TOPOLOGY PROCEEDINGS

Volume 14, 1989

Pages 249-263

http://topology.auburn.edu/tp/

CONTRACTIBILITY OF CONTINUA ADMITTING ARC-STRUCTURES

by Akira Koyama

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

CONTRACTIBILITY OF CONTINUA ADMITTING ARC-STRUCTURES

Akira Koyama *

1. Introduction

Throughout this paper a continuum means a compact connected metric space. Let X be a continuum. By C(X), we denote the hyperspace of subcontinua of X with the Hausdorff metric. For a given sequence $\{Z_n\}$ of subsets of X, we denote the limit inferior, the limit superior, and the limit of $\{Z_n\}$, by $\text{Li}_n \ Z_n$, $\text{Ls}_n \ Z_n$ and $\text{Lim}_n \ Z_n$, respectively (see [8] for the definitions).

An arc-structure A on a continuum X is a function A: $X \times X \to C(X)$ such that for $x \neq y$ in X, the set A(x,y) is an arc from x to y in X and such that the following conditions are satisfied for all x, y and z in X:

- (a) $A(x,x) = \{x\},\$
- (b) A(x,y) = A(y,x), and
- (c) $A(x,z) \subseteq A(x,y) \cup A(y,z)$ with the equality prevailing whenever y belongs to A(x,z).

Throughout this paper a pair (X,A) means a continuum X with a given arc-structure A on X.

A pair (X,A) is arc-smooth at a point p in X if the induced function $A_p \colon X \to C(X)$ defined by $A_p(x) = A(p,x)$ is continuous. A pair (X,A) is weakly arc-smooth at a point p in X if for a given convergent sequence $\{x_n\}$ in X,

^{*} Dedicated to Professor Y. Kodama on his 60th birthday.

 $\operatorname{Li}_n A(p, \mathbf{x}_n) = A(p, \mathbf{x})$ for some $\mathbf{x} \in X$ (not necessarily $\mathbf{x} = \lim_n \mathbf{x}_n$). A pair (X,A) is (weakly) arc-smooth if there is a point in X at which (X,A) is (weakly) arc-smooth (see [4], [5], [6] and [7]).

In [4] and [5], Fugate, Gordh and Lum defined and investigated continua admitting arc-structures and arc-smooth continua as higher dimensional analogs of dendroids and smooth dendroids. In [6] and [7], weakly smooth dendroids were generalized to weakly arc-smooth continua. The following characterizations of weakly arc-smooth continua, analogous to well-known characterizations of weakly smooth dendroids [10], [11], were obtained:

Theorem 1. The following statements are equivalent.

- (1) (X,A) is weakly arc-smooth at a point p in X.
- (2) $A_p(X) = \{A_p(x) \mid x \in X\} \subset C(X) \text{ is compact.}$
- (3) (X,A) is hereditarily T-convex and $\Gamma_p \cup \Gamma_p^{-1}$ is closed in X × X, where $\Gamma_p = \{(x,y) \mid y \in A(p,x)\}$ and $\Gamma_p^{-1} = \{(x,y) \mid (y,x) \in \Gamma_p\}$.
- (4) (X,A) is hereditarily T-convex and $T_A(x) \subseteq L_p(X)$ $\cup M_p(x) \text{ for every } x \in X, \text{ where } L_p(x) =$ $\{y \mid y \in A(p,x)\} \text{ and } M_p(x) = \{y \mid x \in A(p,y)\}.$

Here a subset Z of (X,A) is convex (with respect to A) if $A(x,y) \subseteq Z$ for every pair (x,y) of points in Z. The set function T_A for (X,A) is defined by the formula:

$$T_{A}(x) = \begin{cases} y \in X & \text{each convex subcontinua of } (X,A) \\ & \text{with y in its interior contains } x \end{cases}$$

(X,A) is T-convex if $T_A(x)$ is convex for every $x \in X$. Moreover, (X,A) is said to be hereditarily T-convex if for every convex subcontinuum Z of (X,A), the pair $(Z,A|Z\times Z)$ is T-convex (see [6] and [7]).

The purpose of this paper is to investigate contractibility of continua admitting arc-structures. First, we will characterize arc-smoothness on a class of weakly arc-smooth continua by convex-hereditary contractibility. Next, we will introduce convex-contractibility of continua admitting arc-structures and characterize this property in the term of the set function T_A . Those results are some generalizations of ones in [1] and [3].

Definitions of undefined terms may be found in [5] and [6].

2. Results

A continuum is hereditarily contractible if each of its subcontinua is contractible. Charatonik and Grabowski [3] have shown the following characterization of smooth fans:

Theorem 2. ([3], Corollary 17). A fan is hereditarily contractible if and only if it is smooth.

