TOPOLOGY
PROCEEDINGS

Volume 14, 1989
Pages 265277

http://topology.auburn.edu/tp/

e-MAPPINGS ONTO A TREE AND THE
FIXED POINT PROPERTY

by
M. M. MARSH

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@Qauburn.edu
ISSN: 0146-4124

COPYRIGHT (© by Topology Proceedings. All rights reserved.



TOPOLOGY PROCEEDINGS Volume 14 1989 265

€ -MAPPINGS ONTO A TREE AND THE
FIXED POINT PROPERTY

M. M. Marsh

In 1979 David Bellamy [l] showed that there exist
tree-like continua which admit fixed point free mappings.
There has been interest since that time in determining
conditions under which a tree-like continuum will have the
fixed point property. A few results of this nature can be
found in [2], [3], [4], [7], [8], and [9]. However, it
is still unknown if a simple triod-like continuum must
have the fixed point property. This paper establishes
several fixed point related theorems for T-like continua,
where T is a fixed tree. Corollary 3 gives a necessary
condition for a T-like continuum to admit a fixed point
free mapping, and Theorem 2 generalizes the fixed point
theorem in [7].

A continuum is a nondegenerate compact connected
metric space. A continuous function will be referred to
as a map or mapping. A continuum X has the fized point
property prov;ded that whenever f is a mapping of X into
itself, there is a point x in X such that f(x) = x. A
tree is a finite connected, simply connected graph. If
€ is a positive number, the mapping f: X - Y is an e-
mapping 1if diam(f_l(y)) < ¢ for each y € Y. If H is a
family of continua, we say that the continuum X is H-l7ke

provided that, for each positive number ¢, there is an
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e-mapping of X onto a member of H., For example, if H is
the family of all trees, we simply say that X is tree-like;
or if H is a set whose only member is the continuum T,
we say that X is T-lzke.

Let T be a tree. The point v € T is a branchpoint
(an endpoint) of T if T - {v} has at least three components
(only one component). If v is either a branchpoint or an
endpoint of T, we say that v is a vertexr of T. If v and
w are points of T, let [v,w] denote the arc in T with
endpoints v and w, and let T(v,w] denote the component of

T - {v} that contains w.

Lemma. Let F be a function from the vertex set of
the tree T into the set of all subsets of T. If for each
vertex v of T, F(V) is a subset of the closure of some
component of T = {v}, then there exist neighboring
(adjacent) vertices v and w in T such that F(v) C T(v,w]
and F(w) C T(w,v].

Proof. Let v, be any branchpoint of T and let Cl

1
be the component of T - {vl} such that F(vl) is a subset
of Cl' 1
So, C; = T(vl,vz]. If F(VZ)E T(vz,vl], then v, and v,

Let vy be the vertex of C, that is adjacent to vy,

have the desired properties. Otherwise, v, must be a
branchpoint of T and there is a component C2 of T - {v2}

such that c, # T(VZ’V1] and F(vz) c C,. Now, C, c cy and

5 contains fewer branchpoints than cl' Since Cl has

finitely many branchpoints, a repetition of the process

c

above must yield adjacent vertices with the desired

properties.
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We introduce the following terminology. Given

0
a seguence {Fn}n=l’ to say that

{r 1"

nin=1 frequently has some property means that for

each positive integer N, there is an integer n > N

such that Fn has the property,
and to say that

{Fn}

n=1 eventually has some property means that there

is a positive integer N such that if n > N, then Fo

has the property.
We are now ready for our main theorems.

Theorem 1. Suppose that T is a tree, X is T-like,
and for each n > 1, 9n? X~+T¢<Zs a Gn—mapping onto T,
where {Gn}§=l converges to zero. If £: X + X is a mapping,

}oo

tnidiay

i 18 an increasing sequence of positive integers,
and there are adjacent vertices v and w of T such that

-

{gn'fg;i(v)}. 15 eventually a subset of T(v,w] and
i

i=1

{g. £q-lw)}5_, is eventually a subset of T(w,v], then £
n; "’nj i=1
has a fixed point.

Proof. Suppose that f is fixed point free. Let d
denote the metric on X. Assume that each edge of T has
length one and let p denote the "arc length" metric on T.
Let € be a positive number such that d(x,f(x)) > ¢ for
each x € X.

Fix n large enough so that 9n is an %-mapping,

1

g fg;l(v) € T(v,w], and gnfg;

n (w) € T(w,v]. since g is
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an %-mapping, it follows that t & gnfg;l
t €ET. So, we have that gnfg;l(

(t) for any
v) € T(v,w] and gnfg;l(w)
C T(w,v].

