TOPOLOGY PROCEEDINGS

Volume 14, 1989

Pages 265-277

http://topology.auburn.edu/tp/

ϵ -MAPPINGS ONTO A TREE AND THE FIXED POINT PROPERTY

by

M. M. Marsh

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ϵ -MAPPINGS ONTO A TREE AND THE FIXED POINT PROPERTY

M. M. Marsh

In 1979 David Bellamy [1] showed that there exist tree-like continua which admit fixed point free mappings. There has been interest since that time in determining conditions under which a tree-like continuum will have the fixed point property. A few results of this nature can be found in [2], [3], [4], [7], [8], and [9]. However, it is still unknown if a simple triod-like continuum must have the fixed point property. This paper establishes several fixed point related theorems for T-like continua, where T is a fixed tree. Corollary 3 gives a necessary condition for a T-like continuum to admit a fixed point free mapping, and Theorem 2 generalizes the fixed point theorem in [7].

A continuum is a nondegenerate compact connected metric space. A continuous function will be referred to as a map or mapping. A continuum X has the fixed point property provided that whenever f is a mapping of X into itself, there is a point x in X such that f(x) = x. A tree is a finite connected, simply connected graph. If ε is a positive number, the mapping $f\colon X \to Y$ is an ε -mapping if $\operatorname{diam}(f^{-1}(y)) < \varepsilon$ for each $y \in Y$. If H is a family of continua, we say that the continuum X is H-like provided that, for each positive number ε , there is an

 ϵ -mapping of X onto a member of H. For example, if H is the family of all trees, we simply say that X is tree-like; or if H is a set whose only member is the continuum T, we say that X is T-like.

Let T be a tree. The point $v \in T$ is a branchpoint (an endpoint) of T if T - $\{v\}$ has at least three components (only one component). If v is either a branchpoint or an endpoint of T, we say that v is a vertex of T. If v and w are points of T, let [v,w] denote the arc in T with endpoints v and w, and let T(v,w] denote the component of T - $\{v\}$ that contains w.

Lemma. Let F be a function from the vertex set of the tree T into the set of all subsets of T. If for each vertex v of T, F(v) is a subset of the closure of some component of T - {v}, then there exist neighboring (adjacent) vertices v and w in T such that $F(v) \subseteq \overline{T(v,w)}$ and $F(w) \subseteq \overline{T(w,v)}$.

Proof. Let v_1 be any branchpoint of T and let C_1 be the component of T - $\{v_1\}$ such that $F(v_1)$ is a subset of $\overline{C_1}$. Let v_2 be the vertex of C_1 that is adjacent to v_1 . So, $C_1 = T(v_1, v_2]$. If $F(v_2) \subseteq \overline{T(v_2, v_1]}$, then v_1 and v_2 have the desired properties. Otherwise, v_2 must be a branchpoint of T and there is a component C_2 of T - $\{v_2\}$ such that $C_2 \neq T(v_2, v_1]$ and $F(v_2) \subseteq \overline{C_2}$. Now, $C_2 \subseteq C_1$ and C_2 contains fewer branchpoints than C_1 . Since C_1 has finitely many branchpoints, a repetition of the process above must yield adjacent vertices with the desired properties.

We introduce the following terminology. Given a sequence $\{F_n\}_{n=1}^{\infty}$, to say that

 $\left\{\mathbf{F}_{\mathbf{n}}\right\}_{\mathbf{n}=1}^{\infty}$ frequently has some property means that for each positive integer N, there is an integer $n \ge N$ such that F has the property,

and to say that

 $\left\{\mathbf{F}_{\mathbf{n}}\right\}_{\mathbf{n}=1}^{\infty}$ eventually has some property means that there is a positive integer N such that if $n \ge N$, then F_n has the property.

We are now ready for our main theorems.

Theorem 1. Suppose that T is a tree, X is T-like, and for each $n \ge 1$, $g_n: X \to T$ is a δ_n -mapping onto T, where $\{\delta_n\}_{n=1}^{\infty}$ converges to zero. If f: X + X is a mapping, $\{n_i\}_{i=1}^{\infty}$ is an increasing sequence of positive integers, and there are adjacent vertices v and w of T such that $\{g_{n_i} fg_{n_i}^{-1}(v)\}_{i=1}^{\infty}$ is eventually a subset of $\overline{T(v,w)}$ and $\{g_{n}^{-}, fg_{n}^{-1}, (w)\}_{i=1}^{\infty}$ is eventually a subset of $\overline{T(w,v)}$, then f has a fixed point.

