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THE PRODUCTS OF K-SPACES WITH
POINT-COUNTABLE CLOSED K-NETWORKS

CHEN HUAIPENG

ABSTRACT. Using a technique of [2] we prove the the-
orem(CH +MC): Let X and Y be k-spaces with point-
countable closed k-networks. Then X x Y is sequential
if and only if one of the three properties below holds:

a) X and Y have point-countable bases.

b) X or Y is locally compact.

c) X and Y are locally k,-spaces.

1. INTRODUCTION

Throughout this paper, we shall assume that all spaces are
regular, and all maps are continuous surjections.

A cover F of a space is a k-network if for any K C U with K
compact and U open, K C UF’ C U for some finite 7' C F.
A space X is in class 7 [7] if X has the weak topology with
respect to a countable cover of closed locally compact subsets.
Y. Tanaka [7, Theorem 3.1] has proven:

Theorem 3.1. Let X andY be k-and R-spaces, then X XY is
a k-space if and only if one of the three properties below holds:
a) X and Y are metrizable spaces.
b) X orY is a locally compact metrizable space.
¢) X and Y are spaces of the class 7.

Here an R-space [6] is a space with a o-locally finite k-
network. A k-and R-space is a quotient s-image of a metric
space by [4, Theorem 6.1]. So it is desirable to consider the
k-ness of the product X x Y of quotient s-images X, Y of met-
ric spaces. If X and Y are Fréchet, by [10, Theorem 9], it
follows that X x Y is a k-space if and only if X and Y have
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point-countable bases. Otherwise b) or ¢) of the above theorem
holds. Every quotient s-image of a metric space has a point-
countable k-network by [4, theorem 6.1]. In this paper, under
CH(continuum hypothesis) and MC( there exists measurable
cardinal) we prove the result:

Theorem 1. Let X and Y be k-spaces with point-countable
closed k-networks, then X X Y is sequential if and only if one
of the three properties below holds:

a) X and Y have point-countable bases.

b) X orY is locally compact.

¢) X andY are locally k,-spaces.

The author wishes to thank Y. Tanaka and the referee for
their suggestions.

2. LEMMAS

Recall that a space X has countable tightness, ¢(X) < w, if
z € Ain X, then z € C for some countable C C A.

Lemma 1. (10, Lemma 4). Suppose that X X Y has a k-
system with t(X) < w, then the following condition (Ci) or
(C3) holds,

(Cy). If (A,) | = in X, then there exists a nonclosed subset
{a,;n € w} of X with a, € A,. ‘

(Cy). If (A,) is a k-sequence in Y, then some A, is countably
compact.

Here (A,) | = means a decreasing sequence {A,; n € w}
such that z € A, \ {z} for n € w. A k-sequence [5] is a
decreasing sequence {A,; n € w} such that C = N, A, is
compact and each neighborhood of C' contains some A,,.

Lemma 2. (4, Lemma 1.7) If f : X — Y is a quotient
map, and if X is determined by the cover P, then Y is de-
termined by f(P) = {f(P); P € P}.

We use “X is determined by P” just as “X has the weak
topology with respect to P ”. The terminology is due to [4,
note 2].
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Lemma 3. Let Y be a quotient s-image of a metric space, and
let S, XY be sequential. If Y is determined by cover P, then
Sw XY is determined by cover {S,xP; P €P and S, € ¢}.

Proof. Let f; : My — S, be a quotient s-map, and let f, :
M; — Y be a quotient s-map. Here M; = X,S, and M, is
a metric space. Let B be a o-locally finite base of M, and
let P = fo(B). M; x M, is a metric space and M; x M, is
determined by cover {S, X B; S, € ¢ and B € B}. f; X f,
is a quotient s-map if S, X Y is sequential. Then S, X Y is
determined by {S, x P; S, €PH and P € P} from Lemma 2.

Lemma 4. Let Y be a quotient s-image of a metric space M,
and let P = f(B). If S, x Y is sequential, the P is a compact
metric subset of Y for each P € P. Here B is a o-locally finite
base of M.

Proof. B = U,¢,B, is a o-locally finite base of M, Let B, =
{B, € B; z € B, and B; D By D --- } with {f(B,); B, € B}
is a k-sequence. Then some f(B,) is a compact metric subset

of Y by [10, Lemma 6]. Thus we can suppose that f(B) is
compact for each B € B .

Lemma 5 (CH). Let Y be a quotient s-image of a metric s-
pace. If S, X Y is sequential, then there exists a subcollection
P, of P such that | P, |[< Vg and U P, is a neighborhood of
y for eachy €Y.

Proof. Suppose there exists a point yo of Y such that we take
any subcollection P’ of P, if | P ' |< Ro, then UP’ is not a
neighborhood of point y,.

