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€ -MAPPINGS ONTO A TREE AND THE 

FIXED POINT PROPERTY 

M. M. Marsh 

In 1979 David Bellamy [lJ showed that there exist 

tree-like continua which admit fixed point free mappings. 

There has been interest since that time in determining 

conditions under which a tree-like continuum will have the 

fixed point property. A few results of this nature can be 

found in [2 J, [3 J, [4 J, [7 J, [8 J, and [9 J . However, it 

is still unknown if a simple triod-like continuum must 

have the fixed point property. This paper establishes 

several fixed point related theore~s for T-like continua, 

where T is a fixed tree. Corollary 3 gives a necessary 

condition for a T-like continuum to admit a fixed point 

free mapping, and Theorem 2 generalizes the fixed point 

theorem in [7J. 

A continuum is a nondegenerate compact connected 

metric space. A continuous function will be referred to 

as a map or mapping. A continuum X has the fixed point 

property provided that whenever f is a mapping of X into 

itself, there is a point x in X such that f(x) =x. A 

tree is a finite connected, simply connected graph. If 

E is a positive number, the mapping f: X ~ Y is an s

mapping if diam(f-1(y)) < E for each y E Y. If H is a 

family of continua, we say that the continuum X is H-like 

provided that, for each positive number s, there is an 
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E-mapping of X onto a member of H. For example, if H is 

the family of all trees, we simply say that X is tree-like; 

or if H is a set whose only member is the continuum T, 

we say that X is T-like. 

Let T be a tree. The point vET is a branchpoint 

(an endpoint) of T if T - {v} has at least three components 

(only one component). If v is either a branchpoint or an 

endpoint of T, we say that v is a vertex of T. If v and 

ware points of T, let [v,w] denote the arc in T with 

endpoints v and w, and let T(v,w] denote the component of 

T - {v} that contains w. 

Lemma. Let F be a function from the vertex set of 

the tree T into the set of all subsets of T. If for each 

vertex v of T, F(v) is a subset of the closure of some 

component of T - {v}~ then there exist neighboring 

(adjacent) vertices v and w in T such that F(v) ~ T(V,w] 

and F(w) ~ T(W,v]. 

Proof. Let v be any branchpoint of T and let C
l l 

be the component of T - {Vi} such that F(Vi ) is a subset 

of Cl - Let v 2 be the vertex of C that is adjacent to vII 

So, C T(vI ,v ]. If F(v2)~ T(v ,VI ], then v l and v 2I 2 2 

have the desired properties_ Otherwise, v must be a2 

branchpoint of T and there is a component C of T - {v }2 2

such that C2 ~ T(v2 ,v1 ] and F(V2 ) ~ C2 - Now, C2 ~ C1 and 

C contains fewer branchpoints than C Since C has1 2 1 

finitely many branchpoints, a repetition of the process 

above must yield adjacent vertices with the desired 

properties. 
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We introduce the following terminology. Given 

a sequence {Fn}~=l' to say that 

{F }oo 1 frequentZ u has some property means that for n n= ". ;;; 

each positive integer N, there is an integer n ~ N 

such that F has the property,
n 

and to say that 

{Fn}~=l eventuaZZy has some property means that there 

is a positive integer N such that if n > N, then F n 

has the property. 

We are now ready for our main theorems. 

Theorem 1. Suppose that T is a tree, X is T-Zike, 

and for each n > 1, gn: X ~ T is a on-mapping onto T, 

where {on}~=l converges to zero. If f: X ~ X is a mapping, 

{ni}:=l is an increasing sequence of positive integers, 

and there are adjacent vertices v and w of T such that 

-1 00

{gnifgni (v)}i=l is eventuaZZy a subset of T(v,w] and 

{g fg-l(w)}~ 1 is eventuaZly a subset of T(w,v], then f 
n i ni 1.= 

has a fixed point. 