In order to extend Theorem 2 to continua admitting arc-structures, we introduce a new class of such continua. A pair (X,A) is an arc-fan (shortly, a-fan) with the top p provided that for $x \neq y$ in X, $A(p,x) \cap A(p,y) \neq \{p\}$ implies

that $A(p,x) \subseteq A(p,y)$ or $A(p,y) \subseteq A(p,x)$. A pair (X,A) is an a-fan if there is a point in X with which (X,A) is an a-fan.

If a continuum X is a cone over a compactum or a star-like continuum in ℓ^2 , there is an arc-structure A on X such that the pair (X,A) is an a-fan. If X is a dendroid, an a-fan (X,A) with top p is the fan with the top p. Hence, since a hereditarily contractible continuum is a dendroid, by Theorem 2, we have

Corollary 3. An a-fan (X,A) is hereditarily contractible if and only if X is a smooth fan.

Therefore we introduce a kind of hereditary contractibility on a pair (X,A), which characterizes arcsmoothness of weakly arc-smooth a-fans. (X,A) is convex-hereditarily contractible (with respect to A) if every convex subcontinuum of X is contractible. By [5], Lemma I-2-B and Theorem I-6-A, an arc-smooth continuum is convex-hereditarily contractible. For an a-fan, we have the following theorem, which is an extension of Theorem 2.

Theorem 4. If an a-fan (X,A) is weakly arc-smooth and convex-hereditarily contractible, then it is arc-smooth.

For the proof, we need the following lemmas. We define the end-set E(X,A) of a pair to be

 $\{e \in X \mid \text{if } e \in A(x,y), \text{ then } e = x \text{ or } e = y\}$ (see [5], I-9).

Because of the equivalence of (1) and (3) in Theorem 1, the first Lemma can be proved with the argument similar to of [5], Lemma I-9-A.

Lemma 5. If a pair (X,A) is weakly arc-smooth at p, then each arc A(p,x) is contained in an arc A(p,e) with e in the end-set E(X,A).

Proof. Suppose that some point x of X fails to lie in an arc of the required form. Then there exists a sequence $\{y_n\}$ in X satisfying $x \leq_p y_1 \leq_p y_2 \leq_p \cdots \leq_p y_n \leq_p y_{n+1} \leq_p \cdots$ and such that no point e satisfies $y_n \leq_p e$ for all n. Passing to a subsequence, if necessary, assume that the sequence $\{y_n\}$ converges. Then for each n,

$$y_n \in cl(\cup A(p,y_n)) = Li_n A(p,y_n) = A(p,z)$$
for some $z \in X$.

The former set-equality holds since the sequence $\{A(p,y_n)\}$ is nested and the latter since X is weakly arc-smooth at p. But we have a contradiction to the assumption.

Lemma 6. If an a-fan (X,A) with the top p is arcsmooth, then it is arc-smooth at p.

Proof. Suppose that (X,A) is arc-smooth at q \neq p. Let $\{x_n\}$ be any convergent sequence in X with $\lim_n x_n = x$. Then

(+) $\lim_{n} A(q,x_n) = A(q,x)$. We consider two cases.

Case 1. $p \in A(q,x)$: If there exists an endpoint $e \in E(X,A)$ such that $A(p,x_n) \subseteq A(p,e)$ for almost all n,

it is clear that $\lim_n A(p,x_n) = A(p,x)$. Hence, by Lemma 5 and the fan structure of A, we may assume that for each $n \ge 1$,

(*)
$$A(q,x_n) = A(q,p) \cup A(p,x_n)$$
 and
$$A(q,p) \cap A(p,x_n) = \{p\}.$$

If there exists $y \in Ls_n A(p,x_n) \setminus A(p,x)$, there exists a sequence $n(1) < n(2) < \dots$ and points $y_i \in A(p,x_{n(i)})$ such that $y = \lim_i y_i$. Then by (+),

 $y \in Ls_n \ A(p,x_n) \subset Ls_n \ A(q,x_n) = A(q,x).$ Hence $y \in A(q,x) \setminus A(p,x) = A(q,p) \setminus \{p\}$. By (*), $p \in Ls_i \ A(q,y_i)$. Therefore, by [6], Lemma 3.4(2), we have that

On the other hand, by [6], Lemma 3.4(2), $\text{Li}_n A(p,x_n)$ is convex and contains both the points p and x. Hence $A(p,x) \subset \text{Li}_n A(p,x_n)$. It follows that $\text{Lim}_n A(p,x_n) = A(p,x)$.

