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1.	 Collapsing Wage's Machine 

In 1976, Michael Wage [34J invented a machine which 

takes normal spaces which are not col1ectionwise normal 

and makes them not normal. This process preserves, for 

example, countable paracompactness and Mooreness and so it 

was used to construct, for example, non-normal countably 

paracompact Moore spaces under various hypotheses. In 

this process, what happens is that first the isolated 

points of two copies of the input space are identified 

and then each isolated point is split so that each new 

isolated point ~an only be in a basic open neighborhood 

*This work has been supported by the Natural Sciences 
and Engineering Research Council of Canada. 
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of one element of the discrete unseparated family of 

closed sets from each copy and so that these elements must 

be different. In this section, we note that this con

struction can be modified by then collapsing the unsepa

rated closed sets of one of these copies to points and 

thus can be used to obtain a curious and interesting ex

ample. 

This section originates with a question of Peg Daniels: 

Are countab1y paracompact screenab1e col1ectionwise 

Hausdorff spaces strongly collectionwise Hausdorff? 

We need the main theorem of [36J. 

Theorem 1 ([36J). Let Z be a strongly zero-dimensional 

normal collectionwise Hausdorff space. Let D be the family 

of closed discrete subsets of z. If there is a family B 

of clopen subsets of Z and a function m: B ~ [O,lJ such 

that 

If d E D and E > 0, then there is U E B such that 

d C U and m(U) < E 

If E E [B]~w and E{m(U): U E E} < 1 then UE ~ Z 

then there is a zero-dimensional normal colZectionwise 

Hausdorff space Y which is not colZectionwise normal with 

respect to copies of z. 

Corollary 1. There is a zero-dimensional normal 

space Y which is not colZectionwise normal with respect 

to copies of a compact zero-dimensional Hausdorff space 

but which is collectionwise normal with respect to 

metrizable sets. 
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Proof. Let Z be the double arrow space on the Cantor 

set, that is, Z = 2
w

x 2 with the lexicographic order 

topology. Now Z is a zero-dimensional compact Hausdorff 

space. Let CO(Z) be the family of clopen subsets of Z. 

2w 2wLet fi: x 2 ~ be the projection mappings. We can 

give Z a measure m: CO(Z) ~ [O,lJ defined by m(A) 

o 1 
~(f (A))+~(f (A)), where ~ is the product measure on 2w• 

Since closed discrete sets in Z are finite, we can apply 

Theorem 1 to get Y. By a simple back-and-forth argument 

[35J, any normal collectionwise Hausdorff space is 

collectionwise normal with respect to countable sets, and 

so since metrizable sets in Yare countable and any ele

ment of Y which is not an element of a copy of Z is an 

isolated point, Y is collectionwise normal with respect 

to metrizable sets. 

Theorem 2 (Wage [34J). There is a countably para-

compact screenable zero-dimensional Hausdorff space W 

which is not collectionwise normal with respect to com

pact sets but which is collectionwise normal with respect 

to metrizabZe sets. 

Proof. We use Corollary 1 to get a zero-dimensional 

normal space Y which is not collectionwise normal with 

respect to copies of a compact zero-dimensional Hausdorff 

space but which is collectionwise normal with respect to 

metrizable sets. Without loss of generality, we can 

assume that Y has an unseparated discrete family {Fa: 

a E K} of compact sets so that, letting F = U{F : a E K},
a 
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we have that G = Y - F is a set of isolated points. We 

do not need to know anything else about the structure of Y. 

Let B be the family of clopen sets in Y, each element 

of which intersects at most one Fa. Topologize 

2
W = (F x 2) U (G x {(a, S) E K : a -:F S}) 

by letting 

Bi 
= ( (B n Fy ) x {i} ) 

U( (B n G) x { (a, (3) E K
2

: (y = a, " i 0) v 

(y 1) })(3 " i 

be open where B E B is such that B n F 
y 

-:F ~ and i E 2 and 

by letting the elements of W - (F x 2) be isolated points. 

This is Wage's machine. 

Let us argue that W is a countably paracompact 

screenable zero-dimensional Hausdorff space which is 

collectionwise normal for rnetrizable sets but which is 

not normal with respect to two closed sets, each of which 

is the free union of compact sets. 

Each point is the intersection of its neighborhoods 

in Y and thus also in W. This means that W is TI . 

Suppose B is clopen in Yand (f,i) E (F x 2) - Bj . 

If f ~ B, then there is a clopen subset D of Y such that 

i ifED and B n D = ~ and then (f,i) E D and D n Bj ~. 

If fEB, then i ~ j and if B n F ~~, then f E F . 
Y Y 

i j
Now B n B =~. We have shown that the assigned base for 

W consists of clopen sets and so that W is Hausdorff and 

zero-dimensional. 

We show countable paracompactness. Let U be a count

able open cover of W. Let Pi be a clopen countable 
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partition of F which refines 

{A: (3B E U)A x {i} = B n (F x {i})} 

Assume, without loss of generality, that Po = Pl. 

Let B be a disjoint clopen family in Y whose restriction
i 

to F is Pi" Now {Bi : B E Bi , i E 2} is a locally finite 

family which covers W, except for some isolated points 

jo jl
(since n B ~ ~ ~ = Bl ) · BO l BO 

Let us argue that W is collectionwise Hausdorff and 

thus, since metrizable sets in Ware the union of count

ably many discrete families of points, cqllectionwise 

normal with respect to metrizable sets. Let D be a dis-

ocrete family of points. We assume that there is a dis

crete family of points E C F such that D = E x 2. Since 

Y is collectionwise Hausdorff, there is a disjoint sub

family {U : e E E} of B such that e E U We claim that e e 
i i{Ui : e E E, i E 2} separates D. Now u n u = ~ wheree e e'
 

i l i
 e ~ e' and (g, a, S) E u n u - and U n F ~ ~ impliese e e y 

a = y = 8 which is a contradiction. 

Let us argue that W has two unseparated closed sets 

F x {a} and F x {I}, each of which is the free union of 

compact sets. Otherwise, let {Vi: a E K, i E 2} be opena 
isets in W such that u ::J F x {i} and a,S E K implies
a. a 

Ui l-i i in U = ~. Let u U{B : B E vi} . Assume, without a 8 a a 

loss of generality, that each vO vI. Let U Wi. Now a a a a 
{U : a E K} is a family of open sets such that U ::J F a a a 

There is a,S E K such that a ~ and U n So therea Us ~ ~.a 
iis BO

E vi and Bl E Va such that BO n B t- ~. Therefore a l
 
O Bl
B n F ~ and so u~ n u~ ~ ~ which is a contradiction.a 1 
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We show screenable by noting that if each {Bn : nEw}
y 

is a countable open subfamily of B, each element of which 

intersects F , then for fixed n, Bn n Bn =~. In W, we 
Y Y 0 

argue by covering each F x {i} by a countable open family
Y 

iof sets of the form B where B E B. Since Bn n Bn - ~ ~ Y 0

(B~)i n (B~)i = ~, this shows that we can cover F x 2 with 

a a-disjoint open refinement of any given open cover. 

One more disjoint family takes care of the isolated points. 

Theorem 3. There is a countably paracompact screenable 

zero-dimensional Hausdorff space X which is ccllectionwise 

normal with respect to metrizable sets but which is not 

strongly coZZectionwise Hausdorff. 

Proof. Start with W in Theorem 2. Identify each 

F x {l} to a single point. By Proposition 2.4.9 of [9J,
y 

the quotient mapping f is closed and thus perfect. Call 

the quotient space X. By Theorem 3.7.20 and Exercise 

5.2.G (a) in [9J, perfect mappings preserve Hausdorff and 

countably paracompact. We must show that X is screenable 

zero-dimensional and collectionwise Hausdorff but fails 

to be strongly collectionwise Hausdorff. 

We show that X is zero-dimensional. Suppose that 

x E X is the image of F under the quotient mapping.y 

Suppose that U is an open neighborhood of x in X. Now 

f-l(U) is an open set in w which contains F. By the 
y 

compactness of F and the regularity and zero-y 

dimensionality of W, there is a clopen set V in W which 

lies inside f-l(U), contains Fy and intersects no other Fo• 



TOPOLOGY PROCEEDINGS Volume 14 1989 321 

Now f(V) is clopen since f-l(f(V)) V. Since x E f(V) C 

U, the proof is complete. 

We show that X is screenable. Let V be an open cover 

of X. We can first assume that the preimage of each ele

ment of V intersects at most one Fy x {i}. Let U be the 

open cover {f-I(V): V E V}. We note that in the argument 

for screenability of W, if each element of U intersects 

at most one F x {i} and if any element of U which inter
y 

sects F x {I}, actually contains F x {I}, then the 
y y 

a-disjoint refinement 5 can be assumed to- do the same. 

Now {f(S): S E 5} is also a-disjoint since each element of 

5 either contains each F x {l} or is disjoint from it. 
y 

X is not strongly collectionwise Hausdorff because 

the identified F x {I} (a closed discrete set) cannot be 

separated from F x {OJ. Otherwise the preimages would be 

separated in W. 

X is collectionwise Hausdorff, however, because any 

closed discrete set may be assumed to consist of 

{f(F
y 

x {I}): y E K} and a closed discrete subset D x {OJ 

of F x {OJ. First, apply strong collectionwise Hausdorff

ness in Y to get a discrete family K of clopen sets in Y 

which separate D C F in Y. For each y E K, let U be a 
y 

clopen subset of Y which contains F and is disjoint from 
y 

every element of K except those which contain elements of 

D n F. We claim that 
y 

o l'
{f(K):KEK}U{f((U) ):yEK}

y 
Oseparates the closed discrete set. Suppose K n (U )1 ~ ~ y 
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and K intersects Fo• If 0 ~ y, then that contradicts the
 

choice of U • If 0 = y, then that contradicts the defini
y
 

tion of the topology on W.
 