Proof. Suppose that f is fixed point free. Let d 

denote the metric on X. Assume that each edge of T has 

length one and let p denote the "arc length" metric on T. 

Let E be a positive number such that d(x,f(x» > E for 

each x E X. 

Fix n large enough so that gn is an ~-mapping, 

-1 -1
gnfgn (v) ~ T(v,w], and gnfgn (w) ~ T(w,v]. Since gn is 
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E -1 
an i-mapping, it follows that t ~ gnfgn (t) for any 

t E T. So, we have that g fg- 1 (v) C T(v,w] and gnfgn-1(W)n n 

C T(w,v]. 

Let 0 < 0 < 1 such that if d(x,y) ~ E, then 

p(gn(x) ,gn(y)) > o. That such a 0 exists is easily seen 

(argument by contradiction). 

-1
Let V be an open set in X such that gn (v) ~ V, 

diamV < E, and if x E V, then g f(x) E T(V,w] and n 

p(gn(x),v) < 
o2. Similarly, let W be an open set in X 

-1 such that gn (w) ~ W, diamW < E, and" if x E W, then 

gnf(x) E T(w,v] and p(gn(x),w) < 2.o 

-1Pick any point q in gn (w) and let L be the component 

of X - V that contains q. Now, L must intersect the 

boundary of V at some point y. We point out that 

g (L) C T(v,w]. For if not, there is a point x E L such 
n -

that gn(x) E T(w,v] - (v,w]. Also, q ELand gn(q) w. 

Since L is connected and gn is continuous, it follows that 

-1there is a point of L that is also in gn (v) C V, a con

tradiction. 

Let K be the component of L - W that contains y. Let 

z be a point of the boundary of W that is also in K. As 

above, gn(K) ~ T(w,v]. For if not, there is a point 

x E K such that gn(x) E T(V,w] - [v,w) • Since y E V, 

gn(Y) E T (w,v]. Now, Y is also in Kj hence, there is a 

point of K that is also in gn 
-1 

(w) ~ W, a contradiction. 

Since K ~ L, we get that gn(K) ~ (v,w). Let 

R = {x E KI gn(x) separates gnf(x) from v in T} 
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and 

S = {x E Kl 9 (x) separates 9 f(x) from w in T}.n n 

Clearly, R U S = K, and Rand S are disjoint open sets in 

K. We will show that y E Rand z E S. 

Suppose that y ~ R. Then yES and gn(y) must 

separate gnf(y) from w in T. Since y E V, peg
n 

(y),v) < ~ 
2 

and gnf(y) E T(v,wJ. Hence, we must have that gnf(y) E 

[v,w] and that peg f(y),g (y» < ~ < o. But, by choice 
n n - 2 

of 0, d(y,f(y» ~ E implies that p(gn(y) ,gnf(y» > 8, 

a contradiction. 

A symmetric argument gives us that z E S. But then 

K is not connected, which is a contradiction. 

Since an arc is a tree with exactly two vertices, 

namely its endpoints, we get Hamilton's [5] fixed point 

theorem as an immediate corollary. 

CoroZZary 1. If X is an arc-Zike continuum~ then X 

has the fixed point property. 

CoroZZary 2. Suppose that T is a simpZe k-od with 

branchpoint v, X is T-Zike~ and for each n ~ l~ gn: X ~ T 

is a on-mapping onto T~ where {on}~=l converges to zero. 

If f: X ~ X is a fixed point free mapping~ then 
-1 00

{gnfgn (v)}n=l eventuaZZy intersects two components of 

T - {v}. 
-1 00

Proof· Suppose that {gnfgn (v)}n=l does not eventu

ally intersect two components of T - {v}. Then there is 

a component L 0 f T at gn gn v n=l·- {v} such th { f -I( )}oo ;s 
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frequently a subset of L. Let e be the endpoint of T 

that belongs to L. Then v and e are adjacent vertices 

of T. Also, {gnfg~l(e)}~=l is a subset of T(e,v] for all 

n > 1 since T(e,v] = T - te} T. It follows from 

Theorem 1 that f has a fixed point, which is a contradic

tion. 

