TOPOLOGY PROCEEDINGS

Volume 14, 1989

Pages 239-247

http://topology.auburn.edu/tp/

EACH MAP FROM THE CANTOR SET TO THE PSEUDO-ARC IS NULL PSEUDO-HOMOTOPIC

by Kazuhiro Kawamura

${\bf Topology\ Proceedings}$

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

EACH MAP FROM THE CANTOR SET TO THE PSEUDO-ARC IS NULL PSEUDO-HOMOTOPIC

Kazuhiro Kawamura

1. Introduction

A compact connected metric space is called a continuum. K. Kuperberg posed a problem whether the pseudo-arc is pseudo-contractible (University of Houston Problem Book, Problem 31). See below for the definition. In connection with this problem, D. Bellamy [1] constructed a map from the Cantor set onto the pseudo-arc which is null pseudo-homotopic. He also asked ([1], Question 1) whether each map from the Cantor set onto the pseudo-arc is null pseudo-homotopic. The purpose of this paper is to answer the above question in the affirmative. More precisely, we show that each map from the Cantor set to the pseudo-arc (not necessarily onto) is null pseudohomotopic. Moreover, the parameter space can be taken to be the pseudo-arc.

2. Preliminaries

Definition 1. Let X and Y be continua and $f,g: X \rightarrow Y$ be maps. We say that f and g are pseudo-homotopic if there exist a continuum Z, points a,b ∈ Z and a map H: $X \times Z + Y$ such that H(x,a) = f(x), H(x,b) = g(x) for each $x \in X$. The continuum Z is called the parameter space of a pseudo-homotopy H.

A map which is pseudo-homotopic to a constant map is said to be $null\ pseudo-homotopic$. If $id_X\colon X\to X$ is null pseudo-homotopic, then we say that X is pseudo-contrac-tible.

Definition 2. 1) Let $U = \{U_1, \ldots, U_n\}$ be a collection of sets. The collection U is called a *chain* provided $U_i \cap U_j \neq \emptyset$ if and only if $|i-j| \leq 1$.

- 2) A function $f: \{1, ..., m\} \rightarrow \{1, ..., n\}$ is called a pattern if $|f(i) f(i+1)| \le 1$ for each i = 1, ..., m-1.
- 3) Let $\mathcal{U} = \{ \mathbf{U}_1, \dots, \mathbf{U}_m \}$ and $\mathcal{V} = \{ \mathbf{V}_1, \dots, \mathbf{V}_n \}$ be chains, and $\mathbf{f} \colon \{1, \dots, m\} \to \{1, \dots, n\}$ be a pattern. We say that \mathcal{U} follows \mathbf{f} in \mathcal{V} if $\mathbf{U}_i \subset \mathbf{V}_{\mathbf{f}(i)}$ for each $i = 1, \dots, m$. In this case, a function $\overline{\mathbf{f}} \colon \mathcal{U} + \mathcal{V}$ is defined by $\overline{\mathbf{f}}(\mathbf{U}_i) = \mathbf{V}_{\mathbf{f}(i)}$. We will identify \mathbf{f} and $\overline{\mathbf{f}}$.
- 4) Let $U = \{U_1, \ldots, U_n\}$ be a chain cover of a continuum. The links U_1 and U_n are denoted by first U and last U respectively. For each k $(1 \le k \le n)$, $i(U_k)$ is defined by $U_k c1$ $(i \ne k \ U_i)$.

Definition 3. Let X be a continuum.

- 1) X is said to be arc-like if, for each ϵ > 0, there exists a chain cover U of X such that mesh U < ϵ .
- 2) X is said to be hereditarily indecomposable if no subcontinuum of X can be represented as the union of two of its proper subcontinua.
- 3) Hereditarily indecomposable arc-like continuum is topologically unique ([3] and [6]), which is called

the pseudo-arc. Throughout this paper, the pseudo-arc is denoted by P.

4) Let p and q be points of X. X is said to be irreducible between p and q, if X contains no proper subcontinuum which contains both of p and q.

The following theorem is well known and will be used for the proof.