Let 0 < § < 1 such that if d(x,y) > €, then
p(g,(x),g (y)) > 6. That such a ¢ exists is easily seen
(argument by contradiction).

Let V be an open set in X such that g;l(v) cv,
diamV < ¢, and if x € V, then g f(x) € T(v,w] and
p(gn(x),v) < %. Similarly, let W be an open set in X
such that g;l(w) C W, diamW < ¢, and if x € W, then
g f(x) € T(w,v] and P (g, (x),w) < %.

Pick any point g in g;l(w) and let L be the component
of X - V that contains g. Now, L must intersect the
boundary of V at some point y. We point out that
gn(L) - T(v,w]. For if not, there is a point x € L such
that gn(x) € T(w,v] - (v,w]. Also, g € L and gn(q) = w,
Since L is connected and 9, is continuous, it follows that
there is a point of L that is also in g;l(v) Ccv, a con-
tradiction.

Let K be the component of L - W that contains y. Let
z be a point of the boundary of W that is also in K. As
above, gn(K) C T(w,v]. For if not, there is a point
X € K such that gn(x) € T(v,w] - [v,w). Sincey €7V,
gn(y) GAETET;T. Now, y is also in K; hence, there is a
point of K that is also in g;l(w) C W, a contradiction.

Since K C L, we get that gn(K) C (v,w). Let

R = {x € K| gn(x) separates gnf(x) from v in T}



TOPOLOGY PROCEEDINGS Volume 14 1989 269

and
s = {x € K| gn(x) separates gnf(x) from w in T}.
Clearly, R U S = K, and R and S are disjoint open sets in
K. We will show that y € R and z € S,
Suppose that y € R. Then y € S and gn(y) must

separate gnf(y) from w in T. Since y € ¥, p(gn(y),v) < %

and g f(y) € T(v,w]. Hence, we must have that g fly) €
[v,w] and that p(gnf(y),gn(y)) < % < §. But, by choice
of §, d(y,f(y)) > e implies that p(gn(Y),gnf(y)) > 8,
a contradiction.

A symmetric argument gives us that z € S§. But then

K is not connected, which is a contradiction.

Since an arc is a tree with exactly two vertices,
namely its endpoints, we get Hamilton's [5] fixed point

theorem as an immediate corollary.

Corollary 1. If X is an arc-like continuum, then X

has the fixed point property.

Corollary 2. Suppose that T is a simple k-od with

branchpoint v, X ig T-like, and for each n > 1, 9yt X+T

o

18 a Gn—mapping onto T, where {Gn}n=l eonverges to zero.

If £f: X » X is a fixed point free mapping, then

{gnfg;l(v)}:=l eventually intersects two components of
T - {v}.

1

Proof. Suppose that {gnfg; (v)} does not eventu-

0o
n=1
ally intersect two components of T - {v}. Then there is

1

a component L of T - {v} such that {gnfg; (v)}:=l is
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frequently a subset of L. Let e be the endpoint of T
that belongs to L. Then v and e are adjacent vertices

of T. Also, {gnfg;l(e)}:=l is a subset of T(e,v] for all

n > 1 since T(e,v] = T - {e} = T. It follows from
Theorem 1 that f has a fixed point, which is a contradic-

tion.

Corollary 3. Suppose that T is a tree, X is T-like,
and for each n > 1, g, X T is a dn-mapping onto T,
where {Gn}:=l converges to zero. If f: X + X is a fixed
point free mapping, then there is a tranchpoint v of T
such that {gnfg;l(v)}:=l frequently intersects two com-
ponents of T = {v}.

Proof. By way of contradiction, we assume that for
each branchpoint v of T, there is a positive integer NV
such that if n > NV, then gnfg;l(v) is a subset of the
closure of some component of T - {v}.

Let N = max{Nvl v is a branchpoint of T} and fix
n > N. We recall that if e is an endpoint of T and v is
the vertex of T adjacent to e, then gnfg;l(e) c T(e,v].
Hence, by the lemma, there exist adjacent vertices v and
w in T such that gnfg;l(v) € T(v,w] and gnfg;l(w) c Tw,v].
So, if n > N, we may associate with n a pair of adjacent
vertices in T that have the properties above. Since there
are only finitely many pairs of adjacent vertices in T,
©
i=1’

each term of which is associated with the same pair of

it follows that there is an increasing sequence {ni}

adjacent vertices. By Theorem 1, f has a fixed point,

which is a contradiction.
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Our next theorem generalizes, in the case of finite
fans, the fixed point result in [7].