Coro~Zary 3. Suppose that T is a tree, X is T-~ike, 

and for eaah n ~ 1, gn: X ~ T is a on-mapping onto T, 

where {on}~=l converges to zero. If f: X ~ X is a fixed 

point free mapping, then there is a branchpoint v of T 
-1 00

such that {gnfgn (v)}n=l frequent~y intersects two com

ponents of T - {v}. 

Proof. By way of contradiction, we assume that for 

each branchpoint v of T, there is a positive integer N v 
-1

such that if n > N ' then gnfgn (v) is a subset of the v 

closure of some component of T - {v}. 

Let N = max{N I v is a branchpoint of T} and fix v 

n > N. We recall that if e is an endpoint of T and v is 

-1the vertex of T adjacent to e, then gnfgn (e) C T(e,vJ. 

Hence, by the lemma, there exist adjacent vertices v and 

-1 -1 
w in T such that gnfgn (v) ~ T(V,w] and gnfgn (w) ~ T(w,v]. 

So, if n ~ N, we may associate with n a pair of adjacent 

vertices in T that have the properties above. Since there 

are only finitely many pairs of adjacent vertices in T, 

it follows that there is an increasing sequence {ni}~=l' 

each term of which is associated with the same pair of 

adjacent vertices. By Theorem 1, f has a fixed point, 

which is a contradiction. 
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Our next theorem generalizes, in the case of finite 

fans, the fixed point result in [7J. 

Theorem 2. Let T be a tree~ and for each branchpoint 

v of T, Zet {Li(V)}~~l be a ZabeZing of the components of 

T - {v}. If X = 1im{T,9n+1}~ where for each n > 1 and 
+ n 

n+1
each	 branchpoint v of T~ gn (Li(V» = Li(V) for 

2 <	 i ~ kv~ then X has the fixed point property. 

Proof. Let d denote the metric on X and, for each 

n > 1, let gn be the projection mapping of X anto T. Now, 

X is T-1ike and for E > 0, n can be chosen so that gn is 

an E-mapping (see [6J). 

By way of contradiction, we assume that f is a fixed 

point free mapping on X and that E is a positive number 

such that d(x,f(x» ~ E for each x E X. 

Let	 v be any branchpoint of T. We notice that 
n+1 

gn (v) = v for each n > 1. So, let Pv be the point of 

X such that gn(pv) = v for each n > 1. Also, let M 
v 

kv~
Ui =2Li\v). We further observe that 

(*)	 if x E X and there is an integer N such that gN(x) 

is not in Mv ' then for n > N, gn(x) ~ Mv . 

Suppose that (*) is not the case. Then there is a point 

x E X and positive integers Nand n with n > N such that 

gN(X) ~ Mv but gn(x) E Mv • However, this implies that 

gN(x) g~gn(x) E M ' which is a contradiction.v 
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Hence, by (*) and the fact that g~+I(Mv) ~ M forv 

each n > 1, we may choose a positive integer m such that 

gm is an s-mapping and so that either 

i) gn(f(pv» E L1 (V) for n ~ m or 

ii) gn(f(pv» E M for n > m. v 

Note that gn (f (pv) ) ~ v, for n ~ m, since gm is an s-

mapping and v gn(pv) · Since gn+1 (L. (v) ) = L (v) for 
n ~ i 

n > 1 and 2 < i < it follows that if gn (f(pv)} E M - k v' v 

for n ~ ro, then there is an integer 2 ~ j ~ k such that v 

gn(f(pv)} E L (v) for n > m. So, in fact, we have that
j 

there is an integer 1 < i ~ k such that gn(f(pv» E Li(V)v 

for n > m. 