Proof. Suppose that f is fixed point free. Let d denote the metric on X. Assume that each edge of T has length one and let p denote the "arc length" metric on T. Let ε be a positive number such that $d(x, f(x)) > \varepsilon$ for each $x \in x$.

Fix n large enough so that g_n is an $\frac{\varepsilon}{2}$ -mapping, $g_n f g_n^{-1}(v) \subseteq \overline{T(v,w)}$, and $g_n f g_n^{-1}(w) \subseteq \overline{T(w,v)}$. Since g_n is

an $\frac{\varepsilon}{2}$ -mapping, it follows that $t \not\in g_n f g_n^{-1}(t)$ for any $t \in T$. So, we have that $g_n f g_n^{-1}(v) \subseteq T(v,w]$ and $g_n f g_n^{-1}(w) \subseteq T(w,v]$.

Let $0 < \delta < 1$ such that if $d(x,y) \ge \epsilon$, then $p(g_n(x),g_n(y)) \ge \delta.$ That such a δ exists is easily seen (argument by contradiction).

Let V be an open set in X such that $g_n^{-1}(v) \subseteq V$, $\operatorname{diam} \overline{V} < \varepsilon$, and if $x \in V$, then $g_n^{-1}(x) \in T(v,w]$ and $p(g_n^{-1}(x),v) < \frac{\delta}{2}$. Similarly, let W be an open set in X such that $g_n^{-1}(w) \subseteq W$, $\operatorname{diam} \overline{W} < \varepsilon$, and if $x \in W$, then $g_n^{-1}(x) \in T(w,v]$ and $p(g_n^{-1}(x),w) < \frac{\delta}{2}$.

Pick any point q in $g_n^{-1}(w)$ and let L be the component of X - V that contains q. Now, L must intersect the boundary of V at some point y. We point out that $g_n(L) \subseteq T(v,w]$. For if not, there is a point $x \in L$ such that $g_n(x) \in T(w,v] - (v,w]$. Also, $q \in L$ and $g_n(q) = w$. Since L is connected and g_n is continuous, it follows that there is a point of L that is also in $g_n^{-1}(v) \subseteq V$, a contradiction.

Let K be the component of L - W that contains y. Let z be a point of the boundary of W that is also in K. As above, $g_n(K) \subseteq T(w,v]$. For if not, there is a point $x \in K$ such that $g_n(x) \in T(v,w] - [v,w)$. Since $y \in \overline{V}$, $g_n(y) \in \overline{T(w,v]}$. Now, y is also in K; hence, there is a point of K that is also in $g_n^{-1}(w) \subseteq W$, a contradiction.

Since K \subseteq L, we get that $g_n(K) \subseteq (v,w)$. Let $R = \{x \in K | g_n(x) \text{ separates } g_nf(x) \text{ from } v \text{ in } T\}$

and

 $S = \{x \in K \mid g_n(x) \text{ separates } g_nf(x) \text{ from w in } T\}.$ Clearly, R \cup S = K, and R and S are disjoint open sets in K. We will show that $y \in R$ and $z \in S$.

Suppose that $y \notin R$. Then $y \in S$ and $g_n(y)$ must separate $g_nf(y)$ from w in T. Since $y \in \overline{V}$, $p(g_n(y),v) \leq \frac{\delta}{2}$ and $g_nf(y) \in \overline{T(v,w]}$. Hence, we must have that $g_nf(y) \in [v,w]$ and that $p(g_nf(y),g_n(y)) \leq \frac{\delta}{2} < \delta$. But, by choice of δ , $d(y,f(y)) \geq \varepsilon$ implies that $p(g_n(y),g_nf(y)) \geq \delta$, a contradiction.

A symmetric argument gives us that $z \in S$. But then K is not connected, which is a contradiction.

Since an arc is a tree with exactly two vertices, namely its endpoints, we get Hamilton's [5] fixed point theorem as an immediate corollary.

Corollary 1. If X is an arc-like continuum, then X has the fixed point property.