2.	 Graph· Theory and Separation 

A subtraction technique is used in many arguments 

where a discrete family of sets is being separated. This 

technique can be abstracted into a lemma and this lemma 

used to provide a less technical proof of a theorem of
 

Fleissner and Reed. We need the idea of a graph of a
 

di"screte family.
 

Definition 1. Let F be a discrete family of sets in 

a topological space X and let U be an open cover of X such 

that the closure of each U E U intersects a unique 

F(U) E F. Let G be the graph on U whose edges are 

{(U,V) E U2 : U n V ~ ~, F(U) ~ F(V)}. We say that G is 

a graph of F. 

A simple sufficient condition for a discrete family
 

to be separated can be stated:
 

Theorem 4. If a discrete famiZy F has a graph G in 

which each vertex has countabZe degree, then F is separated. 

Proof. Any graph G of countable degree is the free 

union of countable subgraphs. Thus the edges of G can be 

listed {U : a E K, nEw} where a ~ S implies (U U )a,n	 a,n, o~,m 

~ G.	 Let 

V U - U{-U---: m < n, F(U ) ~ F(U )}a,n a,n a,m a,m a,n 
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For each F E F, let U(V) = U{V : F(U ) F}. Now a,n a,n 

{U(F): F E F} separates F. 

An application of this theorem is: 

Lemma 1. If X is a regular para-Lindelof space and 

F is a discrete family of sets such that at most one ele

ment of F is not Lindelof~ then F is separated. 

Proof. Let U be an open family such that the closureo 
of each U E U intersects a unique F(U) E F. Apply theo 
para-Lindelof property to U three times. That is, findo 
Ul ' U2' U such that each Ui +l is a locally countable re3 

finement of U which witnesses the local countability ofi 

Ui as well when i ~ 1 (i.e. if i > 1, then each element of 

Ui + l intersects countably many elements of Ui ). Let U 

consist of those elements U of U where F(U) is Lindelof
3 

and those elements V of U where F(V) is not Lindelof. We
2 

show that each vertex of the induced graph of F has count

able degree. 

Let V E U U U and U E U where F(U) is Lindelof.
3 2 3 

If V n U ~ ~, then V must intersect some W E U1 such that 

F(W) F(U). There are countably many such Wand so 

countably many possible F(U). For each F(U), there are 

only countably many U since locally countable families in 

a Lindelof set are countable. 

If V E U2 U U3' U E U2' V n U F ~ and F(V) ~ F(U), 

then V E U and there are countably many possibilities3 

for u. 
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Applications of the lemma are: 

Cora l lary 2. (Fleissner, Reed [16J). If X is a
 

regular~ para-Lindelof spaoe~ then X is strongly ~ollec-

tionwise normal for Lindelof sets (i.e. whenever {A :
 a
 

a E K} is a disorete family of Lindelof sets~ there is a
 

disorete famiZy of open sets {U : a E K} suoh that each a 

Cora l lary 3. (Burke, Davis). Para-Lindelof pseudo

oompact spaoes are oompact. 

Proof. More, para-Linde16f pseudo-Linde16f (i.e. 

each discrete family of open sets is countable, often 

called DCCC) spaces are Lindel5f. If such a space is 

countably compact (or ~l-compact) then apply Aquaro's 

Lemma	 (see page 302 of [9J). Otherwise take an infinite 

(uncountable) discrete family of points and apply the 

previous corollary for points. 

Corollary 4. Para-Lindelof metacompact locally 

LindeZof spaaes are paraaompaat. 

Proof. Apply the proof that metacompact collection-

wise normal spaces are paracompact. 

3.	 Normal versus Normalized 

The study of normal spaces which are not collection-

wise normal has often been seen as a combinatorial problem 

involving the existence of normalized but unseparated
 

families.
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Definition 2. If X is a topological space and 

F = {Fa: a E K} is a discrete family of sets, then we 

say that F is normalized if, for each A C K, there are 

disjoint open sets U and V in X such that, for each a E A, 

Fa C U and, for each a E K - A, Fa C V. 

A finer analysis of normality is served by another 

definition: 

Definition 3. If X is a topological space and 

F = {F : a E K} is a discrete family of sets, then we saya 

that F is strongly normalized if, for any t~o disjoint 

closed sets A, B C U{F : a E K}, there are disjoint open
a 

sets U and V in X such that A C U and B C V. 

Rudin and Starbird, and Nyikos showed that normality 

exerts a stronger influence on a discrete family than 

mere normalization. In [24J, they construct, for each 

cardinal A < K, a Moore space TA so that if there is a 

first countable normal space which is not collectionwise 

normal, then some TA has a normalized discrete family of 

closed sets which is not separated. In [20J, Peter Nyikos 

showed that these spaces of Rudin and Starbird are never 

normal unless they are rnetrizable. The reason that these 

spaces are not normal is that their unseparated normalized 

discrete families are not strongly normalized. 

Peg Daniels has shown: 
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Theorem 5. ([6J). There is no locally compact 

boundedly metacompact space which is normal but not 

paracompact. 

She also showed that counterexamples to the original 

problem due to Tall [28J and Arhangel'skil [2J of whether 

there is a locally compact metacompact normal space which 

is not paracompact are probably found in Pixley-Roy 

spaces. We need the notation A* to represent the set A 

with the topology in which the proper closed sets are pre

cisely the finite sets. 

Theorem 6. ([6J). If there is a normal~ locally 

compact, metacompact space Y that is not paracompact, 

then there is a cardinal K and a subspace Z C PR{K*) such 

that K is a closed discrete normalized subset of Z which 

cannot be separated in Z. Furthermore, if Y is also zero-

dimensional, then there is such a subspace Z which is a 

perfect image of Y, hence also normal, locally compact, 

metacompact but not paracompact. 

However, there seems to be no reason to assume that 

a counterexample should be zero-dimensional. Furthermore, 

there seems no reason to believe that the existence of a 

locally compact metacompact space with a discrete normal

ized unseparated family of points implies the existence 

of a normal example. 

In this section, we present an example under MA~ of 
I 

a space which satisfies the first part of the conclusion 
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of Theorem 6. Of course, for a discrete family of points, 

strong normalization and normalization are equivalent. 

Since Theorem 5 is true in ZFC, we deduce that there is a 

big difference even between strongly normalized and normal. 

Here the reason is that local compactness requires the 

rest of the space to have a complexity which fights against 

normality. 

Theorem 7. (MA~). There is a locally compact 
1 

(boundadlyJ metacompact completely regular spac~ X with a 

discrete family of points which is normalized but not 

separated. In fact~ X is a subspace of PR(wi) . 

lProof. Let A E [ W2J w . For technical reasons, we 

define X to be a subspace of PR((w x (w + 1))*). Ofl 

course (w x (w + 1))* and wi are homeomorphic so thisl 

makes no difference. Let X = {{(a,w)}: a E A} U {{(a,w), 

(a,n)}: a E A, nEw} U {{(a,w),(a,n),(S,w),(l3,n)}: 

a,SEA,.nEw,a n = S ~ n}. As a subspace of the 

Pixley-Roy space, X is a metacompact completely regular 

zero-dimensional Hausdorff space. 

Lemma 2. X is locally compact. 

Proof. It suffices to show that (Va E A){F E X: 

(a,w) E F} is compact. Suppose U is an open cover of 

{F E X: (a,w) E F}. Let U be a basic open neighborhood 

of (a,w) which lies inside an element of U. Suppose that 

H E [wJ<w lists all second coordinates other than w used 

as parameters in U. For each n E H, let Un be a basic 
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open neighborhood of {(a,w), (a,n)} which lies inside an 

element of U. We claim that {U} U {Un: nEw} cover all 

but finitely many elements of {F E X: (a,w) E F}. 

Suppose that G E [A]<w lists all first coordinates other 

than a used as parameters in U or in some Un where n E H. 

Suppose J = {(a,w), (a,n), (S,w), (S,n)} is not covered. We 

deduce that, since J ~ U, either S E G or n E H. If n E H, 

then we deduce that, since J ~ Un' we must have S E G. 

Thus in either case S E G. Now, since J E X, we know that 

a ~ n = S ~ n. Since a ~ 8, that leaves finitely many 

possibilities for, n for each S E G. 

Lemma 3. The discrete family of points {{(a,w)}: 

a E A} is normaZized but not separated. 

Let Hand K be disjoint subsets of A. Since A E 
w 

[2 w ] 1, we know (see [23J) that, under MA~ , there is a 
1 

function f: A ~ w such that (Vh E H) (Vk E K)h ~ (max{f(h), 

f(k)}) ~ k ~ (max{f(h) ,f(k)}). We claim that the neigh

borhood {F E X: (h,w) E F,(Vi ~ f(h» (h,i) ~ F} is dis

joint from {F E X: (k,w) E F, (Vi < f(k» (k,i) ~ F} when

ever h E Hand k E K. 

Otherwise, suppose that G = {(h,w), (h,n), (k/w) I (k,n)} 

lies in both neighborhoods. We deduce that n > f(h) and 

n > f(k). This means t~at h ~ n ~ k ~ n. Since G E X, 

we deduce th~t h ~. n = k ~ n which is a contradiction. 

If {U : a E A} were disjoint basic open neighborhoodsa 
of {{(a/w)}: a E A} I then suppose that H E [wJ<w lists 

a. 
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all second coordinates other than w used as parameters in 

U. We can find an uncountable B C A and nEw such that 
a. 

2n a E B implies Ha. C n. Find cr E and assume, without 

loss of generality, that a. E B implies a. ~ n = cr. Suppose 

that G E [AJ<w list all first coordinates other than a. 
a. 

used as parameters in U. By the free set lemma, we can 
a. 

find an uncountable C C B such that c,d E C ~ c ~ Gd , 

d ~ G. If c,d E C then we have {(c,w), (c,n), (d,w), (d,n)}
c 

E U n U which is a contradiction. c d 

Lemma 4. X is 2-metacompact (any open cover has an 

open refinement so that each element lies in at most two 

elements of the refinement). 