A. Let Ny be a Moore-Smith net which converges to yo, yo €
Ny and | N |= Ro. Let Po = {P € P; PN Ny # 0}, then
| Po |< o by P point-countable. If we have defined a Moore-
Smith net Nz which converges to yo with yo & Ng, | Ng |< Ro,
Ps={Pe€P; PNNg+#0}and | Ps|< R for all B < a, here
a < w;. Then U(Up<o Ps ) is not a neighborhood of point yo
by | Us<a Ps |< yRo. So we can take a Moore-Smith net N,
which converges to yo, yo € Nu, | Na |< Ro and Ny N[U(Up<a
Ps ) = 0. Let P, = {P € P; PN N, # 0}, then | P,
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|< R by P point-countable. Then, by induction, there exists
a collection {N,; a < w;} such that:

1) N, converges to yo, yo & N, and | Ny |< Ro for each N,.

2) P meets only one N, for each P of P.

B. Each Ny ={Za1,Za2,- - yZany- - } ={Llas2as--+ sNaye -+ }-
For each f, € “w let Hy = Unco({ln,25,...,f(n)n}x
{14,245 .- yna}) C S, x Y. Let H = Uycy, Hy. Here S, =
{1,,2,,...} is a convergent sequence of S,,.

a) HN (S, x P ) is closed in S, x P for each S, x P €
{S,. x P; S, € ¢ and P € P}. In fact : P meets only one N,
by property 2) of {N,; a < w;}. Then (S, x P) NH = (S, x P
) NH, Z(Sn x P ) ﬂ(U,‘Sn{l,’,Q,’, - ,f(Z),} X {la,Qa,- .. ,ia})
has only finitely many points.

b) H is not closed. We prove (0o0,y,) € H — H. Here “c0”
denotes the nonisolated point in S,. If f € “w, let Uy be the
neighborhood of point “c0” in S, defined by Uy = {oo} U
{nm; n > f(m)}. Let U be a neighborhood of point yo in Y,
then N, NU # @ for each N, € {N,; a < w;}. Then there
exists n(a)e € Ny NU. Let g(a) = n(a), then g € “*w. By
f € “w, there exists function f,, € “w such that A = {n €
w; fao(n) > f(n)} is infinite. Because g(ag) = n(ay), there
exists n’ € A with n’ > n(ag). Then (fou(n')n,n(0)a,) €
{ln" 2n’, s afao(n,)n'} X {lao,zao, s ’n(ao)aov v ’n,ao} C
H. On the other hand the n’ € A gives f,,(n') > f(n'), so
Jao (M) € {nm;n > f(m)} C Uy and n(ag)ay € Noy N U.
Then (foo(n')n,n(@0)ag) € (Us x UYN H,y C (Usp x U)YN H
and H is not closed. Then S, X Y can not be determined by
{S.xP; S, €pand Pe P }. But S, xY is determined by
{S.xP; S, €pand P € P } because of Lemma 3. This is
a contradiction.

Lemma 6. Let Y be a quotient s-image of a metric space. If
Sw X Y s sequential, then Y satisfies the following condition

(03);
(Cs). IfY has a collection {Cpp; n,m < w} such that

1) Crm is a closed set for each Cpym € {Crm; n,m < w},



PRODUCT OF K-SPACES 67

2) {Crm; m < w} s a discrete subcollection of {Cpm; n,m <
w} for each n < w, then for each x € U,,,C,., there ezists a
function f € “w with the z € U{Cpm;m > f(n)}.

Proof. If Y does not satisfy (C3), then there exists a collection
{Cpm; ny,m <w} in Y such that

1) Cpm is closed for each Cyp € {Crm; n,m < w}.

2) {Crm; m < w} is a discrete subcollection of {Cpp; n,m <
w} for each n < w. But there exists g € UpmCrm, with the
zo € U{Crm; m > f(n)} for each f € “w.

Let A = Upn({mn} X Cp). On the one hand; (S, x P)
NA = U ({mn} X Crm) N (Sn X P) is closed in S, x P by 1) and
2) of (C3). On the other hand: (UsxU)NA # @ for each f € “w
and each neighborhood U of the zo. In fact: for each f € “w, if
zo € U{Crm; m > f(n)} then U N (U{Crm; m > f(n)}) # 0.
So, there exists Cpy, € {Cpm; m > f(n)} with U N C,.,, # 0.
Then (U; x U)N A D (Us x U) N ({mn} X Cpm) # 0. This
implies that S, X Y is not sequential. This is a contradiction.

Lemma 7. Let (X77) and (X7T3) be regular, and let T, C T;.
If subset C of X is Ty-compact, then C is T,-compact and
T,|C = Th|C. Here A|B={ANB; A€ A}.

Proof. We only prove T,|C = T;|C. T, C T; then T3|C C T,|C.
On the other hand: if 0, € 73, O:NC € T1|C then C—(01NC)
is a 7;-compact subset of X. C — (O, N C) is a T,-compact
subset of X, then C — (O N C) is a T,-compact subset of
C. Then C — (O, N C) is a Tp-closed subset of C. Then
C—(C—-(0.NnC))=0,NC is a T,-open subset of C. Then
there exists O, € T, with O, N C = O; N C. This implies
O:NC € TC.

Lemma 8. Let Y be sequential. IfY is the union of countably
many compact metric subsets of Y, then there exists a totally
disconnected sequential space Z which is the union of countably

many compact metric subsets of Z and there ezists a perfect
map f:Z —Y.