Corollary 2. Suppose that T is a simple k-od with branchpoint v, X is T-like, and for each $n\geq 1$, $g_n\colon X \to T$ is a δ_n -mapping onto T, where $\{\delta_n\}_{n=1}^\infty$ converges to zero. If f: X + X is a fixed point free mapping, then $\{g_nfg_n^{-1}(v)\}_{n=1}^\infty \text{ eventually intersects two components of } T-\{v\}.$

Proof. Suppose that $\{g_nfg_n^{-1}(v)\}_{n=1}^{\infty}$ does not eventually intersect two components of T - $\{v\}$. Then there is a component L of T - $\{v\}$ such that $\{g_nfg_n^{-1}(v)\}_{n=1}^{\infty}$ is

frequently a subset of L. Let e be the endpoint of T that belongs to L. Then v and e are adjacent vertices of T. Also, $\{g_nfg_n^{-1}(e)\}_{n=1}^{\infty}$ is a subset of $\overline{T(e,v]}$ for all $n \geq 1$ since $\overline{T(e,v]} = \overline{T-\{e\}} = T$. It follows from Theorem 1 that f has a fixed point, which is a contradiction.

Corollary 3. Suppose that T is a tree, X is T-like, and for each $n \geq 1$, $g_n \colon X + T$ is a δ_n -mapping onto T, where $\left\{\delta_n\right\}_{n=1}^\infty$ converges to zero. If f: X + X is a fixed point free mapping, then there is a branchpoint v of T such that $\left\{g_n f g_n^{-1}(v)\right\}_{n=1}^\infty$ frequently intersects two components of T - $\{v\}$.

Proof. By way of contradiction, we assume that for each branchpoint v of T, there is a positive integer N_v such that if $n \ge N_v$, then $g_n f g_n^{-1}(v)$ is a subset of the closure of some component of T - $\{v\}$.

Let $N=\max\{N_v\big|\ v$ is a branchpoint of $T\}$ and fix $n\geq N$. We recall that if e is an endpoint of T and v is the vertex of T adjacent to e, then $g_nfg_n^{-1}(e)\subseteq \overline{T(e,v]}$. Hence, by the lemma, there exist adjacent vertices v and w in T such that $g_nfg_n^{-1}(v)\subseteq \overline{T(v,w]}$ and $g_nfg_n^{-1}(w)\subseteq \overline{T(w,v]}$. So, if $n\geq N$, we may associate with n a pair of adjacent vertices in T that have the properties above. Since there are only finitely many pairs of adjacent vertices in T, it follows that there is an increasing sequence $\{n_i\}_{i=1}^\infty$, each term of which is associated with the same pair of adjacent vertices. By Theorem 1, f has a fixed point, which is a contradiction.

Our next theorem generalizes, in the case of finite fans, the fixed point result in [7].

Theorem 2. Let T be a tree, and for each branchpoint v of T, let $\{L_i(v)\}_{i=1}^k be$ a labeling of the components of $T - \{v\}$. If $X = \lim_{t \to \infty} \{T, g_n^{n+1}\}$, where for each $n \ge 1$ and each branchpoint v of T, $g_n^{n+1}(L_i(v)) = L_i(v)$ for $2 \le i \le k_v$, then X has the fixed point property.

Proof. Let d denote the metric on X and, for each $n \ge 1$, let g_n be the projection mapping of X onto T. Now, X is T-like and for $\varepsilon > 0$, n can be chosen so that g_n is an ε -mapping (see [6]).

By way of contradiction, we assume that f is a fixed point free mapping on X and that ϵ is a positive number such that $d(x,f(x)) \geq \epsilon$ for each $x \in X$.

Let v be any branchpoint of T. We notice that $g_n^{n+1}(v) = v \text{ for each } n \geq 1. \text{ So, let } p_v \text{ be the point of } X \text{ such that } g_n(p_v) = v \text{ for each } n \geq 1. \text{ Also, let } M_v = \bigcup_{i=2}^k \overline{L_i(v)}. \text{ We further observe that}$

(*) if $x \in X$ and there is an integer N such that $g_N(x)$ is not in M_V , then for $n \ge N$, $g_n(x) \not\in M_V$.

Suppose that (*) is not the case. Then there is a point $x \in X$ and positive integers N and n with $n \ge N$ such that $g_N(x) \not\in M_V$ but $g_n(x) \in M_V$. However, this implies that $g_N(x) = g_N^n g_n(x) \in M_V$, which is a contradiction.

