TOPOLOGY PROCEEDINGS

Volume 14, 1989
Pages 265-277
http://topology.auburn.edu/tp/

ϵ-MAPPINGS ONTO A TREE AND THE FIXED POINT PROPERTY

by
M. M. Marsh

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

ϵ-MAPPINGS ONTO A TREE AND THE FIXED POINT PROPERTY

M. M. Marsh

In 1979 David Bellamy [l] showed that there exist tree-like continua which admit fixed point free mappings. There has been interest since that time in determining conditions under which a tree-like continuum will have the fixed point property. A few results of this nature can be found in [2], [3], [4], [7], [8], and [9]. However, it is still unknown if a simple triod-like continuum must have the fixed point property. This paper establishes several fixed point related theorems for T-like continua, where T is a fixed tree. Corollary 3 gives a necessary condition for a T-like continuum to admit a fixed point free mapping, and Theorem 2 generalizes the fixed point theorem in [7].

A continuum is a nondegenerate compact connected metric space. A continuous function will be referred to as a map or mapping. A continuum X has the fixed point property provided that whenever f is a mapping of X into itself, there is a point x in x such that $f(x)=x$. A tree is a finite connected, simply connected graph. If ε is a positive number, the mapping $f: X \rightarrow Y$ is an $\varepsilon-$ mapping if diam $\left(f^{-1}(y)\right)<\varepsilon$ for each $y \in Y$. If H is a family of continua, we say that the continuum X is $H-$ iike provided that, for each positive number ε, there is an
ε-mapping of x onto a member of H. For example, if H is the family of all trees, we simply say that X is tree-like; or if H is a set whose only member is the continuum T, we say that X is T -like.

Let T be a tree. The point $v \in T$ is a branchpoint (an endpoint) of T if $T-\{v\}$ has at least three components (only one component). If v is either a branchpoint or an endpoint of T, we say that v is a vertex of T. If v and w are points of T, let $[v, w]$ denote the arc in T with endpoints v and w, and let $T(v, w]$ denote the component of T - $\{v\}$ that contains w.

Lemma. Let F be a function from the vertex set of the tree T into the set of all subsets of T. If for each vertex v of $\mathrm{T}, \mathrm{F}(\mathrm{V})$ is a subset of the closure of some component of $\mathrm{T}-\{\mathrm{v}\}$, then there exist neighboring (adjacent) vertices v and w in T such that $F(v) \subseteq \overline{T(v, W]}$ and $F(w) \subseteq \overline{T(w, V]}$.

Proof. Let v_{1} be any branchpoint of T and let C_{1} be the component of $T-\left\{v_{1}\right\}$ such that $F\left(v_{1}\right)$ is a subset of $\overline{C_{1}}$. Let v_{2} be the vertex of C_{1} that is adjacent to v_{1}. So, $C_{1}=T\left(v_{1}, v_{2}\right]$. If $F\left(v_{2}\right) \subseteq \overline{T\left(v_{2}, v_{1}\right]}$, then v_{1} and v_{2} have the desired properties. Otherwise, v_{2} must be a branchpoint of T and there is a component C_{2} of $T-\left\{v_{2}\right\}$ such that $C_{2} \neq T\left(v_{2}, v_{1}\right]$ and $F\left(v_{2}\right) \subseteq \bar{C}_{2}$. Now, $C_{2} \subseteq C_{1}$ and C_{2} contains fewer branchpoints than C_{1}. Since C_{1} has finitely many branchpoints, a repetition of the process above must yield adjacent vertices with the desired properties.

We introduce the following terminology. Given a sequence $\left\{F_{n}\right\}_{n=1}^{\infty}$, to say that $\left\{F_{n}\right\}_{n=1}^{\infty}$ frequentzy has some property means that for each positive integer N, there is an integer $n \geq N$ such that F_{n} has the property,
and to say that
$\left\{F_{n}\right\}_{n=1}^{\infty}$ eventually has some property means that there is a positive integer N such that if $n \geq N$, then F_{n} has the property.

We are now ready for our main theorems.