Proof. If (YT;) is a regular sequential space which is the union
of countably many compact metric subsets of Y. Then (Y7;)
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is a paracompact o-space. Then Y has a Gs-diagonal by [3,
Theorem 4.6]. Then (Y7;) is submetrizable by [3, Corollary
2.9]. There exists a topology 7; on Y such that 7; C 7; and
(YT,) is metrizable. (Y'7;) is the union of countably many
compact subsets of (Y77), then (Y73) is the union of countably
many compact subsets of (Y7;) by Lemma 7. Then (X7)
has a countable base B. By [1, Chapter 6, 252], (X73) is an
image of a subspace (ZO;) of the Baire space B(Ro) under an
irreducible perfect map f. The Baire space B(R,) is totally
disconnected, so is the subspace (Z0,). Let K = {f7![K]; K
is a compact subset of (Y'7;)}. Then K is a compact metrizable
subset collection of (ZO;) by Lemma 7 and K is a cover of Z.
Let

O, ={AC Z; Anf7 K] € Oy|f'[K] for each f~![K] € K}.
We can prove these results:

A) O, C Oy and O, is a topology of Z.
In fact:

1) O € O, then ONf[K] € O,|f~Y[K] for each f~1[K] €
K. This implies O € O;. Then X = UO, C U0, C X.

2)If A,B € Oy, for each f7Y[K],ANf~1[K] € O,|f}[K],
then there exists O; € O; with AN fYK] = O, N f7}[K].
Also BN f~YK] = 0N f7YK]. Then (AN B)N f7 K] =
(01 N O2) N f7YK] € Oy|f~[K], which implies AN B € O,.

3)If Ay € O1,a € A, foreach f7[K] € K, A, N f1[K] €
O.|f~'[K] then there exists O, € O, with A, N f~YK] =
O N fHK]. Then (UpeaAa) N fK] = (UaeaOx) N fYK] €
O,|fY[K]. This implies Uyep Ax € Q5.

B) O1|fYK] = O|f![K] and f~}[K] is a O;-compact
metric subset of Z for each f~![K] € K.
In fact:

1) O, C O, then O,|fY[K] C Oy|f~}[K]. On the other
hand A € O;|f '[K] then there exists B € O; with A =
BN f~Y[K]. B € O, then BN f~![K] € O,|f~![K]. Then there
exists Oz € O; with BN f~1[K] = O, N f~YK] € O,|f}[K].
This implies BN f~![K] = A € O,|f[K].
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2) (Z0O,) is a metric space. If d is the metric, then
(fY[K] d) is a compact metric subspace of (ZO;) by O;|f}[K]
= O|fYK].

C) (ZO) is sequential.
In fact: K is a compact metric subset collection of (Z0,) by
B). On the other hand O; = {A C Z; for each f~'[K] €
K,AN f7YK] € Op|f7'[K] = Oy|f[K] by B). This implies
(Z0,) is sequential.

D) (ZO,) is totally disconnected. O, C O; then (Z0,) is
totally disconnected.

Above we have proven that (ZO,) is a totally disconnected
sequential space which is the union of countably many compact
metric subsets of (ZO,. Now we prove that f : (ZO;) — (YTy)
is a continuous perfect map. In fact : K is a compact metric
subset of (Y7;) for each f~'[K] € K. Let O C K, and let O
be open in K. Then O € T,|K by Lemma 7 T1|K = T,|K.
We have known that f : (Z0;) — (Y7T;) is a continuous
perfect map. Then f|f![K] : f~[K] — K is a continu-
ous map. (f|fK])7'(0) € Oq|f K] = Oi1|f}[K] then
(fIfMK]DY(O) is an Oy|f~[K]-open subset of f~'[K]. If
O € Ty, then for each f~![K], f~K]Nnf~1[0] = fKNO] =
(fIf UKD O N K] is Oy|f~[K]-open in f7Y[K]. (Z0,) is
determined by K then f~![0] € O;. This implies that f :
(Z01) — (YTh) is a continuous map. On the other hand
f~(z) € K then f~'(z) is O;-compact. If we take a closed
subset B of (Z0;) then f~![K]N B is O;-compact. f is Os-
continuous so f[f~[K]NB] = KN f[B] is a T;-compact subset
of Y. Then K N f[B] is T;-closed. (Y7;) is sequential hence
f[B] is T-closed. This implies that f : (ZO;) — (YTy) is a
continuous perfect map.

Lemma 9. Let Y be a quotient s-image of a metric space,
and let S, X Y be a sequential space. Suppose that there exists
P' = {P, € P; n <w} and {S,; n < w} such that for each
convergent sequence SU {z} of Y and each P, € P', if |(SU
{z}) N P,| < Rg then (S U {z}) \ (U{S» : n < w}) is finite.
Then Y is a k,-space.
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Proof. Let P" = {P € P; PN (Un<,,Sy) # 0 } then |P"| < Rg
since P point-countable and |U, <, S,| < Ro. Suppose that B
is not closed then there exists a convergent sequence S U {z}
such that (S U {z}) N B is not closed in S U {zx}. We may
assume S C B without loss of generality. If there exists a P, €
P’' with |P, N S| = Ro, then P, N B is not closed in P,. If
|P, N S| < N for each P, €P’, then SU {z} \ (U{S, : n < w})
is finite. S is not closed then there exists a P such that PN S
is not closed in P. This P €P” and BN P are not closed in
P. We prove that Y is determined by {P; P €P’ or P €P"}.
Then Y is a k,-space by Lemma 4.

