4) Let p and g be points of X. X is said to be
irreducible between p and g, if X contains no proper sub-

continuum which contains both of p and qg.

The following theorem is well known and will be used

for the proof.

Theorem 4 ([2] and [5]). Let C = {Cl""’CJ be a
chain cover of P and x € i(Cl), y € i(Cn). Suppose that
P is irreducible between x and y. Then for each pattern
£: {1,...,m} > {1,...,n} with £(1) = 1 and £{m) = n,
there exists a chain cover D = {Dl,...,Dm} which follows

fin C, and x € l(Dl): y € l(Dm).

3. The Main Theorem

Our main theorem is

Theorem 5. Each map from the Cantor set to the
pseudo-arc is null pseudo-homotopiec. Furthermore, we can

take the parameter space of the pseudo-homotopy as the

pseudo-arec.

In the rest of this paper, C denote the Cantor set.

The following theorem is the key step.

Proposition 6. Suppose that a map f: C + P satisfies

the following condition:
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there exists a point a, € P such that P is irreducible
between a, and y, for each y € £(C).
Then f is pseudo-homotopic to a constant map with the
parameter space P.
Proof. Suppose that P is irreducible between x0 and
Yge We can take a sequence (Dn)nio of open covers of C
as follows:
a) Each Dn is a mutually disjoint clopen cover of C.

b) D is a refinement of Dn for each n.

n+l
c) mesh Dn + 0 as n » »,

Step 1. For each x € C, there exists a chain cover
V. of P such that

1-1) f(x) € i(first Vx) and a, € i(last Vx).

0
1-2) mesh v, < 1/4 ([2], (4D .

By c) and the continuity of £, we can take an integer
n{(x) > 0 such that

1-3) f(Dn( (x)) C i(first Vx),

x}
where, Dn(x)(x) denotes the unique member of

Dn(x) which contains x.

The collection {Dn(x)(x) | x € C} forms an open cover of
C, so we can take finitely many points KyreserXy € C such

r
that ¢ = U 7D
n

i1 (xi). Define n, as

(x;)
1-4) n; = max {n(x;) | 1 <i <rl}.

Then noticing b), we have

1-5) for each D € Dn , there exists a chain cover V
1

such that £(D) C i(first vé) and a

Or O+

€ i(last V)

0
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For each member D of Dn , we define a chain cover
1
1

UD of P as follows.

1-6) (The number of links of Ué) = (The number of
links of vé)

1-7) x, € i(first UZ) and y, € i(last u7).

0

Now we have an open cover D x ué of D x P, for each

D € Dn .
1

Step 2. Fix a member D, of Dn . For each x € D,

1 1

we can take a chain cover Vi of P such that

1

2-1) £(x) € i(first V2) and a, € i(last vi).

0
2-2) mesh Vi < 1/8 and Vi is a closure refinement
of Vél (that is, for each V € Vi, there exists

U € vé such that cl(v) C u).
1

Again by c), there exists an integer m(x) > 0 such

that
s e 2
2-3) f(Dm(x)(x)) C i(first Vx).
The collection {Dm(x)(x) | x € Dl} forms an open cover of
Dl’ so there exist finitely many points Yyreeer¥g € Dl
_ s
such that D, = .91 Dm(y.)(yj)'
J= J
Repeating these processes for all members of Dn '
1
we obtain finitely many points Yyreeer¥y and chain covers
V2 ,...,V2 . Define n., as
Y1 Ye 2
2-4) n, = max {m(yj) | 1 <3 <t}

Then we have
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2-5) for each D, € Dn , there exists a chain cover

2 2
V2 such that £(D.) C i(first V) and
D2 2 D2
a. €i(last V2 ).
0 D,

Next, we define a pattern as follows. For each

e , . .
D, Dnz, take the unique D, € Dnl which contains D2.
Then by the choice of V; (2-2),5)), V; is a closure
2 2
refinement of Vé . So we can find a pattern
1
f ) -V such that
DPy” By D
fD D, (first V2 ) = first Vl and
2°1 D D
2 1
f 2 1
D,D, (last V- ) = last V_ . (Recall the remark
271 D, D,

in Definition 2).

Applying Theorem 4, there exists a chain cover ug of P

2
such that
2 : 1
2-6) UD follows fD p. in UD .
2 271 1 :
2-7) x, € i(first U2 ) and y, € i(last U2 ).
/ 0 D2 0 D2
Now, we have a covering D2 x Ug of D2 x P, for each
2
D2 € Dnz.

Step 3. Continuing these processes, we obtain a

subsequence (nk)k>l satisfying the following conditions.
€ i(first UX ) and y. € i(last UX ).
Dk 0 Dk

€ i(last V

3-1) X,

).

3-2) £(D,) C i(first v® ) and a
K

k
Dk D

0
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3-3) For each Dk i) Dk+l (Da € Dna, o = k,k+1)},
. k+1
there exists a pattern fD D such that uD
k+17k k+1
(v}];+l resp.) follows £, _ in ug (vls resp.).
k+1 k+17k k k
3-4) £, o (first W™t ) = first (5, ana
k+17k k+1 k
fD D (last Ug+l ) = last Ug .
k+17k k+1 k
C s k+1 Xk
The same conditions hold for VD and VD
k+1 k
3-5) mesh Vg < l/2k+l for each k > 1.

k
There are then more and more chains, both V's and

U's at each stage than there were before. Each chain at
the k-level has several different refining chains at
(k+1l)-level.

Finally, we define H: C x P - P as follows. For
each x € C, there exists the unique sequence Dl(x) > Dz(x)

D ... with Dk(x) € an such that {x} = kngk(x).

Then we have two seguences {Ug and

}
k (X) "k>1

k

{v (x)}kil of chain covers of P. By the standard method

k
of constructing a map between the pseudo-arcs, we have a

map H|x x P: x x P +» P such that

k . k . Xk
3-6) H(x x UD (i)) < st(VD (x)(l), VD (x)) for each
k k k
k s k
u (i) € U .
Dy (x) Dy (x)
Notice the following.
- [ i = i
3-7) If x,y Dy € an, then uDi(x) UDi(y) and

Vi = pi
D; (x) D, (v)

for each i = 1,...,k.
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Using this fact, it is easy to see that the map H defined

as above is continuous and H(x,xo) = f(x), H(x,yo) = a,

for each x € C. This completes the proof.

Proof of Theorem 5.

Let f: C - P be a map. Take a nondegenerate proper
subcontinuum Q of P. By [3], Q is a retract of P. Fix a
retraction r: P + Q and a homeomorphism h: P » Q. Fix a
point a, of P which lies in a different composant from Q.

Applying Proposition 6 to h o £f: C » Q and a we have a

OI

map H: C x P - P and points x, and Yo € P such that

0
HIC x xy =h o f and H|C x y, = a,. Define F: C x P » P
as F=h"t o r o H. Then F|C x x, = f and F|C x y, =

h-l

(a,). This completes the proof of Theorem 5.

0

Corollary 7. Any Cantor set in the pseudo-arec P is

pseudo-contractible in P.
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