Theorem 1. Suppose that T is a tree, X is T-like, and for each $n \geq 1, g_{n}: X \rightarrow T$ is a δ_{n}-mapping onto T, where $\left\{\delta_{n}\right\}_{n=1}^{\infty}$ converges to zero. If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ is a mapping, $\left\{n_{i}\right\}_{i=1}^{\infty}$ is an increasing sequence of positive integers, and there are adjacent vertices v and w of T such that $\left\{g_{n_{i}} \mathrm{fg}_{\mathrm{n}_{\mathrm{i}}}^{-1}(\mathrm{v})\right\}_{\mathrm{i}=1}^{\infty}$ is eventually a subset of $\overline{\mathrm{T}(\mathrm{V}, \mathrm{W}]}$ and $\left\{g_{n_{i}} \mathrm{fg}_{\mathrm{n}_{\mathrm{i}}}^{-1}(\mathrm{w})\right\}_{i=1}^{\infty}$ is eventually a subset of $\overline{\mathrm{T}(\mathrm{w}, \mathrm{V}]}$, then f has a fixed point.

Proof. Suppose that f is fixed point free. Let d denote the metric on X. Assume that each edge of T has length one and let p denote the "arc length" metric on T. Let ε be a positive number such that $d(x, f(x)) \geq \varepsilon$ for $\operatorname{each} x \in X$.

Fix n large enough so that g_{n} is an $\frac{\varepsilon}{2}$-mapping, $g_{n} f g_{n}^{-1}(v) \subseteq \overline{T(v, w]}$, and $g_{n} f g_{n}^{-1}(w) \subseteq \overline{T(w, v]}$. Since g_{n} is
an $\frac{\varepsilon}{2}$-mapping, it follows that $t \notin g_{n} f_{n}^{-1}(t)$ for any $t \in T$. So, we have that $g_{n} f g_{n}^{-1}(v) \subseteq T(v, w]$ and $g_{n} f g_{n}^{-1}(w)$ $\subseteq T(w, v]$.

Let $0<\delta<1$ such that if $d(x, y) \geq \varepsilon$, then
$p\left(g_{n}(x), g_{n}(y)\right) \geq \delta$. That such a δ exists is easily seen (argument by contradiction).

Let V be an open set in X such that $g_{n}^{-1}(v) \subseteq v$, $\operatorname{diam} \bar{v}<\varepsilon$, and if $x \in V$, then $g_{n} f(x) \in T(v, w]$ and $p\left(g_{n}(x), v\right)<\frac{\delta}{2}$. Similarly, let W be an open set in X such that $g_{n}^{-1}(w) \subseteq W$, diam $\bar{W}<\varepsilon$, and if $x \in W$, then $g_{n} f(x) \in T(w, v]$ and $p\left(g_{n}(x), w\right)<\frac{\delta}{2}$.

Pick any point q in $g_{n}^{-1}(w)$ and let L be the component of $X-V$ that contains q. Now, L must intersect the boundary of V at some point y. We point out that $g_{n}(L) \subseteq T(v, w]$. For if not, there is a point $x \in L$ such that $g_{n}(x) \in T(w, v]-(v, w]$. Also, $q \in L$ and $g_{n}(q)=w$. Since L is connected and g_{n} is continuous, it follows that there is a point of L that is also in $g_{n}^{-1}(v) \subseteq V$, a contradiction.

Let K be the component of $L-W$ that contains Y. Let z be a point of the boundary of W that is also in K. As above, $g_{n}(K) \subseteq T(w, v]$. For if not, there is a point $x \in K$ such that $g_{n}(x) \in T(v, w]-[v, w)$. Since $y \in \bar{V}$, $g_{n}(y) \in \overline{T(w, v]}$. Now, y is also in K; hence, there is a point of K that is also in $g_{n}^{-1}(w) \subseteq w$, a contradiction.
since $K \subseteq L$, we get that $g_{n}(K) \subseteq(v, w)$. Let

$$
R=\left\{x \in K \mid g_{n}(x) \text { separates } g_{n} f(x) \text { from } v \text { in } T\right\}
$$

and

$$
S=\left\{x \in K \mid g_{n}(x) \text { separates } g_{n} f(x) \text { from } w \text { in } T\right\}
$$

Clearly, $R \cup S=K$, and R and S are disjoint open sets in K. We will show that $y \in R$ and $z \in S$.