Let 0 be a positive number such that if x E X and 

d(x,pv) < 0, then gmf(x) E Li(V). Let n > m and large 

-1
enough so that gn is a a-mapping. Since Pv E gn (v) and 

diam(g~l(v» < 0, it follows that if x E g~I(V), then 

-1
d(x,pv) < 0 and gmf(x) E Li(V). Thus, grofgn (v) C Li(V). 

Now, if i 1, then by (*), gnfgn-1 (v) ~ L1 (v}. If i ~ 1, 

we get that gnfgn
-1 

(v) ~ L1 (V) U Li(V). 

We have shown that for each branchpoint v of T, there 

is a positive integer m and an integer 1 ~ i < k such v v v 

that for n ~ m ' v 

(1) 

(2) 
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Let N rnax{rnvl v is a branchpoint of T}. For n ~ N, 

and v a branchpoint of T, let 

gnfgn
-1

(v)	 if gnfgn
-1 

(v) inter
Fn(V) 

sects only one of 

gnfgn
-1

(v) n L. (v) L
1 

(v) and L.(v), 
~v	 ~v 

otherwise. 

-1
For n > Nand e an endpoint of T, let Fn fe) = I'gnfg~ (e). 

By our lemma, for each n ~ N, there are adjacent vertices 

v and w of T such that F (v) ~ T(V,w] and F (w) CT(W,v]. 
~	 n -

By the finiteness of the set of all pairs of adjacent 

vertices in T, we can pick an increasing number sequence 

{ni}~=l'and a pair of adjacent vertices v and w such that 

for each i ~ 1, F . (v) S T(V,w] and F . (w) ~ T(w,v]. Let n	 n 
~	 ~ 

< be a partial order on T that is consistent with the 

metric on T and such that v is the least element of 

T(V,w] and w is the maximum element of T(w,v]. 

The remainder of the proof involves three cases. 

-1 00
Case 1. {gn.fgn. (v)}i=l eventually intersects only 

1.	 1. 
-1 00 

one of Ll(V) and L. (v), and {gn.fgn. (w)}i=l eventually 
~v ~ ~ 

intersects only one of L
1 

(W) and L i (w). 
w 

-1In this case, by definition, F (v) 9 fg (v) and 
n in i n i 

F (w) = 9 fg-l(w) for all i beyond some integer. It ni n i n i 

follows from Theorem 1 that f has a fixed point, which is 

a contradiction. 
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Case 2. {gn.fg~~(V) }:=l frequently intersects both 
J. J. 

of L1(V) and L. (v) and {gn.fg~~(W)}~=l frequently inter-
J. v J. J. 

sects both of L1(W) and Li (w). 
W 

-1
We observe that if i ~ 1 and grfgr (v) intersects v 

-1
L. (v) for any integer r, then gkf9k (v) intersects L. (v)

J. J.v v 
for each integer k < r. To see this, let k ~ r and first 

-1 -1
notice that gr (v) C gk (v) since v is fixed by all 

-1 -1
bonding mappings. Thus, grfgr (v) ~ grfgk (v). So, there 

is a point x in Li (v) n grfgk
-1 

(v). Since i ~ 1,v 
v
 

r r -1 -1

9k(x) E Liv(V). Hence, gk(grfgk (v» gkf9k (v) inter

sects L (v) · 
iv 

By our assumption in this case, i ~ 1 and i ~ 1. v w 
-1

Hence, since {g fg (u)}.
00 

1 frequently intersects L. (u)n J.= J.n i i u 

for u E {v,w}, it follows from our observation in the pre

-1 00
ceding paragraph that {gnfgn (u)}i=l intersects L. (u) for 

J. u 

all n > 1. So, by definition, F (u) C L. (u) for all 
n - J. 