Case 2. $p \notin A(q,x)$: If $p \in A(q,x_n)$ for infinitely many n, $A(q,x_n) = A(q,p) \cup A(p,x_n)$ for infinitely many n, and by (+),

 $p\in A(q,p)\subset Ls_n\ A(q,x_n)=Lim_n\ A(q,x_n)=A(q,x).$ This is a contradiction. Hence there exists $e\in E(X,A)$ such that

 $x_n \in A(p,e)$ for almost all n.

The existence of such an endpoint e is guaranteed by Lemma 5. Then $A(p,x) = \text{Lim}_n A(p,x_n)$.

In both cases, we have that $\lim_{n} A(p,x_n) = A(p,x)$. Therefore (X,A) is arc-smooth at p.

Proof of Theorem 4. Suppose that (X,A) is an a-fan with the top p and is weakly arc-smooth at a point q. By Lemma 6, it suffices to consider whether (X,A) is arc-smooth at p. We assume that (X,A) is not arc-smooth at p. Thus, there exists a convergent sequence $\{x_n\}$ in X such that the sequence $\{A(p,x_n)\}$ is convergent in C(X), but putting $x = \lim_n x_n$, we have $\lim_n A(p,x_n) \neq A(p,x)$. We note that by [6], Lemma 3.4(2), $\lim_n A(p,x_n)$ is convex, and therefore $A(p,x) \subsetneq \lim_n A(p,x_n)$.

By Lemma 5, there is a point $e \in E(X,A)$ such that $A(p,x) \subset A(p,e)$. If $x_n \in A(p,e)$ for infinitely many $n \ge 1$, then $\lim_n A(p,x_n) = A(p,x) \subset A(p,e)$. This is a contradiction to the choice of the sequence $\{x_n\}$. Hence, passing to subsequences if necessary, we may assume that

- (1) $x_n \notin A(p,e) \cup A(p,q)$ for every $n \ge 1$,
- (2) $A(p,x_n) \cap A(p,x_m) = \{p\}$ if $n \neq m$. Since (X,A) is an a-fan with the top p, by (1),
- (3) $A(q,x_n) = A(p,q) \cup A(p,x_n)$ for every $n \ge 1$. Since (X,A) is weakly arc-smooth at q,
- $(4) \quad \text{Li}_n \ A(q,x_n) = A(q,y) \text{ for some } y \in X.$ Then, by (3) and (4),

$$A(q,y) = Li_n A(q,x_n) = A(q,p) \cup Li_n A(p,x_n)$$
$$= A(q,p) \cup Lim_n A(p,x_n)$$
$$= Lim_n A(q,x_n).$$

Hence we have that

(5) $A(p,x) \subseteq \lim_{n} A(p,x_n) \subset A(q,y) = \lim_{n} A(q,x_n)$. Now we define a continuum

$$K = A(q,y) \cup [\bigcup_{n>1} A(p,x_n)].$$

Since $\lim_n A(p,x_n) \subseteq A(q,y)$, K is a convex subcontinuum, and $(K,A|K \times K)$ is not arc-smooth at p. Note that, by the condition (c) of the definition of weak arc-smoothness,

$$K = A(q,y) \cup A(p,y) \begin{bmatrix} \cup A(p,x_n) \\ n>1 \end{bmatrix}$$

and p is an only one ramification point of K. Now we show that any subcontinuum L of K has one of the following properties:

- (6) If $p \notin L$, then $L \subseteq A(q,y)$ or $L \subseteq A(p,x_n) \setminus \{p\}$ for some n.
- (7) If $p \in L$, then $L = A(q',y') \cup [\bigcup A(p,x'_n)]$ for $n \ge 1$ some $p \in A(q',y') \subset A(q,y)$ and $x'_n \in A(p,x_n)$ for each n > 1.

If $p \notin L$, by (1) and (2),

 $L \cap A(p,x_n) \cap A(q,y) = \emptyset = L \cap A(p,x_n) \cap A(p,x_m)$ if $n \neq m$.

Hence, by the Sierpinski's Theorem (see [9], Theorem V.3.6),

 $\mathtt{L} \, \subseteq \, \mathtt{A}(\mathtt{q},\mathtt{y}) \text{ or } \mathtt{L} \, \subseteq \, \mathtt{A}(\mathtt{p},\mathtt{x}_{\mathtt{n}}) \, \backslash \, \{\mathtt{p}\} \text{ for some n.}$

Suppose that $p \in L$. For each $n \ge 1$, let x_n^i be the point of L such that

$$L \cap A(p,x_n) \subseteq A(p,x_n')$$
.