Proof. Given any open cover by basic open sets, 

select an element of the cover for each {(a.,w)}. Then 

select a basic open neighborhood of each {(a.,w), (a.,n)} 

which is not yet cover~d. Finally cover the isolated 

points which have not yet been covered with singletons. 

Note that a basic open neighborhood of {(a.,w)} and a basic 

open neighborhood of {(a.,w), (a,n)} are disjoint unless 

{(a,w), (a,n)} is an element of the basic open neighborhood 

of {(a.,w)}. This means that each {{a.,w),{a.,n),{S,w), 

(S,n)} lies in at most one basic open neighborhood of an 

element of the form {(a,w)} or {(a,w), (a,n)} and thus that 

no element of X is an element of more than two elements of 

the open refinement which has been constructed. 

The property of being countably paracompact has a 

separation component which has content in non-normal 
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spaces. No established terminology has arisen for this 

property. We will call it (*) in this section. 

Definition 4. Let X be a topological space. We 

say that X is (*) if for any discrete family {F : nEw}n 

of closed sets, there is a locally finite family {Un: 

nEw} of open sets such that each F C Un. n 

Countably paracompact spaces are (*)-spaces. Further

more normal spaces are also (*)-spaces. The results of 

[37] use only (*) and thus can be viewed as generaliza

tions of the corresponding results of [12] which use 

normality. 

The definition of normalized thus leads naturally to 

another definition: 

Definition 5. If X is a topological space and F 

{F : ex. E K} is a discrete family of sets, then we say that 
ex. 

F is (*)-ized if, for each partition {A : nEw} of K into 
n 

countably many disjoint subsets, there is a locally finite 

open family {Un: nEw} such that, for each ex. E An' 

FeU . 
ex. n 

The referee has observed that, by way of contrast, 

Daniels has established: 

Theorem 8. ([7J) (MA ). In a locally compactwl 
boundedly metacompact space, a discrete (*)-ized family of 

points of cardinality ~l is separated. 
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Thus the example in Theorem 7 is normalized but not
 

(*)-ized. This serves to illustrate that although normal
 

implies (*), normalized does not imply (*)-ized.
 

4. An Example of Davies 

In 197~, Peter Davies answered a question of Fleissner 

and Reed by constructing a curious example in ZFC: 

Theorem 9. ([8J). There is a completely regular 

space Z of cardinality Xl which has a point-countable base 

but which also has a closed discrete subset D which is net 

An examination of Davies' space shows that each ele

ment of Z - D is an isolated point and that basic open 

neighborhoods of elements of D are countable and metrizable. 

Nyikos has asked whethe~, in first countable normal
 

spaces, each closed discrete set must be a Go-set. Of
 

course, under V = L, the answer is yes (if a closed dis

crete set is separated and each point is a Go' then the
 

closed discrete set must be a Go-set) ~ Shelah has an


swered this question.
 

Theorem 10. (Shelah [25J). It is consistent (with
 

CH) that there is a first countable normal space with a
 

closed discrete set which is not a Go-set.
 

This leaves Nyikos' question open under MA where 
wI
 

the classical examples of first countable normal spaces
 

with unseparated closed discrete sets are found.
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Problem 1. Does MA imply that there is a first 
WI 

countable normal space with a closed discrete set which is 

In this section, we begin by showing that the fact 

that Davies' neighborhoods are metrizable but not compact 

is the best possible in ZFC. 

Theorem 11. (MA ). In a Hausdorff space of cardi
WI 

nality ~l whose neighborhoods are either points or con

vergent sequences~ closed discrete sets are ~o-sets. 

This theorem also shows that, although the classical 

examples of normal first countable spaces with unseparated 

closed discrete sets are Cantor trees and ladder systems, 

examples of first countable spaces with closed discrete 

sets which are not Go-sets must be more complicated under 

MA~ • 
1 

The theorem is a direct consequence of the following 

combinatorial result: 

Lemma 5. (MA ). If {D : a E w } is a famiZy of a 1 

almost disjoint countabZe subsets of wl~ then w is the 

W1 

l 

union of countabZy many sets each of which intersect each 

D in a finite set. 
a
 

<W 1 1

Proof. Let P = Fn(wl,w) x [ WI ] . Let (f ,A ) ~ 

(f2,A2 ) if and only if fl ~ f2 and Al ~ A2 and (V~ E A2 ) 

(fl - f2) (D ) n f2(D) ~ Now (P,_<) is a partial order. 
a a • 
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Each D = {(f,A) E P: a E dorn(f)} is dense. Each E a a 

{(f,A) E P: a E A} is dense. 

We shall show that P has the countable chain condi

tion. Let {(fY,AY): y E wI} be an antichain. Without 

loss of generality, the fY's are a compatible ~-system 

with root f and the AY's are a ~-system with root ~. 

Without loss of generality, dom(fY - f) is disjoint from 

D whenever a E~. Without loss of generality,
a 

U{ D : E AY1., . d' . , t f d (fY2 - f) whenf'Ja ~ j 1S 1sJ01n rom om Y1 < Y2 · 

Incompatibility implies that 

(Vy1 < y 2) (3 a. E AY2): ( f Y1 - rl Da. n f '( 2 (Da.) f fr' 

Without loss of generality a ~ ~ so we can assume that the 

AY's are disjoint. Without loss of generality, IfY - r1 
is fixed at m. Thus, 

(fn _('eln E w) ('eli < m) (3a E Aw+i ): f) (D ) n fW+i(D )- a a 

~ ~ 

and so, in particular, 

('eln E w) ('eli ~ my (30. E AW+i ): dom(f
n 

- f) n D ~ ~ a. 

Let U be any free (non-principal) ultrafilter on w. 

Aw+i. f' .Each 15 1n1te, so, 

(Vi ~ m) (3a(i) E Aw+i){n: dom(fn - f) n Do.(i) ~ ~} 

E U 

Intersecting those m + 1 sets, 

n
(3B E U): ('eli ~ m) ('eln E B)dom(f - f) n Da(i) ~ ~ 

Geometrically, the dom(fn - f) may be viewed as the 

rows of an w x m matrix and the Do.(i) may be viewed as 

m + 1 almost disjoint sets, each of which intersect each 

row of this matrix. That is a contradiction. 
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By MA ,there is a filter G C P meeting each D~ and 
wI u. 

each Ea. Let g = U{f: (3A E [w J<W) (f,A) E G}. Now g
1 

-1 
maps wI into wand wI = U{g (n): nEw} is a decomposi

tion of wI into countab1y many sets. 

We claim that (Vn E w) (Va E wI) Ig -1 (n) n D I < w. 
a 

Let (f,A) be an element of the generic filter such that 

B E Da,a E A and f(B) = n. We claim that D n g -1 (n)
a 

-1 -1 
S~ayf-l(n) n D Suppose y E(g (n) - f (n)) n D . a a 

-1Y E h (n) when (h,B) -< (f,A) . We know that (Va E A) 

(h - f) (D )' n f(D ) fl. Now hey) n, f (13) = n, y E D a a a 

and B E D which is a contradiction. 
a 

Steprans has observed that this is a modification of 

Wage's partial order in Theorem 1 of [33J. 

We can shed more light on the problem by using a new 

definition: 

Definition 6. A space X is badly non-collectionwise 

Hausdorff if there is a closed discrete set A such that 

nwhenever {{U : a E A}: nEw} is a sequence of open sets a 
nsuch that aE U , there is a sequence {a(n): nEw} C A a 

such that m,n E w,m ~ n implies U~(n) n U:(m) ~ ~. 

Lemma 6. If there is a (normal) first countable 

space X which is badly non-collectionwise Hausdorff~ then 

there is a (normal) first countable space Y which contains 

a closed discrete set which is not a Go-set. 

Proof. Assume X" = fI and assume that {Un: nEw} is 
a 

a decreasing neighborhood base for each a E X'. Next 
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define a partial function f: X' ~ w to be complete if 

Idomfl wand a,b E domf implies u~(a) n u~(b) ~~. We 

shall introduce a new isolated point p(f) for each com

plete f. We need only specify which open neighborhoods 

contain each new point p(f) and do so by stating that 

p(f) E u~ if and only if a E domf and n ~ f(a). The sig

nificant property of these new points is that they pre

serve disjunction. Suppose u~ n ~ ~ (in X). Let 

p(f) E u~ n ~ (in the new space). Thus a,b E domf and 

n ~ f(a) and m ~ f(b). By assumption, u~(a) n u~(b) ~ ~ 

in X which is a contradiction. Thus the introduction of 

these new isolated points preserves normality. Now sup

pose X is badly non-collectionwise Hausdorff. We claim 

the new space fails to be perfect. Suppose otherwise 

that n{u{u~n(a): a EX'}: nEw} = X' where each fn: X' ~ w. 

There must be a sequence {a (n) : nEw} C X' such that 

m,n E w, m ~ n implies ufn(a(n» n ufm(a(m) 
~ ~. Let 

a(n) a(m) 

f: {a(n) : n E w} -+ w be defined by f(a(n» = f (a(n».n 
ufn(a(n»Finally the new p(f) E for each nEw. 

a(n) 

The reason that Davies' example has little to do with 

point-countable bases is the following: 

Lemma 7. If there is a (normal) first countable 

completely regular space X which contains a closed dis

crete set A which is not a Go-set, then there is a (normal) 

completely regular space Y with a point-countable base 

which contains a closed discrete set which is not a Go-set. 