Suppose that $y \notin R$. Then $y \in S$ and $g_{n}(y)$ must separate $g_{n} f(y)$ from w in T. Since $y \in \bar{V}, p\left(g_{n}(y), v\right) \leq \frac{\delta}{2}$ and $g_{n} f(y) \in \overline{T(v, w]}$. Hence, we must have that $g_{n} f(y) \in$ $[v, w]$ and that $p\left(g_{n} f(y), g_{n}(y)\right) \leq \frac{\delta}{2}<\delta$. But, by choice of $\delta, d(y, f(y)) \geq \varepsilon$ implies that $p\left(g_{n}(y), g_{n} f(y)\right) \geq \delta$, a contradiction.

A symmetric argument gives us that $z \in S$. But then K is not connected, which is a contradiction.

Since an arc is a tree with exactly two vertices, namely its endpoints, we get Hamilton's [5] fixed point theorem as an immediate corollary.

Corotlary l. If X is an arc-like continuum, then X has the fixed point property.

Corollary 2. Suppose that T is a simple k-od with branchpoint v, X is T-like, and for each $n \geq 1, g_{n}: X \rightarrow T$ is a δ_{n}-mapping onto T, where $\left\{\delta_{n}\right\}_{n=1}^{\infty}$ converges to zero. If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ is a fixed point free mapping, then $\left\{g_{n} f g_{n}^{-1}(v)\right\}_{n=1}^{\infty}$ eventually intersects two components of T- $\{v\}$.

Proof. Suppose that $\left\{g_{n} f g_{n}^{-1}(v)\right\}_{n=1}^{\infty}$ does not eventually intersect two components of $T-\{v\}$. Then there is a component L of $T-\{v\}$ such that $\left\{g_{n} f g_{n}^{-1}(v)\right\}_{n=1}^{\infty}$ is
frequently a subset of L. Let e be the endpoint of T that belongs to L. Then v and e are adjacent vertices of T. Also, $\left\{g_{n} f g_{n}^{-1}(e)\right\}_{n=1}^{\infty}$ is a subset of $\overline{T(e, v]}$ for all $\mathrm{n} \geq \mathrm{l}$ since $\overline{\mathrm{T}(\mathrm{e}, \mathrm{v}]}=\overline{\mathrm{T}-\{\mathrm{e}\}}=\mathrm{T}$. It follows from Theorem l that f has a fixed point, which is a contradiction.

Corolzary 3. Suppose that T is a tree, X is T-like, and for each $\mathrm{n} \geq 1, \mathrm{~g}_{\mathrm{n}}: \mathrm{X} \rightarrow \mathrm{T}$ is a δ_{n}-mapping onto T , where $\left\{\delta_{\mathrm{n}}\right\}_{\mathrm{n}=1}^{\infty}$ converges to zero. If $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{X}$ is a \therefore ixed point free mapping, then there is a branchpoint v of T such that $\left\{g_{n}{ }^{£ g_{n}}(\mathrm{v})\right\}_{\mathrm{n}=1}^{\infty}$ frequently intersects two components of T - \{v\}.

Proof. By way of contradiction, we assume that for each branchpoint v of T, there is a positive integer N_{v} such that if $n \geq N_{v}$, then $g_{n} f g_{n}^{-1}(v)$ is a subset of the closure of some component of $T-\{v\}$.

Let $N=\max \left\{N_{v} \mid v\right.$ is a branchpoint of $\left.T\right\}$ and fix
$n \geq N$. We recall that if e is an endpoint of T and v is the vertex of T adjacent to e, then $g_{n} f_{n}^{-1}(e) \subseteq \overline{T(e, v]}$. Hence, by the lemma, there exist adjacent vertices v and w in T such that $g_{n} f g_{n}^{-1}(v) \subseteq \overline{T(v, w]}$ and $g_{n} f g_{n}^{-1}(w) \subseteq \overline{T(w, V]}$. So, if $n \geq N$, we may associate with n a pair of adjacent vertices in T that have the properties above. Since there are only finitely many pairs of adjacent vertices in T, it follows that there is an increasing sequence $\left\{n_{i}\right\}_{i=1}^{\infty}$, each term of which is associated with the same pair of adjacent vertices. By Theorem l, f has a fixed point, which is a contradiction.