If there exists an n_0 and a point w such that $p \neq x_{n_0}^*$ and $w \in A(p,x_{n_0}) \setminus L$, then, by (1) and (2), $A(q,y) \cup$ $\left[\begin{smallmatrix} \cup \\ n \neq n_0 \end{smallmatrix} \right] A(p,x_n) \cup A(p,w)$ and $A(w,x_n')$ give a separation of L in K. This is a contradiction of connectedness of L. Thus, $A(p,x_n) = L \cap A(p,x_n)$ for all n. Similarly, take the points q' and y' of L such that

 $L \cap A(q,y) \subset A(q',y')$.

Then, by (5),

 $p \in Li_n A(p,x_n') \subset Ls_n A(p,x_n') \subset L \cap Ls_n A(p,x_n') =$ $L \cap Lim_n A(p,x_n) \subset L \cap A(q,y) \subset A(q',y')$.

Hence $Ls_n A(p,x_n^*)$ is a subcontinuum of $A(q^*,y^*)$ containing Since $[\cup_{n>1} A(p,x_n^i)] \cup Ls_n A(p,x_n^i) \subset L \subset [\cup_{n>1} A(p,x_n^i)]$

 \cup A(q',y') and L is a continuum, L = [\cup A(p,x')] \cup n>1 A(q',y').

Because of the properties (6) and (7), K is hereditarily arcwise connected and hereditarily unicoherent. Namely, K is a fan with the top p. Moreover, by our assumption, K is not smooth. Hence, by Theorem 2, K contains a non-contractible subfan, which is convex with respect to A. But this contradicts the convex-hereditary contractibility of (X,A). It follows that (X,A) is arcsmooth at p.

Corollary 7. For an a-fan (X,A) with the top p, the following statements are equivalent:

 (X,A) is weakly arc-smooth and convexhereditarily contractible.

(2) (X,A) is arc-smooth.

Since there is a non-smooth dendroid with two ramification points, which is weakly smooth and hereditarily contractible (see [3], p. 237), the assumption "a-fan" in Theorem 4 is essential. In the case that X is a dendroid, the assumption that X is weakly arc-smooth is not needed. But, in general, there is an a-fan which is convexhereditarily contractible but is not weakly arc-smooth. Namely, we have

Example 8. Each point in the Euclidean plane is represented by the polar coordinate system (r,θ) . Let

D = {
$$(r,\theta) \mid 0 \le r \le 1$$
} and
E_n = { $(r,\theta) \mid r = 1 + \theta/n, 0 \le \theta \le \pi/2$ },
n = 1, 2, 3, ...

We define a continuum

$$X = D \cup (\bigcup_{n \ge 1} E_n).$$

Let p = (1,0) \in D \cap (\cup E_n), and for each x \in X, we denote the n \ge 1

fine an arc A(p,x) as follows:

$$A(p,x) = \begin{cases} \text{the unique arc from p to x in } E_n, \text{ if} \\ x \in E_n, \\ \text{the straight line segment from p to x in} \\ D, \text{ if } x \in D. \end{cases}$$

Then the correspondence A induces an arc-structure on X, which is also denoted by A.

It is clear that (X,A) is an a-fan with the top p which is not weakly arc-smooth. On the other hand, since each convex subset of (X,A) is either contained in a straight line segment in D or some arc E_n , or a star-like subset (with respect to A) containing p, (X,A) is convex-hereditarily contractible. Hence (X,A) is an a-fan with the desired property.

We remark that this example also shows that weak arcsmoothness in [6], Lemma 3.4, is essential.

Fugate, Gordh and Lum [5], I.6, introduced the notion of a \leq_p -contraction for a pair (X,A). Namely, a \leq_p -contraction is a homotopy H: X \times I + X satisfying the following conditions for each $x \in X$:

- $(a) \quad H(x,0) = x,$
- (b) H(x,1) = p, and
- (c) $H(x,t) \in A(p,x)$ for each $t \in I$.

Moreover, they showed that (X,A) is arc-smooth at p if and only if (X,A) admits a \leq_p -contraction. Here we introduce a weaker notion of \leq_p -contractions, and characterize it by the set function T_A . A convex-contraction for (X,A) is a homotopy $F: X \times I \to X$ satisfying the following conditions:

- (d) H(x,0) = x for each $x \in X$,
- (e) $H(\{x\} \times [s,t])$ is convex with respect to A for each $x \in X$ and $s, t \in I$, and
- (f) $H(X \times \{1\})$ is a singleton.
- (X,A) is convex-contractible if it admits a convex-contraction for (X,A).

Obviously, each \leq_p -contraction is a convex-contraction. A criterion of convex-contractibility by the set function T_A is obtained as follows. The proof is a slight modification of one given in [1], Theorem 2. Hence we omit the proof here.