Furthermore, if IAI < ~ , we can get IYI = Ixl. 
<.u 
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Proof. Let the set of isolated points be denoted by 

G. We can assume that AUG = X. We let H C [AJ w be so 

that (VJ E [AJw) (3H E H): H ~ J. Let Y A U (G x H). 

Let G x H be a set of isolated points. For any neighbor

hood U of a E A in X, let U* = {a} U {(g,H): g E U, a E H}. 

Since Y has been created by spZitting points in the sense 

of Bing [3J, it suffices to show that Y has a point-

countable base and that A remains not a Go-set in Y. 

Certainly each a E A lies in countably many elements 

of the canonical base, since X is first countable. On the 

other hand, each (g,H) lies in its own singleton as well 

as possibly countably many basic open neighborhoods of 

each a E H. Thus each element of Y lies in at most count

ably many elements of the canonical base. 

Suppose that {U : nEw} is a family of open sets in - n 

Y whose intersection is A. For each nEw and each a E A, 

let V(a,n)* C Un be a basic open neighborhood of (a,n) and 

let W = U{V(a,n): a E A}. Since A is not a Go-set in X,n 

this means that there is g E G n n{w : nEw}. Choose B = n 

{an: nEw} C A such that g E v(an,n) for each nEw. 

Now (g,B) E v(an,n)* implies that (g,B) E Un for each 

nEw and that is a contradiction. 

Finally, suppose that IAI = ~ and n is minimal for 
n 

not being able to get IYI = Ixl. We can show that there 

is H C [AJw of cardinality IAI so that (VJ E [AJw) (3H E H): 

H ~ J. Just note that w is the union of ~n many subsets,n 

each of cardinality less than ~n' so that each countable 
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subset of w is a subset of one of these subsets and apply
n 

minimality of n. 

Corollary 5. The following are equivalent: 

a There is a normal first countable space which is 

badly non-collectionwise Hausdorff. 

a	 There is a normal space with a point-countable 

base which contains a closed discrete set which 

is not a Go-set. 

a	 There is a normal first countable space which 

contains a closed discrete set which is not a 

Davies gave an elegant geometrical description of his 

example. For variety, we give a description of his example 

which is somewhat different. In fact, we will show that 

Davies' example fails to satisfy a very weak separation 

property. 

Definition 7. A space X is said to be discretely 

metanorrnal if, whenever {K : nEw} is a discrete family
n 

of closed discrete sets, there are open sets {U k: n, 

n,k E w} such that K C Un,k for each n,k E wand n 

n{un, k: n,k E w} ~. 

To put this definition into context, we note the 

definition of metanormal in Section 9 (Definition 8). 

Lemma 8. 

o	 Any countably metacompact space is metanormal. 
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o	 Any metanormal space is discretely metanormal. 

o	 Any perfect space is metanormal. 

o	 Any normal space is metanormal. 

o	 Any space in which each closed discrete set is a 

Go-set must be discretely metanormal. 

Theorem 12. (Davies [8J). There is a regular first 

countable space X of cardinality Nl which contains a 

closed discrete set which is not a Go-set. In fact~ X 

fails to be discretely metanormal. 

Proof. Let F be the set of countable limit ordinals. 

Let G be the set of countable successor ordinals. For 

each a E F, let {a : nEw} be a sequence of successor n 

ordinals increasing to a. We shall assume for simplicity 

that a O = O. Let X = F U [GJ 2 and declare X - F to be a 

set of isolated points. We declare a basic open neighbor

hood of a E F in parameter n < a to be 

(3n E w) a > y > 

>	 a > n}
n 

This is a first countable T topological space.l 

Furthermore, we shall show that these neighborhoods 

Un(a) are closed. Let 8 E F - un(a). 

o Suppose 8 < a. Let n be maximal such that a < 8. n 

We	 claim that U (8) n U (a) =~. Suppose otherwise 
an n 

that {y,o} is in the intersection. Since {y,o} E 

U (8), we deduce that 8> y,o > a • By definition 
nan 

of n, we know that a +l ~ 8 so a +l > y,o > an which n n 

contradicts the assumption that {y,8} E U (a).
n 
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o Suppose S > a. We claim that U (S) n U (a) = 0. 
a n 

Suppose otherwise that {y,o} is in the intersection. 

We quickly deduce that S > y,o > a and a > y,o > n 

which is a contradiction. 

Thus X is zero-dimensional and thus completely 

regular. 

We now show that X fails to be discretely metanormal. 

Suppose that {F : i E w} is a partition of F into station
i 

ary subsets. Suppose that, for each i E w, {Uo : nEw} 
~,n 

is a family of open sets each of which contains F i . 

Suppose that TI: w x F ~ wI is such that, for each i,n E w, 

By the pressing-down 

lemma, there are stationary sets SoC Fo and ordinalsn,l. ~ 

{n 0: n,i E w} such that (~8 E S o)TI(n,S) = no. Letn,l. n,l. n,l. 

n = sup{n 0: n,i E w}. For each n,i E w, there isn,l. 

k(n,i) E wand an,i E wI such that, without loss of 

l Ot ( E S) - n,i * genera l. y, Va n,i ak(n,i) - a > n. Let a = 
sup{an,i: n,i E w}. For each n,i E w, there is r(n,i) E 

wand an,i E wI such that, without loss of generality, 

( u E S) en, i * d h th t ( 0) 0va n,i ar(n,i) = > a an sue a r n,1 1S 

minimal for a ( 0) > a*. Let S* = sup{Sn,i: n,i E w}.r n,l. 

Now, for each n,i E w, choose yn,i E S such that
n,l.

0 

yn,i > S*. 

We claim that {a*,S*} E U (yn,i) for each0 

TI(n,yn,l.) 

n,i E w as required. We can calculate 

TI(n,yn,i) = an,i (n,i)
nn,i < n < = y k(n,i)
 

< a* < Sn,i = (yn,i) < 8* < yn,i
0

r(n,l.) 
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5. Perfectly Normal Suslin Spaces 

In this section, we refer to non-separable spaces 

which have the countable chain condition as Suslin spaces. 

Junnila [lSJ has constructed a perfectly normal Suslin 

space of character 2~1. In this section, we investigate 

the possibility of lowering the character in this con

struction. We observe: 

Theorem 13. Therae is a perafectly noramal Sus lin space 

of charaacter K if and only if there is either an L-space 

of charaacter K or a normal space of character K which 

is not weakly ~l-collectionwise·Hausdorff. 

Proof. (~) Hereditarily Lindelof regular spaces 

are perfectly normal and have the countable chain condi

tion. Any normal space of character K which is not weakly 

~l-collectionwise Hausdorff can be assumed to consist of 

a closed discrete set of cardinality ~l and a set of iso

lated points and Bing's method [3J of constructing 

Example H can be applied to make it perfectly normal. Now 

Junnila's method [lSJ can be applied, iterating the 

example w times until it has the countable chain condition. 

(~) Let X be a perfectly normal space of character 

K with the countable chain condition which is not separ

able. If X has an uncountable discrete subset 0, then 

y = X - (0 - D) is an open subset of X which also has 

character K and is normal (since X is hereditarily normal) . 

Now D is closed in Y and Y has the countable chain condi

tion, so Y is not weakly ~l-collectionwise Hausdorff. If 
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there is no uncountable discrete subset in X, then we can 

apply sapirovskil's result [32J that any space of count

able spread has a dense subspace which is hereditarily 

Lindelof. This dense subspace cannot be separable since 

X is not separable, and so must be an L-space whose char

acter is no greater than that of X. 

Corollary 6. Perfectly normal Suslin spaces must 

nave7 c haracter greater t han 2w. an d only v1.,f ~f 2w < 2wI 

and there are no L-spaces. 
wI 

2wProof. 2 implies that Junnila's example has 

character 2w• 

Tall [30J (using ideas of Sapirovskil [32J) showed 

wI. .
that 2w < 2 1mpl1es that normal spaces of character 2w 

are weakly ~l-collectionwise Hausdorff. 

If there is an L-space, then there is an L-space 

which has weight wI (see 3.6 of [22J). 

In 1980, Szentmik16ssy showed that it is consistent 

with MAK (which implies 2w = 2
wl 

) that there are no first 
1 

countable" L-spaces. The consistency of the non-existence 
w12wof (first countable) L-spaces with < 2 remains open. 

W 

2wCorollary 7. If it is consistent with < 2 1 that 

there are no first countable L-spaces~ then it is consis

tent that there are no perfectly normal first countable 

Sus lin spaces. 
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6.	 Fleissner's George 

The purpose of this section is to make three simul

taneous observations about George, a space constructed by 

Fleissner in [11]. First, George need not be constructed 

on successor cardinals but can be done as well on regular 

limit	 cardinals. The significance of this is that it 

shows	 that any forcing which attempts to show the consis

tency	 of "« K,oo)-collectionwise normal, (00, < K)-collec

tionwise normal, cardinality K and character K implies 

(K,K)-collectionwise normal when K is regular" had better 

destroy inaccessible cardinals. 

Second, George need not be constructed on cardinals 

at all but can be done as well on many right-separated 

spaces	 ·of order-type K which do not have a discrete sub

set of cardinal K. The significance of this is that it 

shows	 that, under the continuum hypothesis, there is a 

normal space of character ~l which is not collectionwise 

normal with respect to a family of hereditarily separable 

sets. This contrasts nicely with Tall's result [29]. that 

it is	 consistent with the continuum hypothesis that normal 

spaces of character ~l are collectionwise normal with 

respect to hereditarily Lindelof sets. 

Third, George has a closed subspace which is locally 

countable and is still not collectionwise normal. The 

significance of this lies in Frank Tall's conjecture that 

if the existence of large cardinals is consistent, then 

it is consistent that all normal spaces of countable 



343 TOPOLOGY PROCEEDINGS Volume 14 1989 

tightness are collectionwise normal. This closed sub

space disproves this in a strong fashion. 