Hence, by (*) and the fact that $g_n^{n+1}(M_v)\subseteq M_v$ for each $n\geq 1$, we may choose a positive integer m such that g_m is an ϵ -mapping and so that either

- i) $g_n(f(p_v)) \in L_1(v)$ for $n \ge m$ or
- ii) $g_n(f(p_v)) \in M_v$ for $n \ge m$.

Note that $g_n(f(p_v)) \neq v$, for $n \geq m$, since g_m is an ϵ -mapping and $v = g_n(p_v)$. Since $g_n^{n+1}(L_i(v)) = L_i(v)$ for $n \geq 1$ and $2 \leq i \leq k_v$, it follows that if $g_n(f(p_v)) \in M_v$ for $n \geq m$, then there is an integer $2 \leq j \leq k_v$ such that $g_n(f(p_v)) \in L_j(v)$ for $n \geq m$. So, in fact, we have that there is an integer $1 \leq i \leq k_v$ such that $g_n(f(p_v)) \in L_i(v)$ for $n \geq m$.

Let δ be a positive number such that if $x\in X$ and $d(x,p_v)<\delta\text{, then }g_mf(x)\in L_i(v)\text{. Let }n\geq m\text{ and large}$ enough so that g_n is a $\delta\text{-mapping.}$ Since $p_v\in g_n^{-1}(v)$ and $\dim(g_n^{-1}(v))<\delta\text{, it follows that if }x\in g_n^{-1}(v)\text{, then }d(x,p_v)<\delta\text{ and }g_mf(x)\in L_i(v)\text{. Thus, }g_mfg_n^{-1}(v)\subseteq L_i(v)\text{.}$ Now, if i=1, then by (*), $g_nfg_n^{-1}(v)\subseteq L_1(v)$. If $i\neq 1$, we get that $g_nfg_n^{-1}(v)\subseteq L_1(v)\cup L_i(v)$.

We have shown that for each branchpoint v of T, there is a positive integer $\mathbf{m_v}$ and an integer $1 \leq i_{_{\mathbf{V}}} \leq k_{_{\mathbf{V}}}$ such that for $n \geq m_{_{\mathbf{U}}}$,

- (1) $g_n(f(p_v)) \in L_{i_v}(v)$, and
- $(2) \quad g_n^{-1}(v) \subseteq L_1(v) \cup L_{i_v}(v).$

Let N = $\max\{m_{V} | v \text{ is a branchpoint of T}\}$. For $n \ge N$, and v a branchpoint of T, let

$$F_{n}(v) = \begin{cases} g_{n}fg_{n}^{-1}(v) & \text{if } g_{n}fg_{n}^{-1}(v) \text{ intersects only one of} \\ g_{n}fg_{n}^{-1}(v) \cap L_{i_{v}}(v) & L_{1}(v) \text{ and } L_{i_{v}}(v), \\ & \text{otherwise.} \end{cases}$$

For $n \ge N$ and e an endpoint of T, let $F_n(e) = g_n f g_n^{-1}(e)$. By our lemma, for each $n \ge N$, there are adjacent vertices v and v of T such that $F_n(v) \subseteq \overline{T(v,w)}$ and $F_n(w) \subseteq \overline{T(w,v)}$. By the finiteness of the set of all pairs of adjacent vertices in T, we can pick an increasing number sequence $\{n_i\}_{i=1}^\infty$ and a pair of adjacent vertices v and v such that for each v is an approximately v and v such that v is a partial order on T that is consistent with the metric on T and such that v is the least element of $\overline{T(v,w)}$ and \overline{V} and \overline{V} is the maximum element of \overline{V}

The remainder of the proof involves three cases.

Case 1. $\{g_{n_i}^{-1}fg_{n_i}^{-1}(v)\}_{i=1}^{\infty}$ eventually intersects only one of $L_1(v)$ and $L_{i_v}(v)$, and $\{g_{n_i}^{-1}fg_{n_i}^{-1}(w)\}_{i=1}^{\infty}$ eventually intersects only one of $L_1(w)$ and $L_{i_v}(w)$.

In this case, by definition, $F_{n_i}(v) = g_{n_i} f g_{n_i}^{-1}(v)$ and $F_{n_i}(w) = g_{n_i} f g_{n_i}^{-1}(w)$ for all i beyond some integer. It follows from Theorem 1 that f has a fixed point, which is a contradiction.