Theorem 9. If a pair (X,A) contains closed subsets $K \text{ and } L \text{ such that } K \cap T_{\text{A}}(L) = \emptyset = L \cap T_{\text{A}}(K) \text{ and } T_{\text{A}}(K) \cap T_{\text{A}}(L) \neq \emptyset, \text{ then it is not convex-contractible.}$

Finally, we show that there is a pair (X,A) and points a,b in X such that b $\notin T_A(a)$, a $\notin T_A(b)$, $T_A(a) \cap T_A(b) \neq \emptyset$ and X is contractible. It follows that there is a gap between contractibility and convex-contractibility and that Theorem 9 holds only for convex-contractibility.

 $\label{eq:example 10.} \textit{ We use the same notation as in Example 8.}$ Let

$$F_{n} = \left\{ (r,\theta) \middle| \begin{array}{c} r = (2n+3)\theta/2n(n+1) + 1 - \pi/4n(n+1), \\ \pi/4 \le \theta \le \pi/2 \end{array} \right\}$$

for each $n = 1, 2, \ldots$, and define a continuum

$$Y = X \cup [\bigcup_{n \ge 1} F_n].$$

For each $y \in Y$, we define an arc B(p,y) as follows:

$$B(p,y) = \begin{cases} \text{the unique arc from p to y in } E_n \cup F_n, \\ \text{if } y \in E_n \cup F_n, \\ \text{the straight line segment from p to y,} \\ \text{if } y \in D. \end{cases}$$

Then the correspondence B induces an arc-structure on Y, which is also denoted by B.

Clearly the pair (Y,B) is an a-fan with the top p and Y is contractible. In order to show that (Y,B) is not convex-contractible, by Theorem 9, it suffices to find points $a,b \in Y$ such that $a \notin T_{B}(a)$, $b \notin T_{B}(a)$ and $T_{B}(a) \cap T_{B}(a)$ $T_{B}(b) \neq \emptyset$. Let a and b be the midpoints of $B(p,(1,\pi/2))$ and $B(p,(1,\pi/4))$, respectively. Then it is clear that $a \notin T_{R}(b)$ and $b \notin T_{R}(a)$.

Next, we show that $T_{R}(a) \cap T_{R}(b) \neq \emptyset$. Take any point $x \in \lim_{n} F_{n}$ and any convex subcontinuum K of (Y,B) with x in its interior. Then K \cap F_n \neq Ø for almost all n. Hence, since K is convex with respect to B, $E_n \subseteq K$ for almost all n. Therefore

p, $(1,\pi/2)$, $(1,\pi/4) \in \text{Lim}_{p} E_{p} \subseteq K$.

Since K is convex with respect to B,

a, b \in B(p,(1, π /2)) \cup B(p,(1, π /4)) \subset K.

Hence $x \in T_{R}(a) \cap T_{R}(b)$. Thus,

 $\emptyset \neq \text{Lim}_{p} F_{p} \subseteq T_{p}(a) \cap T_{p}(b)$.

Therefore the pair (Y,B) and the points $a,b \in Y$ satisfy the required conditions. We note that, in fact, $\mathbf{T}_{\mathbf{R}}(\mathbf{a})$ \cap $T_R(b) = Lim_n F_n$.

References

- [1] J. J. Charatonik, The set function T and homotopies, Collog. Math. 39(1978), 271-274.
- [2] _____ and C. Eberhart, On smooth dendroids, Fund. Math. 67(1970), 297-322.
- [3] ____ and Z. Grabowski, Homotopically fixed arcs and the contractibility of dendroids, Fund. Math. 100(1978), 229-237.
- [4] J. B. Fugate, G. R. Gordh, Jr. and Lewis Lum, On arc-smooth continua, Top. Proc. 2(1977), 645-656.
- [5] _____, Arc-smooth continua, Trans. Amer. Math. Soc. 265(1981), 545-561.
- [6] A. Koyama, Weakly arc-smooth continua I, Glasnik Mat. 22(42)(1987), 171-185.
- [7] _____, Weakly arc-smooth continua II, Glasnik Mat. 24(44)(1989), 133-138.
- [8] K. Kuratowski, Topology I, Academic Press and PWN, 1966.
- _____, Topology II, Academic Press and [9] PWN, 1968.
- [10] L. Lum, Weakly smooth dendroid, Fund. Math. 83(1974), 111-120.
- [11] ______, Weakly smooth continua, Trans. Amer. Math. Soc. 214(1975), 153-167.

Osaka Kyoiku University

Ikeda-city, Osaka, 563 JAPAN