Thecrem 2. Let T be a tree, and for each branchpoint

k
v of T, let {Li(v)}i;’l be a labeling of the components of

T - (v}, IfX-= lim{T,gg+l}, where for each n > 1 and
-«
. n+l
each branchpoint v of T, 95 (Li(v)) = Li(v) for
2 <ic<k then X has the fixed point property.

VJ

Proof. Let d denote the metric on X and, for each
n>1, let 9, be the projection mapping of X anto T. Now,
X is T-like and for ¢ > 0, n can be chosen so that = is
an e-mapping (see [6]).

By way of contradiction, we assume that f is a fixed
point free mapping on X and that ¢ is a positive number
such that d(x,f(x)) > & for each x € X.

Let v be any branchpoint of T. We notice that
g2+l(v) = v for each n > 1. So, let p, be the point of
X such that gn(pv) = v for each n > 1. Also, let Mv =

k
Ui‘__’ZLi V). We further observe that

() if x € X and there is an integer N such that gN(x)

is not in Mv' then for n > N, gn(x) & Mv'

Suppose that (%) is not the case. Then there is a point
x € X and positive integers N and n with n > N such that
gN(x) [3 M, but gn(x) € M. However, this implies that

gN(x) = gggn(x) € Mv’ which is a contradiction.
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Hence, by (%) and the fact that gg+l(Mv) c M, for
each n > 1, we may choose a positive integer m such that

I is an e-mapping and s¢o that either

i) gn(f(pv)) € Ll(v) for n > m or

ii) gn(f(pv)) € Mv for n > m.

Note that gn(f(pv)) # v, for n > m, since I is an e-
mapping and v = gn(pv). Since g2+l(Li(v)) = Li(v) for
n>1and 2 <1< kv’ it follows that if gn(f(pv)) € M,
for n > m, then there is an integer 2 < j < kV such that
qn(f(pv)) € Lj(v) for n > m. So, in fact, we have that
there is an integer 1 < i < k, such that g (f(p )) € L;(v)
for n > m,

Let 8§ be a positive number such that if x € X and
d{x,p,) < §, then gpf(x) € Li(v). Let n > m and large
enough so that 95 is a §-mapping. Since Py € g;l(v) and
diam(g;l(v)) < &, it follows that if x € g_1(v), then
d(x,p,) < 6 and g £(x) € L, (v). Thus, gmfg;l(v) C 1 (v).
Now, if i = 1, then by (s), g fg (v) C L (v). Ifi #1,
we get that gnfg;l(v) c Ll(v) U Li(v).

We have shown that for each branchpoint v of T, there
is a positive integer m, and an integer 1 < iV < kv such

that for n > mv,

(1) g, (£(p,)) €L; (v), and
\4

(2) g _fq t

af9, (V) € Ll(v) U L (v).

v
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Let N = max{m | v is a branchpoint of T}. For n > N,

and v a branchpoint of T, let

- ; -1 .
( gnfgnl(v) if g fg 7 (v) inter-
F_(v) =
n sects only one of
-1
g,f9, (v N LiV(V) L, (v) and Liv(v),
otherwise.
For n > N and e an endpoint of T, let Fn(e) =-gnfg;l(e).

By our lemma, for each n > N, there are adjacent vertices
v and w of T such that Fn(v) c T(v,w] and Fn(w) - T(w,v].
By the finiteness of the set of all pairs of adjacent

vertices in T, we can pick an increasing number seguence
{ni}:=l‘and a pair of adjacent vertices v and w such that

for each i > 1, Fni(Q) C T{v,w] and Fni(w) C T(w,v]. Let
< be a partial order on T that is consistent with the
metric on T and such that v is the least element of
T(v,w] and w is the maximum element of T(w,v].

The remainder of the proof involves three cases.

Case 1. {gn fg;l(v)}z_l eventually intersects only
i i -

_l ©
one of Ll(v) and Liv(v), and {gnifgni(w)}i=l eventually

intersects only one of Ll(w) and L; (w).