Theorem 4 ([2] and [5]). Let $C = \{C_1, \ldots, C_n\}$ be a chain cover of P and $x \in i(C_1)$, $y \in i(C_n)$. Suppose that P is irreducible between x and y. Then for each pattern $f \colon \{1, \ldots, m\} \to \{1, \ldots, n\}$ with f(1) = 1 and f(m) = n, there exists a chain cover $\mathcal{D} = \{D_1, \ldots, D_m\}$ which follows f in C, and $x \in i(D_1)$, $y \in i(D_m)$.

3. The Main Theorem

Our main theorem is

Theorem 5. Each map from the Cantor set to the pseudo-arc is null pseudo-homotopic. Furthermore, we can take the parameter space of the pseudo-homotopy as the pseudo-arc.

In the rest of this paper, C denote the Cantor set.

The following theorem is the key step.

Proposition 6. Suppose that a map $f: C \rightarrow P$ satisfies the following condition:

there exists a point $a_0 \in P$ such that P is irreducible between a_0 and Y, for each Y \in f(C).

Then f is pseudo-homotopic to a constant map with the parameter space P.

 $\textit{Proof.} \quad \text{Suppose that P is irreducible between } \mathbf{x}_0 \text{ and} \\ \mathbf{y}_0. \quad \text{We can take a sequence } (\mathcal{D}_n)_{n \geq 0} \text{ of open covers of C} \\ \text{as follows:} \\$

- a) Each \mathcal{D}_n is a mutually disjoint clopen cover of C.
- b) v_{n+1} is a refinement of v_n for each n.
- c) mesh $\mathcal{D}_n \to 0$ as $n \to \infty$.

Step 1. For each $x \in C$, there exists a chain cover $V_{\mathbf{v}}$ of P such that

- 1-1) $f(x) \in i(first V_x)$ and $a_0 \in i(last V_x)$.
- 1-2) mesh $V_{x} < 1/4 ([2], [4])$.

By c) and the continuity of f, we can take an integer n(x) > 0 such that

1-3) $f(\mathcal{D}_{n(x)}(x)) \subset i(\text{first } V_x),$ where, $\mathcal{D}_{n(x)}(x)$ denotes the unique member of $\mathcal{D}_{n(x)}$ which contains x.

The collection $\{p_{n(x)}(x) \mid x \in C\}$ forms an open cover of C, so we can take finitely many points $x_1, \dots, x_r \in C$ such that $C = \bigcup_{i=1}^r p_{n(x_i)}(x_i)$. Define n_1 as

1-4) $n_1 = \max \{n(x_i) \mid 1 \le i \le r\}.$

Then noticing b), we have

1-5) for each D $\in \mathcal{V}_{n_1}$, there exists a chain cover V_D^1 such that $f(D) \subset i(first \ V_D^1)$ and $a_0 \in i(last \ V_D^1)$

For each member D of \mathcal{D}_{n_1} , we define a chain cover $u_{\rm p}^{\rm l}$ of P as follows.

- 1-6) (The number of links of $u_{\rm D}^1$) = (The number of links of $V_{\rm p}^{\rm l}$)
- 1-7) $x_0 \in i(\text{first } u_D^1) \text{ and } y_0 \in i(\text{last } u_D^1).$ Now we have an open cover $D \times U_D^1$ of $D \times P$, for each $D \in v_{n_1}$.

Step 2. Fix a member D_1 of D_n . For each $x \in D_1$, we can take a chain cover $V_{\mathbf{v}}^2$ of P such that

- 2-1) $f(x) \in i(first V_x^2)$ and $a_0 \in i(last V_x^2)$.
- 2-2) mesh $V_x^2 < 1/8$ and V_x^2 is a closure refinement of $V_{D_1}^1$ (that is, for each $V \in V_{\mathbf{x}}^2$, there exists $U \in V_{D_1}^1$ such that $cl(V) \subseteq U$).

Again by c), there exists an integer m(x) > 0 such that

2-3) $f(\mathcal{D}_{m(x)}(x)) \subset i(\text{first } V_x^2)$.