Lemma 10. Let f : Z — Y be a perfect map. If Z is se-
quential then S, X Z is sequential if and only if S, X Y 1is
sequential.

Proof. Let I, : S, — S, be an identity map. Then Ig,6 x f:
So X Z — S, xY is a perfect map. If S, x Z is sequential
then S, x Y is sequential. On the other hand: If S, x Y is
sequential then S, x Z is a k-space. Since each compact subset
of S, X Z is a metric subset then S, x Z is sequential.

Remark. In order to show the following Lemma 11, we shall
use the assumption MC( there exists measurable cardinal) and
a technique of [2]. The author does not know whether the
assumption MC of Lemma 11 can be omitted. We say that C

is a Cantor set if C is homeomorphic to {0,1}“.

Lemma 11. (CH + MC). LetY be a k-space with a point-
countable closed k-network {Py; o € A}. If S, XY is a k-space,
then Y 1is a locally k,-space.

Proof. We may assume Y is a quotient s-image of a metric
space by [4, Theorem 6.1]. Firstly; each point y of Y has a
neighborhood U which is the union of countably many com-
pact metric subsets of ¥ by Lemma 5. Let U be a closed
neighborhood. S, X Y is a k-space then S, x Y is sequential.
Hence S, x U is a sequential subspace. Without loss of gener-
ality, let Y = U = U, P,. We prove that Y is a k,-space.
Suppose that Y is not a k,-space.
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Let So = 0, Po’ = {Pys; UncoP, = Y}, then there exists
a sequence S; converging to z; and |P, N §,| < ¥, for each
Pn € P(; Here?l = SIU{.’L'I} Let P{ = {P € P, Pﬂ?l #
0}.|P;] < No since P point-countable. Let a < w;. Suppose
that for each B < a we have taken Sg such that

1) Sg converges to z5, x5 € S and Sp = S5 U {z5}.
2) |P N Sg| < Vo for each P € UscsPs.

3) Ps' = {P € P; PN S; # 0}. Because of | Useo Py'| <
Ro |{Ss; B < a}| £ No and Lemma 9 there exists sequence
S, converging to z, such that 1) [P N'S,| < Ry for each P €
Up<aPg’- 2) SaN(Up<aSp) = 0. Let P, = {P € P; PNS, # 0}
then | P,/| < No. Then, by induction, there exists a collection
¢' = {Sa; @ < w;} such that:

(C*):

1) S, converges to T,,Tq & Sq and S, = S, U {z,} for
each S, € ¢'.

2) |Sa N P| < Yo for each P € Ugeq Py’
3)If B < athen SyNS, =0.

4) Let E = {z4; S converges to z, and @ < w;}. Then
|E| = Ry, so we may assume zg # z, for f < a.

In fact: If |E| = No then there exists an z,, with |{ag :
Tag = Tag,Tay € E}| = V1. Sa, is not closed, so there exists
a P,, € P such that P,, N S,, is not closed in P,,. Then
|Pag N Sao| = o and the z4, € Po, € P.,,. Let 8 < w;. For
each § < B, P,, N Sy, is not closed in Py, |Py, N S| = Ro
and z,, = To, € Py, € P, ,- Since Sy, is not closed, then there
exists a P € P such that PN S,, is not closed in P. Then
|P N Say| =Ro and 24, = Ta, € Py, € P, Since for each § <
B, | PasNSas = Ro hence Py, € P, and P,, C Uscay Py. Then
| Pos N Sap| < No and Py & {Pay; 6 < B} by |Pay N Sapl = Ro.
By induction there exists a collection {Py,; 8 < w;} such that
H{Pas; B < wi}| = Ry and z,, € Np<w Pag- This contradicts
the point-countable of P. Thus we any assume x5 # z, for
B < a. The following shows that we may assume E contains a
Cantor set C.
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As Y = Up¢, P, , by Lemma 8, there exists a sequential
space Z which is the union of countable many compact met-
ric subsets of Z and there exists a perfect map f : Z2 —
Y such that f~}[Y] = Z is determined by {f~'[P]; P €
P }. {f~Y[P];P € P } is a point-countable cover of Z and
fY[P] = f~1[P] is compact. Y is not a k,-spcae, so Z is not a
k.-space. Analogously we can prove that there exists a collec-
tion {S4; a < w;} with property (C*). f~1(Pp) is a totally dis-
connected compact metrizable subset of Z and |f~}[P]oN E| =
X; so there exists a Cantor set C with [CNE N f~1[Py]| = X;.
MC implies that every uncountable subset of Cantor set con-
tains a Cantor set. Then F contains a Cantor set C. By Lemma
10, S, x Y is sequential if and only if S, X Z is sequential. Then
we amy assume F contains a Cantor set C. Y is a submetric
space, then there exists an (Y'7;) which is a metric space with
T, C T;. Here (YTy) is a sequential space. Let d be a metric for
(YT;). Then d-open ball of (Y73) is open in (Y7;) and every

T;-compact set is a T-compact set by Lemma 7.