w
In this case, by definition, Fn (v) = 9, fg;l(v) and
i i i
F o w) =g fg;l(w) for all i beyond some integer. It
i i i

follows from Theorem 1 that f has a fixed point, which is

a contradiction.
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Case 2. {gn.fg;l(v)}:=l frequently intersects both

i i

v) and L, (v) and {g fg-l(w)}f_ frequently inter-
i, n; n; i=1

sects both of Ll(w) and Li (w) .
w

of Ll(

We observe that if i # 1 and grfg;l(v) intersects

Li (v) for any integer r, then gkfg;l(v) intersects Li (v)
v v

for each integer k < r. To see this, let k < r and first

notice that g;l(v) C g;l(v) since v is fixed by all

bonding mappings. Thus, grfg;l(v) c grfg;l(v). So, there
is a point x in L; (v) N grfg;l(v). since i # 1,
v

r r -1 _ -1 . _
gk(x) € Liv(v). Hence, gk(grfgk (v)) = gkfgk (v) inter

sects Li (v).
v

By our assumption in this case, iv # 1 and iw # 1,
Hence, since {g fg-l(u)};;l frequently intersects Li (u)
i i u
for u € {v,w}, it follows from our observation in the pre-
ceding paragraph that {gnfg;l(u)}z=l intersects L (u) for
u

all n > 1. So, by definition, F_(u) C L; (u) for all
u

n>1and u € {v,w}. It follows that L, (v) = T(v,w] and
v

Li (w) = T(w,v]. Hence, for each n > 1, g2+l(T(v,w]) =
w

T(v,w] and g;+1(T(w,v]) = T(w,v]. It follows that for

n+1l

n ([Vlw]) = [Vlw]-

n>1l,g

o oq n+l :
Let C = lim{[v,w], 9, '[v,w]}' Now, C is an arc

like continuum containing the points Py, and P,- Recall

that for each n > m_, gnf(pv) € Liv(v) = T(v,w] and for

n>m, gnf(pw) € Liw(w) = T(w,v]. Let n be large enough
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so that n > max{mv,mw} and g is an c-mapping. Let
= €
R {x € ¢ g, (x) < gnf(x)}
and

S

E H

{x € ¢y g, (x) > gnf(x)}.

Clearly, RU S = C, R and S are open disjoint sets in C,
Py € R, and Py € S. But then C is not connected, which

is a contradiction.

Case 3. {gn fgn (v)}u.:=l eventually intersects only
i i

-1 o
one of Ll(v) and Liv(v), and {gnifgni(w)}i=l frequently

intersects both of Ll(w) and Li (w) .
w

As in Case 2, it follows that iw # 1, Li (w) =
w

T(w,v], and Fn(w) C T(w,v] for all n > 1.
. . -1 o :
Now, if i, # 1 and {gnifgni(v)}i_l is frequently a

subset of Li (v), then the argument beginning with the
v

second paragraph in Case 2 applies and we are done. So,
we may assume that {gn fg;l(v)}:_l is eventually a subset
i i -

of Ll(v). Thus, for all i beyond some integer, Fn (v) =
i

L £971(v), and it follows that L, (v) = T(v,w]. We may
iny

g

choose an integer n large enough so that n > m,

-1 — -1 .

9,f9," (v} C T(v,w], g, fg " (w) N T(w,v] # @, and g, is an

%-mapping. Let § be a positive number such that

d(x,y) > € in X implies that p(gn(x), gn(y)) > 8 in T.
Let V be an open set in X such that g;l(v) cv,

diamV < ¢, and if x € V, then gnf(x) € T(v,w] and
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i+l

i IWI‘]]}, and let

p(gn(x),v) < %. Let M = lim{T(w,v],g

-
C be the component of M - V that contains P, - Recall that
gnf(pw) € Liw(w) = T(w,v] since n > m . Now, C must inter-
sect the boundary of V at some point y. We point out that
gn(C) < TZv,w]. For if not, there is a point x € C such
that gn(x) € T(w,v] - [v,w]. Also, Py, € C and gn(pw) =W,
Since C is connected and 9, is continuous, it follows that
there is a point of C that is also in g;l(v) c v, a con-
tradiction.

Furthermore, gn(C) c Tiw,v] simply because C C M,

It follows that g (C) C [v.,w]. Let

#

R = {x € C| 9, (x) < g £(x)}
and

S

[}

{x € C| 9, (x) > g £(x)}.
Clearly, RU S = C, and R and S are disjoint open sets in
C. We will show that y € R and P, € S,
Now, p_ € S since 9,(p,) =w and g f(p ) € T(w,v].
Suppose y € R. Then y € S and gn(y) > gnf(y).
Since y € ¥, p(gn(y),v) < %, and gnf(y) € Tlv,w]. Hence,

we must. have that gnf(y) € [v,w] and that p(gnf(y),gn(y))

A

% < §. But by choice of §, d(y,f(y)) > e implies that
p(gn(y),gnf(y)) > 8§, a contradiction.
But now we have that C is not connected, which is a

contradiction.
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