We shall proceed by presenting a general construc

tion. First we explain the notation: A space is (K,\)

collectionwise normal if it is collectionwise normal with 

respect to any K many sets each of cardinality at most \. 

The notations « K,oo}-collectionwise normal and (00, < K)

collectionwise normal are self-explanatory. A topology T 

on K is said to be right-separated if each a E K is open. 

Theorem 14. If K is a regular uncountable cardinal 

and T is a right-separated strongly zero-dimensional 

aollectionwise normal topology on K which does not admit 

an unbounded closed discrete subspace and which does not 

admit a stationary set of isolated points in any K - a~ 

then there is a space W of cardinality K and character at 

most sup{2Y: Y < K} which is « K,oo)-collectionwise normal 

and (00, < K}-collectionwise normal but not collectionwise 

normal with respect to K many copies of (K,T). Further

more J if K is the successor of another cardinal ~J then 

each element of W has a neighborhood of cardinaZity ll· 

2Proof· Let X { (S, a) E K : S > a}. Let Y
0. s 

2
{ (y ,0.) E K : S > Y > 0. } • Let F U{Xo.: 0. E K} = -
U{Y : 0. E K} be the subspace of K x K where the first K a 

has the topology T and the second K has the discrete 

topology. 

Let C(YS,A) be the set of continuous functions from 

Y into A where Y has the subspace topology and \ hass s 
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the discrete topology. That is, C(YS,A) is the set of 

partitions of Y into at most A-many clopen sets.s C(Y ,A) 
Let G = IT{A S : A E K}. Formally, each of these

S 
C(YS,A)'S should be multiplied by {A} to "make a note of" 

the codomain of each function. We do not do this to avoid 

the burden of notation, but we remind the reader that a 

consequence of this convention is that {C(YS,A): A E K} 

is a disjoint family. 

Let X = U{G : S E K}. Each (S,a) E F can be identi
S

fied with the g E G defined by letting g(f) = f(S,a) for
S 

each f E C(YS,A). Of course, we are again abusing nota

tion here since, really, g(A) (f) = f(S,a). Thus F can be 

considered a subset of X since C(YS,A) separates the ele

ments of {S} x S. 

A neighborhood of (S,a) E F has a parameter 

o E [U{C(YS,A): A E K}J<W 

D(8,a) {h E G
S

*: S* < B, ('If E D)h(f ~ Y
S

*) 

f(S,a) 

Again we mean h(A) (f ~ Y *) where A is such that f E
S

C(YS,A). Let G = X - F be a set of isolated points. 

First note that (S,a) E D(S,a). This is true since 

13 ~ 13 and ('If E D)f ~ Y = f by the definition of the em
S 

bedding of F in X. 

To see that X is a topological space, let (Sl'~l) E 

D(S,a). We will show that (SI,a E E(SI,a ) C D(S,a)l ) l 
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where E = {f ~ Ys : fED} . Next, to show that E(S1,a 1 ) C 

1 

D(S ,a) , let h E E(Sl,a l ). Suppose h E G * and so 
S 

S* ~ 13 1
< S If f E D, then h E E(Sl,a l ) implies that-

h(f ~ Y Y *) = (f ~ Y ) (Sl,a l ). Letting g E F repre-
S S S1 1 

sent (Sl,a l ), we know that since (BI,a l ) E D(S,a), 

(f ~ Y ) (Sl,a ) = g(f ~ Y ) = f(S,a). Thus we deduce
S l SI I 

<

that h(f ~ Y *) = f(S,a) as required.s
To see that F has the subspace topology, we will show 

that for each clopen subset U of F, there is a function f 

such that 

U{{f ~ Y } (S,a): (S,o.) E U} n F = U
S

Let f: F ~ 2 be the characteristic function of U in F. 

It suffices to show that, whenever (S,o.) E U and (3 0 ,0. 0 ) E 

{f ~ YS}(S,o.) n F, (SO,o.O) must be in U. If (SO,o.O) is 

identified with g, then g(f ~ Y ) = (f Y ) (BO,a )
S s o0 0 

while (SO,o.O) E {f ~ YS}(S,a) means that 80 ~ 8 and so 

g ( f t y S " y l3 0) = g ( f ~ y l3 0) = (f t y 13) (l3, a. ) = f ( 6 , a.) • 

Therefpre f(3,0.) = f(6 0 '0.0) and so by definition of f, 

since (B,a) E U, we have (SO,o.O) E U. 

We must also show that for each parameter D, 

D(S,o.) n F is open in F. Now D E [U{C(y ,A): A E K}J<w
8

so let K n{f-l(f(S,o.»: fED}. We know that K is an 

open set since each Y is open. We calculate that
8 

D(S,o.) n F= 

{ (B * ,a *) E F: 8* < 8: (" fED) (f ~ YS*) (8 * , a * ) f(B,o.)} 



346 Watson 

(U{G *: s* < s}) n n{{(S*,a*) E F: f(S*,a*)
8 

= f(S,a)}: fED} 

-1
(U{G *: S* .:. Sf) n n{f (f(S,a»: fED}

S

( U{ GS*: B* < S}) n K 

which is open as required. 

Points are not closed in X but this is best treated 

with an afterthought--an application of the "perfection" 

lemma of [36]. To be specific, let Z = F U (G x w), let 

G x w be a set of isolated points and let (u n F) U «U n G) 

x (w - n» be open for each open U in X and nEw. Now Z 

is T so long as F is T as a subspace.l 1 

We shall show that X (and thus Z) is (A,oo)-collection

wise normal for each A < K. T~is demonstrates that Z is 

normal and Hausdorff. It suffices to separate a A-

partition of F into clopen sets. Let f: F ~ A be a pa~ti-

tion of F into clopen sets. Let K U{{f Y } (B,a):
y B

(S ,a) E f- l (y) } for each y E A. Each K is an open set 
y 

-1which contains f (y). We shall show that y ~ YO implies 

K
y 

n K = ~. Let f(B,a) y and f(SO,a
o

) YO and 
YO 

suppose h E {f ~ YS}(S,a) n {f 

Thus h(f ~ YS r YS*) = (f YS) (B, a) and 

YS*) = (f ~ Y ) (SO,a O) • Since S* < B,B O' we
So 

have y = f(S,a) = f(SO,aa) = Ya which is a contradiction. 

We now pass to a closed subspace W C Z. Let W = 
F U {(g,n) E G x w: g(<P) = a ~ <p-l(a) t- ~}. Since W is a 

closed subspace of Z, it is a normal Hausdorff sp~ce 
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which is (A, (0) -collectionwise normal. for each \ < K and 

whose sUbspace of non-isolated points may be identified 

with F. 

We show that even the closed subspace W fails to be 

collectionwise normal. 

First we point out that a natural error is to reason 

as follows: Let f E C(F,K) be defined by f(S,a) = a. It 

seems that {f ~ YS}(s,a) n {f ~ YS*}(S*,a*) = ~ whenever 

a ~ a*. However this is not true. The reader must ask 

"for which A(6) E K, is f ~ Y E C(Y ,A(6»)?". For thes S

intersection to be empty A(6) = A(S*) = A and that cannot 

be so for all S E K since A < K. 

We shall show that {X : a E K} is a clopen parti tion 
a 

of F which cannot be separated in W. Suppose {U : a E K}
a 

were a separation of {X : a E K}. For each a E K and 
a 

S > a, there is a parameter D such that D (S,a) CU.S,a S,a a 

Actually D (B,a) is a subset of X so we mean the set
S,a 

obtained by multiplying each isolated point by some fixed 

w - n and then intersecting with W. We will continue to 

work in X for ease of exposition. Let D*S = {A E K: ,a 

DS,a n C(YS,A.) ~ ~}. Each DS,a is finite. 

We will now do a ~-system analysis of this neighbor

hood assignment. Since we need Sand {S : a E S} to 
a 

accomplish several things simultaneously, we will impli

citly construct a finite descending sequence {Si: i E n} 

of stationary sets and a sequence of families {Si: a E Si}
a 

l l 

such that, for any i < i' and a E si si ~ si We , a a 
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start with sO = K and (Va E K)SO = K. We finish with Sn a 

and {Sn: a E Sn} but name these sets Sand {S : a E S}.a a 

We will search only for facts which can be assumed to be 

true about unboundedly many a and, for each such a, sta

tionarily many B. That is, we will define an unbounded 

set S C K and, for each a E S, a stationary set sa C K 

and speak only about (S,a) which satisfy a E Sand B E Sa. 

We will not mention any of this (even S or S ) explicitly.a 

We assume that each {O* : S E K} is a tl-system withS,a 

root tl We assume that {~ : a E K} is a ~-system with a a 

root tl. Since there does not exist a stationary set of 

isolated points in any tail, we have 

(Va E K) (311 (a) E K) (VB E K) 

(n(a),a) E n{<p-l(<p{S,a)): <p E Os },a 

For each A E 4, let D~,a DS,a n C(YS,A). If S is 

not an isolated point in K - (a + 1), then any <p E OA 
S,a 

is determined by <p ~ U{Y8: 8 < B}. Thus, in this case, 

there are ordinals n{S,a,A) < B such that all the elements 

of OA are distinct when restricted to Y LetS,a n (B,a,A)

us list, with fixed nA, D~,a = {f~,a,A: k E n } for eachA

A E~. We also assume that, for each A E ~, n{B,a,A) 

does not depend on S and has n*{a) as a maximum, as A 

Aranges over ~. For each A E ~, find {v : k E n } suchk A
that, for each k E n A, f~,a'A{B,a) = vk

A
- This is possible 

since each A < K. This completes the ~-system analysis. 