A) Let C = {z4; @ < w1} be a Cantor subset of E. Let
¢ = {S4 € ¢'; S, converges to z, and z, € C}.

Since C is a compact metric subset and P is a point-countable
collection, there are only countably many P with Oc(PNC) #
0. Here Oc(PNC) denotes the interior of PNC in the subspace
C. Let Py ={P € P; Oc(PN C) # 0} ={Ps; n < w}.
Then for each P €P \ Py, Oc(PNC) = B that is, PN C is
nowhere dense in C since P is a collection of closed subsets
of Y. Now pick ayp € C. Let Po={P € P\ Py ; v €
P} = {Pn; n < w}. If yg and Pz have been defined for all
B < a, where a < wy, pick a y, € C \ [U(Ug<a Ps )]- Because
the Cantor set C' can not be denoted as the union of count-
ably many nowhere dense subsets of C. Let P, = {P € P\
Po; Yo € P} = {Pan; n < w}. Then, by induction, there exists
a subset A = {y,; a@ < w;} of C with |A| = R;. Then there
exists a Cantor set Cy of A with |[P N Cy| < 1 for each P € P
\ Pg. If P, €Py, then at most there exists one S,, € ¢ with
| S, NP,| = Ro by 2) of (C*). Let ap = sup{an; |Sa,NPs| = Ro
and P, € 'Pé,}. If @ > ap then |S, N P,| < Ro. Thus we may
assume without loss of generality that
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1) |[PNC| <1foreach P P\ P,
2) |P,NS,| < N for each S, € ¢ and each P, € P}

B) Let C(0) and C(1) be two Cantor subsets of C' with
C(0)nC(1) = 0. Let d(C(0),C(1)) = r; > 2/ny, and let
V(é1) be a 1/n; open ball of C(6,) in (YT;). Let o(6;) =
{(Sa NV (61))\ (P U Co); S, € 9, S, converges to z, and
zo € C(61)}. Here P, € Py, 6; = 0,1. If z, € C(6;), then (SuN
V(61)) \ (P1 U Cy) is a sequence which converges to z,. Then
is an open subset of Y which is the union of countably many
compact metric subsets of Y. Then there exists a compact

metric subset K(6;) which is a subset of V(é;) \ (P, UCp) such
that K(6;) meets ®;-many sequences in ¢(6;). Let

D(6)) = {za € C(61); Sa € 9p(61), SaNK(6)#0

and S, converges to z,},

then lD(61)| = Nl.

If it has been defined that :

a) {C(6:165...6,); 6; =0,1.¢=1,2,... ,n} is a collection
of mutually disjoint Cantor sets.

b) {V(6162...8,); 6; =0,1.7=1,2,... ,n} is a collection
of mutually disjoint open balls such that

V(61625n) N [Ujsn_l(U{I{(élég...éj); 5,' = 0,1
i=1,2,...,5)] =0.

Here V(6162...6,) = {y; d(y, C(6162...6,)) < 1/n,}.

c) {p(6162...8,); & = 0,1,. ¢ = 1,2,...,n} such that
W(61...6,) ={(SaNV(b1...6,)) — (PLU...UP,UCy); S4 €
@(61...6,-1), Sy converges to z, and z, € C(6;...6,)} and
lp(b1...6,)| =Ny, here P, € Py = {P, € P; Oc(P,NC) # 0}.

d) {K(61...6,); 6, =0,1.2=1,2,... ,n} is a collection of
compact subsets such that K(é;...6,) is a subset of open sub-
set V(61...6,)\(PLU...UP,UC)) and [{Sx € ¢(b1...6,); San



74 CHEN HUAIPENG

e) {D(6,...6,); 6 =0,1.i=1,2,... ,n}, where D(§; ...6)
= {24 € C(6;...68,); Su € ¢(616;...6,), 54 converges to z,
and SO, N I{(6152 o 5n) # 0} C 0(5152 o 611,)

Take C(6;...6,0) and C(6;...6,1) which are two disjoint
Cantor subsets of D(6;...6,). By €), K(6,...6,) and Cp are
T;-compact, thus K(é;...6,) and Cp are T,-compact. Then
d(C, Ujcn|U{K(:...6;); 6 =0,1.4=1,2,...,j}]) = Tny1 >
0 by b) and d) of B). Choose n,4+; with (—) < Tpy41 such that
V(‘Sl 6n+1) = {ya d(ya 0(51 n+1)) < n..+1} -
V(51 N 5n+1) C V(6162 5 ) and V(61 . 0)“V(61 6 1) -
0, then {V(61...6p41); 6: =0,1.2=1,2,... ;n+1} is a collec-
tion of mutually disjoint open balls Let 50(51 ceibngr) = {(SaN
V(él---6n+l)) - (P1 U ...UPn+1 UCO), Sa € (P((Sl&n), S
converges to z, and z, € C(6;...6,)}, where P,;; € P,.
Then (So N V(61...6n41)) \ (PLU...U Pyyy UGy) is a se-
quence which converges to z, for each z, € C(6,63...6,41)
and |(P(615n+1)| = Nl. V(516n+1) \ (Pl u...uU Pn+1 U
Co) is an open subset of Y which is the union of countably
many compact metric subsets of Y, so there exists a com-
pact subset K(8163...6n41) C V(6162...6n41) \ (AU ... U
P, +1UC)) such that K(8; ... 6,41) meets R; many sequences in