The collection $\{\mathcal{D}_{m(\mathbf{x})}(\mathbf{x}) \mid \mathbf{x} \in \mathbf{D}_1\}$ forms an open cover of D_1 , so there exist finitely many points $y_1, \dots, y_s \in D_1$ such that $D_1 = \bigcup_{j=1}^{S} \mathcal{D}_{m(y_j)}(y_j)$.

Repeating these processes for all members of $\boldsymbol{\mathcal{D}}_{n}$, we obtain finitely many points y_1, \ldots, y_+ and chain covers v_y^2, \dots, v_y^2 . Define n_2 as

2-4) $n_2 = \max \{m(y_i) \mid 1 \le j \le t\}.$

Then we have

2-5) for each $D_2 \in \mathcal{D}_{n_2}$, there exists a chain cover $V_{D_2}^2$ such that $f(D_2) \subseteq i(\text{first } V_{D_2}^2)$ and $a_0 \in i(\text{last } V_{D_2}^2)$.

Next, we define a pattern as follows. For each $\mathbf{D}_2 \in \mathcal{D}_{\mathbf{D}_2}$, take the unique $\mathbf{D}_1 \in \mathcal{D}_{\mathbf{D}_1}$ which contains \mathbf{D}_2 . Then by the choice of $V_{\mathbf{D}_2}^2$ (2-2),5)), $V_{\mathbf{D}_2}^2$ is a closure refinement of $V_{\mathbf{D}_1}^1$. So we can find a pattern $\mathbf{f}_{\mathbf{D}_2\mathbf{D}_1} \colon V_{\mathbf{D}_2} \to V_{\mathbf{D}_1} \text{ such that}$ $\mathbf{f}_{\mathbf{D}_2\mathbf{D}_1} (\text{first } V_{\mathbf{D}_2}^2) = \text{first } V_{\mathbf{D}_1}^1 \text{ and}$ $\mathbf{f}_{\mathbf{D}_2\mathbf{D}_1} (\text{last } V_{\mathbf{D}_2}^2) = \text{last } V_{\mathbf{D}_1}^1. \text{ (Recall the remark)}$

Applying Theorem 4, there exists a chain cover $u_{\mathrm{D}_2}^2$ of P such that

2-6) $u_{D_2}^2$ follows $f_{D_2D_1}$ in $u_{D_1}^1$.

in Definition 2).

2-7) $x_0 \in i(first u_{D_2}^2)$ and $y_0 \in i(last u_{D_2}^2)$.

Now, we have a covering $\mathbf{D_2}\times\mathbf{U}_{\mathbf{D_2}}^2$ of $\mathbf{D_2}\times\mathbf{P},$ for each $\mathbf{D_2}\in\mathcal{D}_{\mathbf{n_2}}$.

Step 3. Continuing these processes, we obtain a subsequence $(n_k)_{k>1}$ satisfying the following conditions.

3-1)
$$x_0 \in i(first \ u_{D_k}^k)$$
 and $y_0 \in i(last \ u_{D_k}^k)$.

3-2)
$$f(D_k) \subseteq i(first \ V_{D_k}^k)$$
 and $a_0 \in i(last \ V_{D_k}^k)$.

3-3) For each $D_k \supset D_{k+1}$ ($D_\alpha \in \mathcal{D}_{n_\alpha}$, $\alpha = k, k+1$), there exists a pattern $f_{D_{k+1}D_k}$ such that $u_{D_{k+1}}^{k+1}$ ($V_{D_{k+1}}^{k+1}$ resp.) follows $f_{D_{k+1}D_k}$ in $u_{D_k}^k$ ($V_{D_k}^k$ resp.).

3-4) $f_{D_{k+1}D_k}$ (first $u_{D_{k+1}}^{k+1}$) = first $u_{D_k}^k$, and $f_{D_{k+1}D_k}$ (last $u_{D_{k+1}}^{k+1}$) = last $u_{D_k}^k$.

The same conditions hold for $V_{D_k}^{k+1}$ and $V_{D_k}^k$.