We now do a Ramsey analysis_ Choose {a i : i E w} 

arbitrarily (from S) _ Let n* = sup{n(ai),n*(a ): i E w}.i 
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Find {Si: i E w} (so that Bi E Sa,) such that each Bi > n* 
1. 

and each D* n D* = ~ for i ~	 j. We are invokingS, , a, S. la. 
1. 1. J J 

a 6-system principle which says that if K is uncountable 

and we are given a K x w matrix of finite sets and each 

n'th column forms a ~-system with root 6n, and if these 

roots form a ~-system with root ~, then we can choose 

{Si: i E K} such that the finite sets with coordinates 

{(Si,i): i E w} form a ~-system. 

2 n AXn~ 
Construct a mapping hA: [w] ~ 2 A for each A E ~ 

by defining 
8, ,a, I A 

h ({i,j}) (k,m) n*1 <=> f 1. 1.
 
A k
 

S' ,a, I A
 
f J J ~ n*
 m 

Apply Ramsey's theorem to assume, without loss of 

generality, that each h is constant. We are finished
A 

the Ramsey analysis. 

We claim that the supposedly disjoint neighborhoods 

remaining actually intersect. We shall show that 

C (Y A)
SLet A E 6 be fixed. We will find g E A 0' such that 

1. (Vf E DA )g(f Y ) f(SO,a O)
SO/a O S0 

2. (Vf E D~ ) g (f Y ) f(Sl,a 1 )
l,a l 

~ 
S0 

3.	 g(<P) = a ~ <p-l(a) ~ ~
 

A
We can satisfy (1) and (2) unless (3f E D ) and
O SO,a O 

(3f E DA ) such that f ~ Y f Y and yet
1 6

1
,a	 O S l S1	 0 0 
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fO(So,a ) ~ fl(Sl,a 1 ). Let us suppose f O has index k O ando
£1	 has index k 1 · In particular, then, ~ Y * = ~ Y *f O n f l n 
and so by definition, since 

This implies by the use of 

Ramsey's theorem that h (1,2) (kO,k ) = 1 and h (0,2) (kO,k )A l A l 

= 1. This means, by definition ~f h thatA, 

and 

These equations imply, by transitivity of equality, that 

k. This 

We	 can also satisfy (3) unless, for example, there 

A -1
is	 £1 E D ,a such that (£1 r YSo) £1(Sl,a1 ) =~. The

S1 1 

definition of n(a) implies that 

(n (a l ) ,a ) E f -1 (f (6 ,a l »l l l 1 
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Since n(a) < n* ~ SO' we have a contradiction. The 

proof that W fails to be collectionwise normal is complete. 

We shall show that W is also collectionwise normal 

with respect to sets of cardinality less than K. The space 

Z is quite adequate to illustrate all the properties which 

have so far been demonstrated for W. The reason we have 

taken W as the space is the fact that 

Lemma 9. For any y < a < S~ there is a neighborhood 

of (S,a) which misses U{Go: 0 < Y}. 

Proof. Let K = U{X : a E y}. Let X be the charac
a 

teristic function of K. suppose that h E {X ~ YS}{S,a) n 

Go and 0 ~ y. We deduce that h{X ~ Yo) h(X ~YS ~ Yo) 

(X ~ Y ) (S,a) = O. Meanwhile, by the definition of the
S

subspace W, h{¢) a ~ ¢-l{a) ~~. In this context, we 

deduce that (X ~ Yol-1(Ol ~~. By the definition of X, we 

must have Yo n{x - K) ~ ~ which is a contradiction to 

Yo C Y C K. y 

Proof of Theorem continued: Any discrete family D of 

closed sets each of cardinality less than K intersects 

each X in a bounded set. Let us define a function n such 
a 

that this bounded set is contained in {{S,a): S < n{a)}. 

We can find a closed unbounded set C in K including a such 

that a < Sand SEC i~plies n{a) < S. Let ~ = {(S,a) E F: 

S > y > a ~ y ~ C}. Now UD n F C~. For each y E C, let 

~ = {(S,a) E~: y is the greatest element of C such that 
y 

y < a}. We have ~ = U{~ : y E C}. By Lemma 9, each 
- y 
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element of 6 has a neighborhood which does not intersect y 

any basic open neighborhood of any ~5 whenever 0 < Y and 

whenever there is an element of C between 0 and y. This 

means that {6 : y E C} is a separated family. To separate
y 

0, it suffices to separate each {F n ~ : FED} and, since 
y 

each of these families has cardinality less than K, this 

is possible. 

The character of each point (S,a) can be calculated 

Aislas ~ sup{2Y: Y < K} (since IYSI = lSi).LAEK 
We shall reduce the (local) size of the space. 

C (Y B' A) 
Define GS to be a dense subspace of rr{A : A E K} in 

the product topology. Then, for each g E GS' we define 

a new function g* E G • For each ~ such that ~~l(g(~)) ~ 
S

~, define g*(¢) = g(¢). For each ¢ such that ¢-l(g(¢)) 

~, choose a* such that ¢-l(a*) ~ ~ and define g*(¢) = a*. 

Now replace G with {g*: g E GS}. In this closed sub
S 

space, we can still find the counterexample to collection-

wise normality. 

Let U be a cardinal defined to be K if K is a limit 

cardinal and defined to be the predecessor of K if K is a 

successor cardinal. We can calculate 

(II (IIC(Ys/A)) C(lltlJ )) d(~K.2U)
d AEK A -< d AEK U U 

Coro l lary 8. (ZFC). For each cardinaZ K~ there is 

a « K,oo)-coZZectionwise normaZ~ (00,< K)-coZZectionwise 

normaZ space which has cardinality K and has character 
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sup{2Y: y < K} but which fails to be (K,K)-collectionwise 

normal. If K is an inaccessible cardinal, then the char

acter is K. 

Proof. Use the order topology on K as T. No sta

tionary set has the discrete subspace topology. There are 

no infinite closed discrete sets. Compact zero-dimensional 

spaces are strongly zero-dimensional and all separation 

takes place in a compact initial segment. 

Corollary 9. (CH). There is a normal, collection

2wwise Hausdorff locally countable space of character 

which fails to be collectionwise no~mal with respect to 

~l many hereditarily separable sets. 

Proof. Any hereditarily separable topology fails -to 

have a stationary set of isolated points in a tailor an 

unbounded closed discrete subspace so it suffices to 

exhibit, under the continuum hypothesQs, a strongly zero-

dimensional collectionwise normal hereditarily separable 

right-separated space. The Kunen line [17J is such a 

space. To see that the Kunen line is strongly zero-

dimensional, note that, in the proof of normality of T 

in [17J, the T-open sets and p-open sets can be taken to 

be T-clopen and p-clopen respectively since T is zero-

dimensional and, if we start with the Cantor set, so is p. 

Corollary 10. (ZFC). There is a normal, collection-

wise Hausdorff locally countable space of cardinality ~l 

and character 2w which fails to be collectionwise normal. 
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Corollary 11. (ZFC). There is a normal space of
 

countable tightness which fails to be collectionwise
 

norma l.
 

7.	 Singular Compactness 

For certain cardinals K and certain properties P, if 

a structure of cardinality K exhibits property P, then 

some substructure of cardinality less than K must also 

exhibit property P. We say that property P refZects down

ward at K. For first-order properties, this is just the 

downward Lowenheim-Skolem theorem. The question of whether 

the second-order separation properties considered in this 

article reflect downward has gathered a fair amount of 

interest. In this section, we consider two properties, 

both of which are the failure of certain families of points 

to be separated. The referee has established that the 

failure of collectionwise Hausdorff reflects downward at 

strong limits of countable cofinality when the character 

is less than K. We have established that the failure of 

'weakly collectionwise Hausdorff' reflects downward at 

singular strong limits K when the character is less than K. 

We say that a space X is weakly K-collectionwise 

Hausdorff if any discrete family of points of cardinality 

K contains a separated subfamily of cardinality K. If a 

space is weakly K-collectionwise Hausdorff for all 

cardinals K, then we say that X is weakly collectionwise 

Hausdorff. This property was introduced by Frank Tall
 

[30]. He characterized this property as a "consolation
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prize," when neither collectionwise normal nor collection-

wise Hausdorff could be obtained but it has proven sur

prisingly interesting. 

Theorem 15. If K is a singular strong limit cardi

nal~ then character < K and weakly < K-collectionwise 

Hausdorff imply weakly K-collectionwise Hausdorff. 

Proof. Suppose X is a space of character < K which 

has a discrete family of points A such that IAI = K and 

yet which contains no separated sUbfamily of cardinality 

K. The notation "X has character < K" mean·s that there 

is a cardinal A < K such that the character of each point 

of X is at most A. We thus assume that each point x E X 

has a neighborhood basis {ux(a): a E A}. Let {K : 
. a 

a < cf(K)} be an increasing sequence of successor cardi

nals such that K
O 

> 2A-cf (K) and, for each a E cf(K), 

L:{K S:6<a} 
2 < K . Express A as the union of a partitiona 

{AN: a E cf(K)} where IA I = K. For each a, let 
\.N a a 

A<a = U{AS: 6 < a} and, for each x E A , let f : A<a x a x 

A
2 

+ 2 be defined by fx(y,y,o) 1 * Ux(y) n Uy(o) ~ ~. 

IA<a l •A 2E{K s :S<a}. 2 A < K
There are precisely 2 = a many 

possibilities for f and so we can find, for each x 

a E cf(K), a subset B of A of cardinality K and a func
a a a 

tion f : A x A2 ~ 2 such that (Vx E BN)f f. 
a <a \.N x a 

Now, for each a E cf(K) and each x E B , let gx:a
 

(cf(K) - (a + 1)) x A2 ~ 2 be defined by qx(S,y,o) =
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. cf (K) ·A 
f S (x, y ,0) • There are prec1sely 2 < K many possia 

bilities for gx and so we can assume, without 1055 of 

generality, that for each a E cf (K) , we can find g : a 

(cf(K) - (a + 1)) x A2 ~ 2 such that ('Ix E Ba)gx = go.. 