Case 2. $\{g_{n_i}^{}fg_{n_i}^{-1}(v)\}_{i=1}^{\infty}$ frequently intersects both of $L_1(v)$ and $L_i^{}(v)$ and $\{g_{n_i}^{}fg_{n_i}^{-1}(w)\}_{i=1}^{\infty}$ frequently intersects both of $L_1(w)$ and $L_i^{}(w)$.

We observe that if $i_v \neq 1$ and $g_r f g_r^{-1}(v)$ intersects $L_{i_v}(v)$ for any integer r, then $g_k f g_k^{-1}(v)$ intersects $L_{i_v}(v)$ for each integer $k \leq r$. To see this, let $k \leq r$ and first notice that $g_r^{-1}(v) \subseteq g_k^{-1}(v)$ since v is fixed by all bonding mappings. Thus, $g_r f g_r^{-1}(v) \subseteq g_r f g_k^{-1}(v)$. So, there is a point x in $L_{i_v}(v) \cap g_r f g_k^{-1}(v)$. Since $i_v \neq 1$, $g_k^r(x) \in L_{i_v}(v)$. Hence, $g_k^r(g_r f g_k^{-1}(v)) = g_k f g_k^{-1}(v)$ intersects $L_{i_v}(v)$.

By our assumption in this case, $i_v \neq l$ and $i_w \neq l$. Hence, since $\{g_n fg_n^{-1}(u)\}_{i=1}^{\infty}$ frequently intersects $L_{i_u}(u)$ for $u \in \{v,w\}$, it follows from our observation in the preceding paragraph that $\{g_n fg_n^{-1}(u)\}_{i=1}^{\infty}$ intersects $L_{i_u}(u)$ for all $n \geq l$. So, by definition, $F_n(u) \subseteq L_{i_u}(u)$ for all $n \geq l$ and $u \in \{v,w\}$. It follows that $L_{i_v}(v) = T(v,w]$ and $L_{i_w}(w) = T(w,v]$. Hence, for each $n \geq l$, $g_n^{n+1}(T(v,w)) = T(v,w]$ and $g_n^{n+1}(T(w,v)) = T(w,v]$. It follows that for $n \geq l$, $g_n^{n+1}([v,w]) = [v,w]$.

Let $C = \lim_{t \to \infty} \{[v,w], g_n^{n+1}|_{[v,w]}\}$. Now, C is an arclike continuum containing the points p_v and p_w . Recall that for each $n \ge m_v$, $g_n f(p_v) \in L_{i_v}(v) = T(v,w]$ and for $n \ge m_w$, $g_n f(p_w) \in L_{i_w}(w) = T(w,v]$. Let n be large enough

so that $n \ge \max\{m_v, m_w\}$ and g_n is an ϵ -mapping. Let $R = \{x \in C \mid g_n(x) < g_n f(x)\}$

and

$$S = \{x \in C | g_n(x) > g_nf(x) \}.$$

Clearly, R \cup S = C, R and S are open disjoint sets in C, $p_v \in R$, and $p_w \in S$. But then C is not connected, which is a contradiction.

Case 3. $\{g_{n_i}^{}fg_{n_i}^{-1}(v)\}_{i=1}^{\infty}$ eventually intersects only one of $L_1(v)$ and $L_{i_v}(v)$, and $\{g_{n_i}^{}fg_{n_i}^{-1}(w)\}_{i=1}^{\infty}$ frequently intersects both of $L_1(w)$ and $L_{i_v}(w)$.

As in Case 2, it follows that $i_w \neq 1$, $L_{i_w}(w) = T(w,v]$, and $F_n(w) \subseteq T(w,v]$ for all $n \geq 1$.