Our next theorem generalizes, in the case of finite fans, the fixed point result in [7].

Theorem 2. Let T be a tree, and for each oranchpoint v of T , Let $\left\{\mathrm{L}_{\mathrm{i}}(\mathrm{v})\right\}_{\mathrm{i}=1}^{\mathrm{v}}$ be a labeling of the components of $T-\{v\}$. If $X=\lim \left\{T, g_{n}^{n+1}\right\}$, where for each $n \geq 1$ and each branchpoint v of $\mathrm{T}, \mathrm{g}_{\mathrm{n}}^{\mathrm{n+1}}\left(\mathrm{~L}_{\mathrm{i}}(\mathrm{v})\right)=\mathrm{L}_{\mathrm{i}}(\mathrm{v})$ for $2 \leq i \leq k_{\mathrm{v}}$, then X has the fixed point property.

Proof. Let d denote the metric on X and, for each $\mathrm{n} \geq 1$, let g_{n} be the projection mapping of X onto T . Now, X is T-like and for $\varepsilon>0, n$ can be chosen so that g_{n} is an ε-mapping (see [6]).

By way of contradiction, we assume that f is a fixed point free mapping on X and that ε is a positive number such that $d(x, f(x)) \geq \varepsilon$ for each $x \in X$.

Let v be any branchpoint of T. We notice that $g_{n}^{n+1}(v)=v$ for each $n \geq 1$. So, let p_{v} be the point of X such that $g_{n}\left(p_{v}\right)=v$ for each $n \geq 1$. Also, let $M_{v}=$ $U_{i=2}^{k} \overline{L_{i}(v)}$. We further observe that
(*) if $x \in X$ and there is an integer N such that $g_{N}(x)$
is not in M_{v}, then for $n \geq N, g_{n}(x) \notin M_{v}$.

Suppose that (*) is not the case. Then there is a point $x \in X$ and positive integers N and n with $n \geq N$ such that $g_{N}(x) \notin M_{v}$ but $g_{n}(x) \in M_{v}$. However, this implies that $g_{N}(x)=g_{N}^{n} g_{n}(x) \in M_{v}$, which is a contradiction.

Hence, by ($*$) and the fact that $g_{n}^{n+1}\left(M_{v}\right) \subseteq M_{v}$ for each $n \geq 1$, we may choose a positive integer m such that g_{m} is an ε-mapping and so that either
i) $g_{n}\left(f\left(p_{v}\right)\right) \in L_{1}(v)$ for $n \geq m$ or
ii) $g_{n}\left(f\left(p_{v}\right)\right) \in M_{v}$ for $n \geq m$.

Note that $g_{n}\left(f\left(p_{v}\right)\right) \neq v$, for $n \geq m$, since g_{m} is an $\varepsilon-$ mapping and $v=g_{n}\left(p_{v}\right)$. Since $g_{n}^{n+1}\left(L_{i}(v)\right)=L_{i}(v)$ for $n \geq 1$ and $2 \leq i \leq k_{v}$, it follows that if $g_{n}\left(f\left(p_{v}\right)\right) \in M_{v}$ for $n \geq m$, then there is an integer $2 \leq j \leq k_{v}$ such that $g_{n}\left(f\left(p_{v}\right)\right) \in L_{j}(v)$ for $n \geq m$. So, in fact, we have that there is an integer $1 \leq i \leq k_{v}$ such that $g_{n}\left(f\left(p_{v}\right)\right) \in I_{i}(v)$ for $n \geq m$.

Let δ be a positive number such that if $x \in X$ and $d\left(x, p_{v}\right)<\delta$, then $g_{m} f(x) \in L_{i}(v)$. Let $n \geq m$ and large enough so that g_{n} is a δ-mapping. Since $p_{v} \in g_{n}^{-1}(v)$ and $\operatorname{diam}\left(g_{n}^{-1}(v)\right)<\delta$, it follows that if $x \in g_{n}^{-1}(v)$, then $d\left(x, p_{v}\right)<\delta$ and $g_{m} f(x) \in L_{i}(v)$. Thus, $g_{m} f_{n}^{-1}(v) \subseteq L_{i}(v)$. Now, if $i=1$, then by $(*), g_{n} f g_{n}^{-1}(v) \subseteq L_{1}(v)$. If $i \neq 1$, we get that $g_{n} \mathrm{fg}_{\mathrm{n}}^{-1}(\mathrm{v}) \subseteq \mathrm{L}_{1}(v) \cup \mathrm{L}_{\mathrm{i}}(\mathrm{v})$.