U 

n > land u E {v,w}. It follows that L. (v) = T(v,w] and 
J. v 

Li ()w = T(w,v.] Hence, f or each n > 1, ngn+1(T(V,W]) 
w 

T(V,w] and gn+l(T(W,v]) = T(w,v]. It follows that for 
n 

n > 1, gn+l([v,w]) = [v,w].
n 

Let C = lim{[v,w], gn+1 1 [ ]}. Now, C is an arc
+ n v,w 

like continuum containing the points Pv and pw. Recall 

that for each n ~ rn ' gnf(pv) E L. (v) = T(V,w] and for v J. v 

n ~ rnw' gnf(pw) E Li (w) = T(w,v]. Let n be large enough 
w 
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so that n > maxim ,m } and 9 is an s-mapping. Let v w n 

R = {x E cl gn(x) < gnf(x)} 

and 

Clearly, R U S C, Rand S are open disjoint sets in C, 

pv E R, and Pw E S. But then C is not connected, which 

is a contradiction. 

-1 ~ 
Case 3. {gn.fgn. (v)}i=l eventually intersects only 

~ ~ 

one of Ll(v) and L. (v), and {gn.fg~~(W)}:=l frequently 
1 v ~ ~ 

intersects both of L (W) and L (w).
1 i w 

As in Case 2, it follows that i ~ 1, L. (w)
W 1 w 

T(w,V], and Fn(W) C T(w,v] for all n > 1. 

-1 ~ 
Now, if i ~ 1 and {gn.fgn. (v)}i-1 is frequently av 

1 1 

subset of L. (v), then the argument beginning with the
1 

V 

second paragraph in Case 2 applies and we are done. So, 

-1 ~ 
we may assume that {gn.fgn. (v)}i=l is eventually a subset 

1 1 

of Ll(V). Thus, for all i beyond some integer, F(v) = n i 
-1

gn.fgn. (v), and it follows that Ll(V) = T(V,w]. We may 
~ 1 

choose an integer n large enough so that n ~ mw' 

-1 -1
gnfgn (v) C T(v,w], gnfgn (w) n T(w,v] ~ ~, and gn is an 

~-mapping. Let 0 be a positive number such that 

d(x,y) ~ E in X implies that p(gn(x), gn(y» ~ 0 in T. 

-1
Let V be an open set in X such that gn (v) ~ V, 

diamV < E, and if x E V, then 9 f(x) E T(V,w] and 
n 
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p(gn(X),v) <~. Let M = l:m{T(W,V],g~+lIT(W,vj}' and let 

C be the component of M - V that contains pw. Recall that 

gnf(pw) E L (w) = T(w,V] since n > m . Now, C must inter
i	 w 

w 
sect the boundary of V at some point y. We point out that 

9 (C) C T(V,w]. For if not, there is a point x E C such 
n -

that gn(x) E T(w,v] - [v,w]. Also, Pw E C and gn(pw) = w. 

Since C is connected and gn is continuous, it follows that 

-1
there is a point of C that is also in gn (v) ~ V, a con

tradiction. 

Furthermore, 9 (C) C T(w,v] simply because C C M. 
n	 -

It follows that gn(C) ~ [v,w]. Let 

R = {x E ci gn(x) < gnf(x)} 

and 

s = {x E cl gn(x) > gnf(x)}. 

Clearly, R U S = C, and Rand S are disjoint open sets in 

C.	 We will show that y E Rand Pw E S. 

Now, Pw E S since 9 (p) wand 9 f(p ) E T(w,v].
n wnw 

Suppose y ~ R. Then yES and gn(y) > gnf(y). 

Since y E V, p(gn(Y)~v) ~ 2'o and, gnf(y) E T(V,wJ. Hence, 

we must. have that gnf(y) E [v,w] and that p(gnf(y),gn(y» 

~ 2o 
< o. But by choice of 0, d(y,f(y» > E implies that 

p(gn(y) ,gnf(y» ~ 0, a contradiction. 

But now we h~ve that C is not connected, which is a 

contradiction. 
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