(6162 n+1) If D((Sl e 6n+1) = {.'L'a € 0(51 oo 6n+1); Sa €
(b .. n+1) Se N K(6;...6p41) # 0 and S, converges to
To}s then D(6...6041) C C(61...6n41) C D(61...6,) and
|D(61...6n41)| = R1. Then, by induction, there exist:

1)K ={K(6;...6,); & =0,1.i=1,2,...,n. n>0}
with [U{K(6:...6;); 6 =0,1.:=1,2,...,5.7 >n}NP, =0
for each P, € P,.

1.
C* is a Cantor set. If C* = 5152...); 6; = 0,1. ¢ =
1,2,...,n.n > 0} = {z4; a< , then z(6162...6,...) =

foreach Pe P\ P, .
3) If oo = {Sa € ¥; S, converges to z, and z, € C*},

2) C = {C(6...6,); 6 =0,1. ¢ =1,2,...,n. n >
0} and {V(é.. 5,,) 6 = 0,1. ¢ = ,2,...,n. n > 0}
such that N,5o(U{C( 61...6,); 6 =0,1.¢=1,2,... ,n}) =

n>0(U{V(61 6) 5 = 0, 1 = 1,2, }) = C”l and

= {a
w1
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then |po] = Ry. If S, € o, S, converges to z, and z,
z(616;...) € C*, then S, N K(6;...6,) # @ for n > 0.

C) We use the results of B) to construct a collection {Cyym; 7,
m < w} which does not satisfy condition (Cs).

i) Let Ay = {«(00...)},andletC; = {P € P\ Py ; Pﬂzl #
0} = {Pin; n < w}. For each n < w; let K(0...0 1)
{K(0...01 6:6,...6,); K(0...01 6...6,) C V(0...0 1)}
thus (P11U. . .UPy,) meets only finitely many sets in X£(0...0 1).

In fact P;U...UP;, meets infinitely many sets in £(0...0 711),
so P U. . .UP;, meets infinitely many sets in £(0...0 1 0) or in
K(0...011) by £(0...01) = {K(0...01)} UK(0...0 T 0) U
K(@©...0 1 1). Then we may assume Pj; U...U P, meets in-
finitely many sets in K(0...0 1 61). Because K(0...0 1 6) =
{K(0...01 6)}UK(0...0 T 6§0)UK(0...0 T 61), then
P, U...U Py, meets infinitely many sets in £(0...0 1 6,0),
or in K£(0...0 1 611). We may assume Py U ... U Py, meet-
s infinitely many sets in X(0...0 1 6162). Then, by induc-
tion, there exist £(0...01 &) D K(0...0 16:6)) D ... such
that P;; U...U Py, meets infinitely many sets in K(0...0 T
8...6n). UK(0...01 6...6,) C V(0...018...6,) so
(PhU...UP)NV(0...016...6,) # 0. Nmso V(0...01

8 .. )—{:c( .01 66,...)} s0xz(0...01 66,...) €
Pu .UP;, = P1N...P;,. This is a contradiction to P; €
C, and |P1,- NC* <1fori=1,2,...,n. Then there exists an

n, and Ky, = {K(0...0 1 81...6,); 6, =0,1.¢=1,2,...n,}
such that:
(2) If S, converges to Zq, Sa € po and zo = z(0...0 1
8162,...) € Ay then S, N (UK1,) # 0.

Let K:l = Un>0K:1n, then

Il

(1) P meets only finitely many sets in K, for each P € C;.
(2) P meets only finitely many sets in K; for each P € P.
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(3) If S, converges to Zo, o = (0...0 1 816,...) and
To & Ay, then Sy N (UK1y,) # O for each S, € wo.

In fact :

1) We omit the proof.

2) For each P € P.

a) if PN C* = {, then there exists an n with P N (U
{V(61 6n), 6,' = 0,1 1= 1,2,... ,n}) = 0 by C* = ﬂn>0(U
{V(61...6,); & = 0,1. 7 = 1,...,n}). Then P meets only
finitely many sets in ;.

b) if PN C* # 0 and P € Py, then P meets only finite-
ly many sets in Ky. If P ¢ Py, then |P N C*| < 1. Sup-

pose that there exists a infinite subcollection {K(0...0 1
On1--bpn,); n < w} of Ky such that PN K(0...0 1
Oni---bnn,) # 0 for each K(0...0 1 0p1---0nn,). Because

n—1 n-1
)

K(0...0 1 631...60,) C V(0... 0),PNV(0... 0) #

0. V(0) D V(00) D ... and Np5eV(0... 0) = {z(00...)}
so (00...) € P =P and P € C;. This is a contradiction to
1).

3) We omit the proof.