Choose x E B for each a E cf (K). The discrete familya a 

of points {x : a E cf(K)} has cardinality cf(K). If X 
a 

were weakly < K-collectionwise Hausdorff, then this 

family would have a separated subfamily {x : a E C} of 
a 

cardinality cf(K). Let h: C ~ A witness this fact. We 

can now define a separation for U{B : a E C}. Take an 
a 

assignment which witnesses the fact that each B is a 

separated (we can do this without loss of generality 

since each B has cardinality less than K and X is weaklya 

< K-collectionwise Hausdorff) and combine it with the 

assignment j: U{B : a E C} ~ A defined by j (x) = h(y) ~ a 
x E B. We need to show that y 

a,S E C, a < S, x E B , y E B ~ Ux(j (x» n a S 

Uy(j.(y» = ~ 

To see this, first deduce that 

Ux(j(x» n Uy(j(y» ~ ~ fy(x,j(y),j(x» o 

~ fS(x,j(y),j(x» = 0" gx(S,j(y),j(x») o 

~ go. (S, j (y) ,j (x» = 0 

This deduction is true for all choices of x and y, includ-

Meanwhile, U (h(a» n U (h(S» = ~. Since x X 
a s 

j (x ) = h(a) and j(x ) = h(S), we deduce by the forward a S
implication that 
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Since j(x ) = h(S) = j (y) and j (x ) = h(a) = j (x), we
S a 

have ga(S,j (y) ,j (x)) = O. The backwards implication shows 

that we have identified a subfamily U{B : a E C} of 
a 

cardinality K which is separated. 

Note that no separation axioms (not even To) are 

assumed in this argument. I thank the referee for point

ing out that the original proof of this theorem was half-

baked. 

ProbZem 2. If K is not a singular strong limit 

cardinal, then is it consistent that there is a first 

countable space which is weakly < K-collectionwise 

Hausdorff but which fails to be weakly K-collectionwise 

Hausdorff? 

The fact that the failure of collectionwise Hausdorff 

does not often reflect downward has a long history. In 

1972, Blair [4J established, under GCH, that, for each 

regu~ar uncountable cardinal K, there is a regular space 

which is < K-collectionwise· Hausdorff but not K-collection

wise Hausdorff. In 1975, Fleissner [14J removed the 

assumption of GCH and weakened the assumption of regular

ity to uncountable cofinality. In 1976, Fleissner [13] 

solved the remaining case by showing that, for any un

countable cardinal K, there is a regular space which is 

< K-collectionwise Hausdorff but not K-col1ectionwise 

Hausdorff. 

Restricting our attention to spaces of small charac

ter makes the existence of such spaces a more difficult 
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question. In 1977, Fleissner [15J showed that, if K is 

a regular cardinal which is not weakly compact, then it is 

consistent that there is a first countable regular space 

which is < K-collectionwise Hausdorff but not K-collection

wise Hausdorff. On the other hand, if K is weakly compact, 

then every first countable regular space which is < K

collectionwise Hausdorff must be K-collectionwise Hausdorff. 

In 1977, Shelah [26J showed that, if it is consistent 

that there is a weakly compact cardinal, then it is con

sistent that every locally countable first countable space 

which is ~l-collectionwise Hausdorff must be ~2~ 

collectionwise Hausdorff. Furthermore, he showed that, 

if it is consistent that there is a supercompact cardinal, 

then it is- consistent that every locally countable first 

countable space which is ~l-collectionwise Hausdorff must 

be collectionwise Hausdorff. 

The referee has succeeded in proving an important 

result which we include with their kind permission. The 

author is impressed by this proof as a hybrid of Fleissner's 

proof [12J that, under V = L, normal Moore spaces are 

collectionwise Hausdorff and Pol's proof [21J of 

Arhangel'skil's result [1] that first countable compact 

Hausdorff spaces have cardinality at most the continuum. 

Theo~em 16. (The Referee). If K is a st~ong limit 

aa~dinal of aofinality w, then any spaae of aha~aate~ 

less than K which is < K-collectionwise Hausdo~ff must 

be K-colZectionwise Hausdo~ff. 
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Proof. Suppose K is an unseparated closed discrete 

set in a space X of character X less than K. Let 

K /~K. We claim that, for each nEw, there is a neighn 

borhood assignment fn: K + X which separates K such that n n 

(Ya E K - K ) a ~ U{U (S, f (S)): S E K }n n n 

Suppose not. For every neighborhood assignment f: K + X,
n 

let E K - K be such thata f n 

Kn . 
There are X < K many possible f and so, by « K)

collectionwise Hausdorff, let U(B,g(S)) be a neighborhood 
Knassignment which separates K U{a f : f EX}. Now let n 

f = g ~ K • We know that 
n 

and so U(af,g(a f )) n U(S,g(S)) ~ fJ for some S E K which n 

is a contradiction. For each a E K, let n be minimal 
a 

such that a E K . For m < na' let n(a,m) E w be such n 

that 

U(a,n(a,m)) n U{U(S,fm(S)): S E K } fJ m

A separation is given by assigning, to each a E K, the 

neighborhood 

U(a ,f (a)) n n{ U(a , n (a , m) ) : m < n }n a a 

Problem 3. Suppose K is not a strong limit cardinal 

of cofinality w. Is it consistent that there is a first 

countable space which is < K-collectionwise Hausdorff but 

not K-collectionwise Hausdorff? 
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8.	 Navy's Spaces 

This section will attempt to clarify the inter

relationship of base properties in regular topological 

spaces. In this section, a base property is the property 

of having a base with a 'nice' local behaviour. The 

'simple' examples are the following: 

a There is a a-discrete base 

a There is a a-locally finite base 

a There is a a-locally countable base 

o There is a a-disjoint base 

a There is a a-point finite base 

a There is a a-point countable base 

Of course, the last property is equivalent to having 

a point countable base. Regular spaces with a locally 

countable base are precisely the spaces which are the 

free union of separable metric spaces. 

The question arises whether there are any non-trivial 

implications among these properties. Certainly there is 

the classical metrization theorem: 

Theorem 17. (Bing, Nagata, Smirnov, Stone). (See
 

Theorems 4.4.7 and 4.4.8 of [9J).
 

If X is a regular spaae 3 then the following are
 

equivalent:
 

a X is metrizable
 

o X has a a-discrete base
 

a X has a a-locally finite base
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In this section, we observe that the para-Lindelof 

not paracompact spaces of Caryn Navy complete the asser

tion that there are no other non-trivial relationships 

among these base properties (even among Moore spaces). 

Four counterexamples are needed to demonstrate this 

fact: 

Theorem 18. 1. 

1.	 There is a Moore space with a a-locally countable 

base and a a-disjoint base which fails to be 

metrizable (Fleissner, Reed [16J). 

2.	 There is a Moore space with a a-disjoint base 

which fails to have a a-locally countable base 

(Bing's example B [3J). 

3.	 There is a Moore space with a a-locally count

able base which fails to have a a-point finite 

base (Navy [19J). 

4.	 There is a Moore space with a a-locally countable 

base and a a-point finite base which fails to 

have a a-disjoint base (Navy [19J). 

Burke asked in the Problems Section of the 1979 

issue of Topology Proceedings (Vol. 4, No.2) whether 

there is a regular space with a a-locally countable base 

which fails to have a a-disjoint base. Navy's counter

examples (3) and (4) in the theorem answer this question 

affirmatively. 

The construction of counterexamples (3) and (4) uses 

ideas of Fleissner [lOJ and are obtained by jettisoning 
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some of what makes Navy's examples so extraordinary. We 

will refer to counterexample (3) as P and counterexample 

(4)	 as Q. 

Proof· Let X = wW . Let BO(X) be the set of basic
l 

open sets of X represented by nonempty finite partial 

functions 0: W + w
1 

. Let L C [BO(X) J2 be the set of 

unordered pairs {p,T} such that dom(p) = dom(T) and 

p(O) < T(O) < pel) < T(l) < ••• 

Let M C [BO(X) JW be the set of unordered countable 

sets {Pl.': i E w} such that (Vi,]' E w)dom(p,) = dom(o,)
l. ' ] 

and such that 

POcO) < P1(0) < P (0) < ••• < PO(l) < P1 (1)2 

< P	 (1) < ....2 

We define a topology on Q = X U L as follows: Let 

L be a set of isolated points. A neighborhood of f E X 

is given in parameters n > 2 and a finite set K C f(O) by 

U K(f) {g E X: g ~ n = f ~ n}n, 

U{{p,T} E L: p :::> f n, T(O) ~ K} 

We define a topology on P = X U M as follows: Let 

M be a set of isolated points. A neighborhood of f E X is 

given 'in parameters n ~ 2 and a finite set K C f(O) by 

Un, K(f) = {g E X: g ~ n = f n} 

U{{Pi: i E w} E M: Po ~ f ~ n, (vi ~ l)P (0) ~ K}
i 

CZaim. This defines a base. Let f E Un,K(f) n o 

U	 K (f ) n X. That means that f ~ n = f ~ nand
1 1	 On l , 

Thus	 fa E U KUK (f O)
n 1 , 1 

U K(f) n U K (f1 ) as required.n, n1 , 1 
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Claim. This is a clopen base and points are closed. 

Every point is the intersection of its neighborhoods and 

x is closed in the space. Let g E X - U K(f). Thus n, 

g r n ~ f r n. If U K(f) n U ~(g) ~ ~, then f(O) ~ g(O)n, n,p 

and so, 

o	 (For Q) If Un, {f (O)} (g) n Un,K(f) contains 

{p,T} where dom(p) = dom(1) m > n, then, say 

p	 ~ n = g ~ n and ~ ~ n = f n. Now 1(0) 

f(O) E {f(O)} and so {P,T} ~ Un,{f(O)}(g) which 

is a contradiction. 