3-5) mesh $V_{D_k}^k < 1/2^{k+1}$ for each $k \ge 1$.

There are then more and more chains, both V's and U's at each stage than there were before. Each chain at the k-level has several different refining chains at (k+1)-level.

Finally, we define H: C × P + P as follows. For each x \in C, there exists the unique sequence $D_1(x) \supset D_2(x)$ \supset ... with $D_k(x) \in \mathcal{D}_{n_k}$ such that $\{x\} = \bigcap_{k \geq 1} D_k(x)$.

Then we have two sequences $\{\mathcal{U}_{D_k}^k(\mathbf{x})\}_{k\geq 1}$ and $\{\mathcal{V}_{D_k}^k(\mathbf{x})\}_{k\geq 1}$ of chain covers of P. By the standard method of constructing a map between the pseudo-arcs, we have a map $\mathbf{H}|\mathbf{x}\times\mathbf{P}\colon\mathbf{x}\times\mathbf{P}\to\mathbf{P}$ such that

3-6)
$$H(\mathbf{x} \times u_{D_{\mathbf{k}}}^{\mathbf{k}}(\mathbf{i})) \subset \operatorname{st}(v_{D_{\mathbf{k}}(\mathbf{x})}^{\mathbf{k}}(\mathbf{i}), v_{D_{\mathbf{k}}(\mathbf{x})}^{\mathbf{k}})$$
 for each $u_{D_{\mathbf{k}}(\mathbf{x})}^{\mathbf{k}}(\mathbf{i}) \in u_{D_{\mathbf{k}}(\mathbf{x})}^{\mathbf{k}}$.

Notice the following.

3-7) If
$$x,y \in D_k \in \mathcal{D}_{n_k}$$
, then $u_{D_{\underline{i}}(x)}^{\underline{i}} = u_{D_{\underline{i}}(y)}^{\underline{i}}$ and $v_{D_{\underline{i}}(x)}^{\underline{i}} = v_{D_{\underline{i}}(y)}^{\underline{i}}$ for each $\underline{i} = 1,...,k$.

Using this fact, it is easy to see that the map H defined as above is continuous and $H(x,x_0) = f(x)$, $H(x,y_0) = a_0$ for each $x \in C$. This completes the proof.

Proof of Theorem 5.

Let $f: C \to P$ be a map. Take a nondegenerate proper subcontinuum Q of P. By [3], Q is a retract of P. Fix a retraction $r: P \to Q$ and a homeomorphism $h: P \to Q$. Fix a point a_0 of P which lies in a different composant from Q. Applying Proposition 6 to $h \circ f: C \to Q$ and a_0 , we have a map $H: C \times P \to P$ and points \mathbf{x}_0 and $\mathbf{y}_0 \in P$ such that $H \mid C \times \mathbf{x}_0 = h \circ f$ and $H \mid C \times \mathbf{y}_0 = a_0$. Define $F: C \times P \to P$ as $F = h^{-1} \circ r \circ H$. Then $F \mid C \times \mathbf{x}_0 = f$ and $F \mid C \times \mathbf{y}_0 = h^{-1}(a_0)$. This completes the proof of Theorem 5.

Corollary 7. Any Cantor set in the pseudo-arc P is pseudo-contractible in P.

References

- 1. D. Bellamy, A null pseudohomotopic map onto a pseudoarc, Topology Proc. 11 (1986), pp. 1-4.
- 2. R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1948), pp. 729-742.
- J. L. Cornette, Retracts of the pseudo-arc, Colloq. Math. 19 (1968), pp. 235-239.
- 4. G. R. Lehner, Extending homeomorphisms on the pseudo-arc, Trans. A. M. S. 98 (1961), pp. 369-394.
- 5. W. Lewis, Stable homeomorphisms of the pseudo-arc, Canad. J. Math. 31 (1979), pp. 363-374.

E. E. Moise, An indecomposable plane continuum which 6. is homeomorphic to each of its nondegenerate subcontinua, Trans. A. M. S. 63 (1948), pp. 581-594.

Institute of Mathematics University of Tsukuba Ibaraki 305, Japan