If Cin = Ui>n(UKyi), then {Cin; 1 < n < w} has the prop-
erties:

1) P meets only finitely many sets in {Cy,; 1 < n < w} for
each P € P.

2) If S, converges to z4, 2o = z(0...0 1 61,6,...) and
Ty € Ay, then S, N Cy, # 0 for each S, € ¢o.

i) If Ap—y = {x(61,62...); there exist n — 2 many 1’s in
81,62,...} and {Cp_1 m; n — 1 < m < w} have been defined
so that:

1) P meets only finitely many sets in {Cp—1 m; n—1<m <
w} for each P € P.

2) For each S, € o, if S, converges to z,, z, = z(6;'...8! ),
10...0 " T 868,...) & Aur,2l, = 2(8y'...8.,100...) €
A,_1 and j > m, then S, NC,_y , # 0.

Let A, = {2(6162...); there exist n—1 many 1’sin é;,6; ... }
then A, = A, U...U Ay U A; and [A,| = Ro. Let A, =
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{z1,22,...},and let C, = {P € P\ Po/; PN A, # 0}
{P.;; ¢ < w}. Pick z,, € A,. Then z,, = z(6,'6,’...)
z(6'...68!,100...).

For each j < w, let

K8 ...6,10...0 " iy = (K ...6.00...0 " TV
Su. 6)s K(8y...8,10...0 "0 8.8 C V(6 ... 8.

m'+j+1
10...0 *i“ )}. Take P,; € C,, 1 =1,2,... ;m+j+1. Then,
as in the proof of i), there exists an n(j) and a subcollection
Koni(@m) = {K(8) ... 8.10...0 " 00 Suree 80 nii); Oni =
m'+j+1
0,1.i = 1,2,...,n(j)} of K(&'...6.,10...0 " 1) such

that;
1) (P U...U Ppryjinn) N (UK (zm)) = 0.

2) For each S, € o, if S, converges to x4, T, = z(8;...8,
10...0" 7" 66,...) ¢ A, and @, = 2(6,"...6.,100...) =

Ty € Ay, then S, N (UK,;(zm)) # 0.

Let Kn(zm) = Uj>0Knj(zm). Then K,(z,) satisfies:

1) (PaU...UP, ;) N[UK,(2)] = 0, here P,; € C, for
1=1,2,... ,m+.

2) P meets only finitely many sets in X, (z,,) for each P €
P.

3) For each S, € ¢y, if Sy converges to z,, T, = (61 ..

m'+j+1 —_
10..0" 7" 6,6...)¢ A, and 2/, = 2(6,"...8.,100...) =
Tm € Ap, then S, N (UK,;(zn)) # 0.

We prove only 2). In fact, if P € P \ Py, suppose that P
meets infinitely many sets in K,,(z,,). Then there exist infinite-
ly many K, ;(z,,) such that P meets sets in X,;(z,,) because
K:n(:tm) = Uj>OIan($m) and |K:nj(.’13m)| < No. U’Cn]'(J'Jm) C
V(8 ...6,10...0 0" ) so PAV(6...8,10...0 0") # 0.
Then {2} = NjsoV (1’ -..8.,10...0 "0°) C P and P € Cn.
This is a contradiction to 1).

Let K, = U{K,(z); zm € An}. Then K, satisfies:

1) Pam NUU{Kpj(z:); 7 = m, i > 0}] = 0 for each Py, € C,.

!
c Ot
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2) P meets only finitely many sets in K,, for each P € P.

3) For each S, € ¢o, S, converges to 24, To = (61 ... 6,
m+j+1

10...0 1 6162...) ¢ Zn, x’ = .'13(61 .. m’100 )
:z:mEAnandemsoSaﬂ[UU{lCnJ(m) JZm i > 0}] #0.

In fact:

1) for each P € P \ Po, if j > m, then Py, N(UK,;(z:)) = 0
for: >0 by (Pa1U...UPy, nyj) N(UKj(2m)) = 0. Then PN
U(UjpmKnj(z ))] = () for ¢ > 0. Then P, N [U{UK,;(z:); j >
m, 1> 0}]

2) Let P € 77 \ Po. If P meets infinitely many sets in K, =
U{Kn(Zm); Tm € An}, then there exists a sets {my,mo,...}
such that P meets sets in K,,(z,) for each m; by property 2) of
Kn(zm,)- {zm; @ >0} C A,, so we may assume {z,,,;i > 0}
is a sequence which converges to z and z = z(6;6;...) € A,.
We may also assume {z,,;; 1 > n} C V(6 ...6,),50 Vo(m,) =
V(6;...6,) for each i > n. Here z,,;, = z(e162...),V(e1) D
V(€1€2) D... and Vn(:c,m) = V(€1€2 e Sn) = V(6162 e (Sn) SO
Tm; = (13(51 e (57,,5711 e 6n niOOO e ), UICn(xm,-) C V(5152 e 6,,,)
and PNV (6:6;...6,) # 0. P is compact, so z(6,62...) € P
and P € C,. This is a contradiction to property 1) of K,,.