Now, if $i_v \neq 1$ and $\{g_{n_i} f g_{n_i}^{-1}(v)\}_{i=1}^{\infty}$ is frequently a subset of $L_{i_v}(v)$, then the argument beginning with the second paragraph in Case 2 applies and we are done. So, we may assume that $\{g_{n_i} f g_{n_i}^{-1}(v)\}_{i=1}^{\infty}$ is eventually a subset of $L_1(v)$. Thus, for all i beyond some integer, $F_{n_i}(v) = g_{n_i} f g_{n_i}^{-1}(v)$, and it follows that $L_1(v) = T(v,w]$. We may choose an integer n large enough so that $n \geq m_w$, $g_n f g_n^{-1}(v) \subseteq \overline{T(v,w]}$, $g_n f g_n^{-1}(w) \cap T(w,v] \neq \emptyset$, and g_n is an $\frac{\varepsilon}{2}$ -mapping. Let δ be a positive number such that $d(x,y) \geq \varepsilon$ in X implies that $p(g_n(x), g_n(y)) \geq \delta$ in T.

Let V be an open set in X such that $g_n^{-1}(v)\subseteq V$, ${\rm diam}\overline{V}<\epsilon$, and if $x\in V$, then $g_nf(x)\in T(v,w]$ and

$$\begin{split} &p(g_n(x),v) < \frac{\delta}{2}. \quad \text{Let } M = \lim_{\leftarrow} \overline{T(w,v)}, g_1^{i+1} \big|_{\overline{T(w,v)}}\}, \text{ and let} \\ &C \text{ be the component of } M - V \text{ that contains } p_w. \quad \text{Recall that} \\ &g_nf(p_w) \in L_i_w (w) = T(w,v] \text{ since } n \geq m_w. \quad \text{Now, } C \text{ must intersect the boundary of } V \text{ at some point } y. \quad \text{We point out that} \\ &g_n(C) \subseteq \overline{T(v,w)}. \quad \text{For if not, there is a point } x \in C \text{ such that } g_n(x) \in T(w,v] - [v,w]. \quad \text{Also, } p_w \in C \text{ and } g_n(p_w) = w. \\ &\text{Since } C \text{ is connected and } g_n \text{ is continuous, it follows that} \\ &\text{there is a point of } C \text{ that is also in } g_n^{-1}(v) \subseteq V, \text{ a contradiction.} \end{split}$$

Furthermore, $g_n(C) \subseteq \overline{T(w,v)}$ simply because $C \subseteq M$. It follows that $g_n(C) \subseteq [v,w]$. Let

$$R = \{x \in C \mid g_n(x) < g_nf(x)\}$$

and

$$S = \{x \in C | g_n(x) > g_nf(x) \}.$$

Clearly, R \cup S = C, and R and S are disjoint open sets in C. We will show that y \in R and p, \in S.

Now, $p_w \in S$ since $g_n(p_w) = w$ and $g_n f(p_w) \in T(w,v]$.

Suppose $y \notin R$. Then $y \in S$ and $g_n(y) > g_nf(y)$. Since $y \in \overline{V}$, $p(g_n(y),v) \leq \frac{\delta}{2}$, and $g_nf(y) \in \overline{T(v,w)}$. Hence, we must have that $g_nf(y) \in [v,w]$ and that $p(g_nf(y),g_n(y)) \leq \frac{\delta}{2} < \delta$. But by choice of δ , $d(y,f(y)) \geq \epsilon$ implies that $p(g_n(y),g_nf(y)) \geq \delta$, a contradiction.

But now we have that C is not connected, which is a contradiction.

References

- [1] D. Bellamy, A tree-like continuum without the fixed point property, Houston J. Math. 6(1979), 1-14.
- [2] C. A. Eberhart and J. B. Fugate, Weakly confluent maps on trees, General Topology and Modern Analysis, Academic Press, New York (1981), 209-215.
- [3] C. L. Hagopian, Fixed points of arc-component preserving maps, Trans. AMS 306(1988), 411-420.
- Γ4] , Fixed points of tree-like continua, Contemporary Math. 72(1988), 131-137.
- [5] O. H. Hamilton, A fixed point theorem for pseudo arcs and certain other metric continua, Proc. AMS 2(1951), 173-174.
- [6] S. Mardesic and J. Segal, ε -mappings onto polyhedra, Trans. AMS 109(1963), 146-164.
- [7] M. M. Marsh, A fixed point theorem for inverse limits of fans, Proc. AMS 91(1984), #1, 139-142.
- [8] $__$ $_$ $_$ $_$, A fixed point theorem for inverse limits of simple n-ods, Topology and Its Applications 24(1986), 213-216.
- [9] , u-mappings on trees, Pacific Journal of Math 127(1987), #2, 373-387.

California State University Sacramento, California 95819-6051