0 (For P) If Un,{f(O)}(g) n U K(f) contains 
n, 

i E w} where ('Ii >. 0) dam ( p . ) m > n, then,{Pi: - 1 

say n = g r nand ~ n = f n. NowPo Pl 

Pl(O) = f(O) E {f(O)} and so {Pi: i E w} ~ 

Un,{f(O)}(g) which is a contradiction. 

Claim. This is a a-locally countable base. For 

each n, f ~ n = g r n implies U K(f) = U K(g). So we n, n, 

consider UK(a) for a basic open where dom(a) = n for sim

plicity of notation. For each a, the~e are countably 

many finite K C 0(0). Let them be enumerated as 

{K(a,i): i ~ OJ. Claim that {UK(a,i) (0): dom(o) = n} is 

a	 locally countable family of open sets for each fixed 

i > 0 and n > 2. It is a disjoint family on X. 

(For Q) Any isolated point {p,T} is in at most 

two elements, namely those of P ~ nand T ~ n. 

(For P) Any isolated point {Pi: i E w} is in at 

most countably many elements, namely those of 
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Let g E X. We claim that U~(g ~ (n + 1» intersects 

countably many elements of {UK(a,i) (0): a ~ g ~ n, dom(a) 

n}. If it intersects in {p,T} (for example) I then 

g (n + 1) = p " (n + 1) and 0 = T ~ n. Since p and T 

are 'entwined', rng(o) C g(n). Thus there are only 

countably many possible such 0 and so we are done. 

CZaim. Q has a a-point finite base. Any isolated 

point is in at most two elements of {UK(a,i) (0): dom(o) 

= n} for each i > a and n > 2. These families are dis

joint on X. 

CZaim. P and Q are Moore spaces. For each a E w ' l 

let {Fa: nEw} list [aJ<w. For each n > 2 and r E w,
n 

let W n,r be	 the open cover which is obtained by taking 

= Ff(O) ,{Un, K(f) : K r f E X} and adding all isolated 

points which are not covered by that family. We must 

show that for every element x of P (or Q) and for every 

neighborhood U of x, there are i > 2, r E w such that 

St(x,W. ) C U (see page 408 of [9J). 
~,r 

If·x is an isolated point, thus an unordered set of 

partial functions whose common domain is some nEw, then, 

for each i > n, there is exactly one element of W.l.,r 

which contains x, namely {x}. 

If x E X, then there is some Un,K(x) C U. Let i = n 

and let r be such that K = FX(O). Suppose x E u. L(f) E 
r	 J, 

W. and y E u. L(f). Now u. L(f) E W. implies thatl.,r J, J, l.,r 

j = i and L = Ff(O). Since x E u. L(f), we know that 
r	 J, 
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x r = f ~ j which means that I since i .:. 2 I x,( 0) = f (0) 

which means that K = L. This implies that y E U K(f) = 
n , 

U K(x) C U as required.n , 

CZaim. There does not exist a a-disjoint base for 

Q and there does not exist a a-point finite base for P. 

Suppose B = U{B i : i E w} were such a base. Let 

{UK (a) (a): a E A} be a family of basic open sets each 

contained in an element B of B such that B n {f: f(O) ~ a a 

a(O)} = ~ such that A is a cover of X by elements of 

BO(X). Here we need Fleissner's combinatorial notion of 

an n-full set. We say that B C BO(X) is an n-full set if 

each element has domain n and if 

(Vk < n) (Va E B) I {Ct E Wl: ( 3 T E B) T ~ ark U (k I a) } I 

~l 

These n-full sets have nice combinatorial properties: any 

cover of X by elements of BO(X) contains an n-full set for 

some n E Wi furthermore, if an n-full set is partitioned 

into countably-many subsets, at least one of these sub

sets contains an n-full set. These facts are proved in 

Fleissner's paper [lOJ and were later used in Fleissner's 

solution of the normal Moore space problem. 

Find an n-full set B C A, and an i,k such that, for 

each b E B, U ) (b) is contained in an element of B andKCb i 

IK(b) I k. Define {o(i): i ~ O} C B such that 

0 (0) < 0 (0) < O (0) < ••• < 0 (1) < 0 (1) < O (1) < •••
0 1 2 0 1 2 
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We define a mapping with domain [ wJ 2 as follows:
 

Consider {i,j} where i < j. Map it to ~ if neither
 

o. (0) E K(o~) nor o. (0) E K(o.). Map it to (O,m) if 
] · ~ ] 

0. (0) E K(o.) and is the m-th element of K(o~). Map it 
] ~ . 

to (I,m) if 0i (0) E K(Oj) and is the m-th element of K(Oj) 

and if the previous case does not apply. This mapping 

has 2k + 1 possible outcomes. By Ramsey's theorem, we 

may assume, without loss of generality, that each un

ordered pair is mapped to a fixed point. We claim that 

the fixed point is~. Suppose for example that the fixed 

point is (l,m). In this case, both 0 (0) and O (0) are1 2 

the m-th element of K(03) which is impossible. The other 

case is similar. The claim is proved. 

o (For Q) {oO,oll E UK(oo) (0 0 ) n UK(Ol) (0 1 ) but 

UK(oo) (0 0 ) and UK(Ol) (01 ) are subsets of dis

tinct elements of B. and this is a contradiction 
~ 

to the disjointness of B .i 

o (For P) {cr.: i E w} E n{u ) (cr.): i E w} but
K

, 
1 ~Oi 1 

the UK(o.) (oi) are contained in distinct ele
1 

ments of B and this is a contradiction to thei 

point finiteness of each Bi . 

The contradiction has been reached. 

9. Meta-Normality of Box Products 

In 1980, Eric van Douwen [31J investigated weak
 

separation properties of box products. A very weak
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separation property, within the realm of completely regu

lar spaces, is metanormaZ: 

Definition 8. (van Douwen [31J). A space X is said 

to be metanormaZ if, whenever {F : nEw} is a discrete n 

family of closed sets and {U k: n,k E w} are open sets n, 

such that FeU k for each n,k E w, then n{u k: n n, n, 

n,k E w} = ~. 

This property is weaker than all of perfect, countably 

metacompact and normal (see pages 62 and 63 of [31]) . 
wI 

Stone showed in 1948 [27J that w is not normal. The 
+ 

generalized box product < K - 0
K 

K is defined as the 

+ 
product KK with the topology generated by declaring 

+ 
{f E KK : f ~ o} to be open for each partial function 0 

from K+ to K of cardinality less than K. Of course, when 

wI 
this is just w with the Tychonoff topology. 

Borges noted in 1969 [5J that Stone's proof showed that 
+ 

the generalized box product < K - oK K is not normal 

when K is regular and asked if the assumption of regular

ity is necessary. van Douwen showed that the assumption 

is unnecessary and asked if non-normality could be im

proved to non-metanorrnality. He obtained this improve

Ament under the assumption r{K : A < K}	 = K. In this 
+ 

section, we show that, in ZFC, < K - oK K is not meta

normal no matter what K is. Moreover, we show the truth 

of a combinatorial proposition raised by van Douwen which 

implies the non-metanorrnality in a simple manner (see 

remark 13.12 of [31J). 
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Lemma 10. Let INJ = {f E K
a a E K

+
, f is one-to

one}. Let g E [fJ<K be defined for each f E INJ. There
f 

are {f : a E K +} C INJ with increasing domains such that 
a 

{gf : a E K+} are compatible. 
a. 

Proof. Let {A : a < K} be a disjoint subfamily of 
a 

d 
Construct	 {h Era: a E K} continuous increasing

a a 

injections such that 

0 h O = ~ 

+ 
0 each d is an ordinal	 in K a
 

0 each r C K
 a
 

0 - r C A
r a+l a a 

Note that a(A) is the a-th element of A. If the 

construction fails	 after h is constructed th~na 

{a(dom(gf)): f ~ hal f E INJ} is unbounded in K+. SO 

construct {f : y E K+} C INJ such thaty 

o each f ~ hy a 

o	 y < y 1 - a (dom (g f ) > sup (dom (g f ) 
Yl Y 

We claim that {gf : Y E K+} are compatible and thus 
Y 

that we succeed in achieving the conclusion of the lemma. 

Suppose otherwise that gf (8) ~ gf (8) where 
Y Yl 

Let 8 o(dom(gf ».
 
Yl
 

o	 If 0 > a then o(dom(gf » ~ a(dom(gf ») > 
Yl Yl 

sup(dom(gf	 » which means that gf (8) isn't 
Y Y 

even defined. 
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o If 8 < a, then since f ~ h ~ h we have,8 ,aYl 

by construction of d S+l ' S = 8 (dom(gf » < 
Yl 

d O+ l < d . This means that S E dom(h ) which a a 

is a contradiction since we can calculate 

gf (S) = f (S) = h (S) = f (S) 
y y a Yl 

Thus the construction can be carried out. 

Let h = U{h : a E K}. We claim that f E INJ and a 

f ~	 h implies that gf C h. To see this, suppose S E 

dom(gf). We must show S E dom(h). Say S = o(dom(gf». 

Now	 f ~ h implies that S = o(dom(gf» < d O+l = dom(h +l )o o


< dom(h). Now there are {f : a E K+} C INJ with increas
a
 

ing domains, each of which c0ntains h since A is always

K 

available for the range. Now {gf : a E K+} are all sub

a
 

sets of h and thus are compatible.
 

Coro llary 12. (ZFC). For any infinite cardinal 

+ 
K, < K - oK K is not metanormal. 

Eric van Douwen has informed us that S. Todor~evic 

has	 independently obtained this result. 
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