We have shown that for each branchpoint v of T, there is a positive integer m_{v} and an integer $1 \leq i_{v} \leq k_{v}$ such that for $n \geq m^{\prime}$,

$$
\begin{align*}
& g_{n}\left(f\left(p_{v}\right)\right) \in L_{i_{v}}(v), \quad \text { and } \tag{1}\\
& g_{n} f g_{n}^{-1}(v) \subseteq L_{1}(v) \cup L_{i_{v}}(v) . \tag{2}
\end{align*}
$$

Let $N=\max \left\{m_{v} \mid v\right.$ is a branchpoint of $\left.T\right\}$. For $n \geq N$, and v a branchpoint of T, let

$$
F_{n}(v)= \begin{cases}g_{n} f g_{n}^{-1}(v) & \text { if } g_{n} f g_{n}^{-1}(v) \text { inter- } \\ & \text { sects only one of } \\ g_{n} f g_{n}^{-1}(v) \cap L_{i_{v}}(v) & L_{1}(v) \text { and } L_{i v}(v), \\ \text { otherwise. }\end{cases}
$$

For $n \geq N$ and e an endpoint of T, let $F_{n}(e)=. g_{n} f g_{n}^{-1}(e)$. By our lemma, for each $n \geq N$, there are adjacent vertices v and w of T such that $F_{n}(v) \subseteq \overline{T(v, w]}$ and $F_{n}(w) \subseteq \overline{T(w, V]}$. By the finiteness of the set of all pairs of adjacent vertices in T, we can pick an increasing number sequence $\left\{n_{i}\right\}_{i=1}^{\infty}$ and a pair of adjacent vertices v and w such that for each $i \geq 1, F_{n_{i}}(v) \subseteq \overline{T(v, w]}$ and $F_{n_{i}}(w) \subseteq \overline{T(w, v]}$. Let S be a partial order on T that is consistent with the metric on T and such that v is the least element of $\overline{T(v, w]}$ and w is the maximum element of $\overline{T(w, V)}$.

The remainder of the proof involves three cases.

Case 1. $\left\{g_{n_{i}} f_{g_{i}}^{-1}(v)\right\}_{i=1}^{\infty}$ eventually intersects only one of $L_{1}(v)$ and $L_{i_{v}}(v)$, and $\left\{g_{n_{i}} f_{g_{i}}^{-1}(w)\right\}_{i=1}^{\infty}$ eventually intersects only one of $L_{1}(w)$ and $L_{i}(w)$.

In this case, by definition, $F_{n_{i}}(v)=g_{n_{i}} f_{n_{i}}^{-1}(v)$ and $F_{n_{i}}(w)=g_{n_{i}} f g_{n_{i}}^{-1}(w)$ for all i beyond some integer. It follows from Theorem 1 that f has a fixed point, which is a contradiction.

Case 2. $\left\{g_{n_{i}} \text { fg }_{n_{i}}^{-1}(v)\right\}_{i=1}^{\infty}$ frequently intersects both of $L_{1}(v)$ and $L_{i_{v}}(v)$ and $\left\{g_{n_{i}} f_{g_{i}}^{-1}(w)\right\}_{i=1}^{\infty}$ frequently intersects both of $L_{1}(w)$ and $L_{i_{w}}(w)$.

We observe that if $i_{v} \neq 1$ and $g_{r} f g_{r}^{-1}(v)$ intersects $L_{i_{v}}(v)$ for any integer r, then $g_{k} f g_{k}^{-1}(v)$ intersects $L_{i_{v}}(v)$ for each integer $k \leq r$. To see this, let $k \leq r$ and first notice that $g_{r}^{-1}(v) \subseteq g_{k}^{-1}(v)$ since v is fixed by all bonding mappings. Thus, $g_{r} f g_{r}^{-1}(v) \subseteq g_{r} f g_{k}^{-1}(v)$. So, there is a point x in $L_{i_{v}}(v) \cap g_{r} f g_{k}^{-1}(v)$. Since $i_{v} \neq 1$, $g_{k}^{r}(x) \in L_{i}(v)$. Hence, $g_{k}^{r}\left(g_{r} f g_{k}^{-1}(v)\right)=g_{k} f g_{k}^{-1}(v)$ intersects $L_{i v}(v)$.

By our assumption in this case, $i_{v} \neq 1$ and $i_{w} \neq 1$. Hence, since $\left\{g_{n_{i}} f_{g_{i}}^{-1}(u)\right\}_{i=1}^{\infty}$ frequently intersects $L_{i_{u}}(u)$ for $u \in\{v, w\}$, it follows from our observation in the preceding paragraph that $\left\{g_{n} f g_{n}^{-1}(u)\right\}_{i=1}^{\infty}$ intersects $L_{i_{u}}(u)$ for all $n \geq 1$. So, by definition, $F_{n}\left(u^{\prime}\right) \subseteq L_{i_{u}}(u)$ for all $n \geq 1$ and $u \in\{v, w\}$. It follows that $L_{i_{v}}(v)=T(v, w]$ and $L_{i_{w}}(w)=T(w, v]$. Hence, for each $n \geq 1, g_{n}^{n+1}(T(v, w])=$ $T(v, w]$ and $g_{n}^{n+l}(T(w, v])=T(w, v]$. It follows that for $n \geq 1, G_{n}^{n+1}([v, w])=[v, w]$.

Let $\left.c=\underset{+}{\lim \{[v, w]},\left.g_{n}^{n+1}\right|_{[v, w]}\right\}$. Now, C is an arc-
like continuum containing the points p_{v} and p_{W}. Recall that for each $n \geq m_{v}, g_{n} f\left(p_{v}\right) \in L_{i_{v}}(v)=T(v, w]$ and for $n \geq m_{w}, g_{n} f\left(p_{w}\right) \in L_{i_{w}}(w)=T(w, v]$. Let n be large enough
so that $n \geq \max \left\{m_{v}, m_{w}\right\}$ and g_{n} is an ε-mapping. Let

$$
R=\left\{x \in C \mid g_{n}(x)<g_{n} f(x)\right\}
$$

and

$$
s=\left\{x \in C \mid g_{n}(x)>g_{n} f(x)\right\}
$$

Clearly, $R \cup S=C, R$ and S are open disjoint sets in C, $p_{v} \in R$, and $p_{w} \in S$. But then C is not connected, which is a contradiction.

Case 3. $\quad\left\{g_{n_{i}}{\left.f g_{n_{i}}^{-1}(v)\right\}_{i=1}^{\infty}}\right.$ eventually intersects only one of $L_{1}(v)$ and $L_{i_{v}}(v)$, and $\left\{g_{n_{i}} f_{g_{n_{i}}^{-1}}(w)\right\}_{i=1}^{\infty}$ frequently intersects both of $L_{1}(w)$ and $L_{i_{w}}(w)$.

As in Case 2, it follows that $i_{w} \neq 1, L_{i_{w}}(w)=$ $T(w, v]$, and $F_{n}(w) \subseteq T(w, v]$ for all $n \geq 1$.

Now, if $i_{v} \neq 1$ and $\left\{g_{n_{i}} f_{n_{i}}^{-1}(v)\right\}_{i-1}^{\infty}$ is frequentiy a subset of $L_{i_{v}}(v)$, then the argument beginning with the second paragraph in Case 2 applies and we are done. So, we may assume that $\left\{g_{n_{i}}{\left.f g_{n_{i}}^{-1}(v)\right\}_{i=1}^{\infty}}^{\text {is eventually a subset }}\right.$ of $L_{1}(v)$. Thus, for all i beyond some integer, $F_{n_{i}}(v)=$ $g_{n_{i}} f g_{n_{i}}^{-1}(v)$, and it follows that $L_{l}(v)=T(v, w]$. We may choose an integer n large enough so that $n \geq m_{w}$, $g_{n} f g_{n}^{-1}(v) \subseteq \overline{T(v, w]}, g_{n} f g_{n}^{-1}(w) \cap T(w, v] \neq \varnothing$, and g_{n} is an $\frac{\varepsilon}{2}$-mapping. Let δ be a positive number such that $d(x, y) \geq \varepsilon$ in x implies that $p\left(g_{n}(x), g_{n}(y)\right) \geq \delta$ in T. Let V be an open set in X such that $g_{n}^{-1}(v) \subseteq v$, diam $\bar{V}<\varepsilon$, and if $x \in V$, then $g_{n} f(x) \in T(v, w]$ and
$p\left(g_{n}(x), v\right)<\frac{\delta}{2} . \quad$ Let $M=\lim \left\{\overline{T(w, v]},\left.g_{i}^{i+1}\right|_{\bar{T}(w, v]}\right\}$, and let C be the component of $M-V$ that contains P_{W}. Recall that $g_{n} f\left(p_{w}\right) \in L_{i_{i}}(w)=T(w, v]$ since $n \geq m_{w}$. Now, C must intersect the boundary of V at some point y. We point out that $g_{n}(C) \subseteq \overline{T(v, w]}$. For if not, there is a point $x \in C$ such that $g_{n}(x) \in T(w, v]-[v, w]$. Also, $p_{w} \in C$ and $g_{n}\left(p_{w}\right)=w$. Since C is connected and g_{n} is continuous, it follows that there is a point of C that is also in $g_{n}^{-1}(v) \subseteq v$, a contradiction.

Furthermore, $g_{n}(C) \subseteq \overline{T(w, V]}$ simply because $C \subseteq M$. It follows that $g_{n}(C) \subseteq[v, w]$. Let

$$
R=\left\{x \in C \mid g_{n}(x)<g_{n} f(x)\right\}
$$

and

$$
s=\left\{x \in C \mid g_{n}(x)>g_{n} f(x)\right\}
$$

Clearly, $R \cup S=C$, and R and S are disjoint open sets in C. We will show that $y \in R$ and $p_{w} \in S$.

Now, $p_{w} \in s$ since $g_{n}\left(p_{w}\right)=w$ and $g_{n} f\left(p_{w}\right) \in T(w, v]$.
Suppose $y \notin R$. Then $y \in S$ and $g_{n}(y)>g_{n} f(y)$.
Since $y \in \bar{v}, p\left(g_{n}(y), v\right) \leq \frac{\delta}{2}$, and $g_{n} f(y) \in \overline{T(v, w]}$. Hence, we must have that $g_{n} f(y) \in[v, w]$ and that $p\left(g_{n} f(y), g_{n}(y)\right)$ $\leq \frac{\delta}{2}<\delta$. But by choice of $\delta, d(y, f(y)) \geq \varepsilon$ implies that $p\left(g_{n}(y), g_{n} f(y)\right) \geq \delta$, a contradiction.

But now we have that C is not connected, which is a contradiction.

References

[1] D. Bellamy, A tree-like continuum without the fixed point property, Houston J. Math. 6(1979), l-14.
[2] C. A. Eberhart and J. B. Fugate, Weakly confluent maps on trees, General Topology and Modern Analysis, Academic Press, New York (1981), 209-215.
[3] C. L. Hagopian, Fixed points of are-component preserving maps, Trans. AMS 306(1988), 411-420.
[4] , Fixed points of tree-like continua, Contemporary Math. 72(1988), 131-137.
[5] O. H. Hamilton, A fixed point theorem for pseudo arcs and certain other metric continua, Proc. AMS 2(1951), 173-174.
[6] S. Mardesic and J. Segal, e-mappings onto polyhedra, Trans. AMS 109(1963), 146-164.
[7] M. M. Marsh, A fixed point theorem for inverse limits of fans, Proc. AMS 91(1984), \#l, 139-142.
[8] \qquad , A fixed point theorem for inverse limits of simple n-ods, Topology and Its Applications 24(1986), 213-216.
[9] \qquad , u-mappings on trees, Pacific Journal of Math l27(1987), \#2, 373-387.

California State University
Sacramento, California 95819-6051