3) S, € o, Sy converges to z,, T, = z(&'..

m'+j+1 —
10...0 1 6162...) ¢ A, and :c’a:w(&'...tﬁm,lOOO...):

Tn, € Ap, 50 So N(UK,;(x,)) # 0. If 7 > m , then S, N(UU
Kol 1> m, i > 01) #D.

Let Cpm = UU{PK,;(z;); j =>m, 1 >0} for m > n . Then
{Crm; m > n} satisfies:

1) P meets only finitely many sets in {Cy,; m > n} for each
PeP.

2) For each S, € ¢y, if S, converges to z,, To = z(8;'... 68,
10... " " 66,...) ¢ Ay, o = 2(8'...8.,1000...) € A,
and j > m, then S, N C,,,, # 0.

Then, by induction, there exists a collection {Cppn; n <m <
w} such that:

1) Cpm is closed in (Y'Ty) for each Cppn € {Crmi;n < m < w}.

ml
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2) For each n,{C,,,; m > n} is a discrete collection.

Now we prove C* N (U{Crm; m > f(n)}) # 0 and C* N
(U{Crm;m > f(n)}) = 0 for each f € “w.

In fact: If f € “w, let f(:) = n; and let 0 < n; < ny <
ng.... Pick o = 2(0...0 1 0...0 T 0...) € C*, where
m; = ny+ny+...+n; > i Take S, € o sqch that S,
converges to z,, :l:(,,:av(O...Omi1 0...071 ...Oni'O...) ¢ A;
and 2/, =2(0...0 1 0...0 1 ...0 1 000...) =z, € A,
$0 So N (UKip,(zm)) # 0 and S, N Cip, # 0 since C; ,, =
UU {K;(z); j = n;, m >0} fori > 1. Then z, € C*N
U{Cin;; i <w} # 0, hence z, € C*NU{Cr; m > f(n)} # 0.

D) Let g : Y — Y/{C*}. Then ¢ is a continuous perfect
map. Then {g[Crn]; m > n} satisfies:

1) g[Cnm] is closed for each g[Cpm] € {g[Crm); n < m < w}
in Y/{C*}.

2) {9[Cun); m < w} is a discrete subcollection of {g[Cpn];
m > n} for each n < w.

3) There exists a C* € U{g[Cnm]; m >n} with C* €
U{g[Crm]; m > f(n)} for each f € “w.

Then S, x (Y/{C*}) is not sequential by Lemma 6. Thus

S, X Y is not sequential by Lemma 10. This is a contradiction
to the conclusion of Lemma 10. Then Y is a k,-space.

REesuLTs (CH + MC).

Theorem 1. Let X and Y be k-spaces with point-countable
closed k-networks. Then X XY is a k-space if and only if one
of the three properties below holds:

a) X and'Y have point-countable bases.

b) X orY is locally compact.

¢) X and Y are locally k,-spaces.

Proof. If X contains a copy of S; and X contains no copy of
S., then the perfect image X/{So} of X contains a copy of
S, where Sy is the converging sequence of S, which has no



80 CHEN HUAIPENG

isolated point. By Lemma 10, (X/{So}) X Y is sequential if
and only if X x Y is sequential.

“only if”:
1) If X and Y contain copies of S, or S;. Then X and Y
are locally k,-spaces by lemma 11.

2) If X contains a copy of S, or Sz, and Y contains no copy
of S, and S,. X XY is sequential then S, x Y is sequential.
Then P is compact metrizable for each P € P by Lemma 4.
Then Y has a point countable base by [11, Corollary 4.5]. S, is
not strongly Fréchet then Y is locally compact by [8, Theorem
1.1].

3) X and Y contain no copies of S, and S, . Y x X is
sequential and #(Y) < w then Y satisfies (C) or X satisfies
(C3) by Lemma 1.

At the same time X x Y is sequential and ¢{(X) < wso X
satisfies (C}) or Y satisfies (C;) by Lemma 1. Then there exist
four cases:

case 1. X satisfies (C1) and Y satisfies (C7). Then X and
Y have point-countable bases by [5, Theorem 9.8].

case 2. X satisfies (C}) and X satisfies (C3). Then X has
a point-countable base by (C;). Then X is locally compact by
(Ca).

case 3. Y satisfies (C}) and Y satisfies (C;). Same as case
2.

case 4. X satisfies (C;) and Y satisfies (C;). If X satisfies
(C.) then P is a compact metrizable set for each P €P. Then
X has a point-countable base by [11, lemma 4.1]. So does Y.

“if” we omit the straightforward proof.

Corollary. Let X and Y be quotient s-images of locally com-
pact metric spaces. Then X X Y 1is sequential if and only if
one of the three properties below holds:

a) X and Y have point-countable bases.

b) X orY is locally compact.

¢) X and Y are locally k,-spaces.

Proof. A quotient s-image of a locally compact metric space
has a point-countable closed k-network.



PRODUCT OF K-SPACES 81

Theorem 2. Let X and Y be closed images of metric spaces.
Then X x Y is sequential if and only if one of three properties
below holds:

a) X and Y have point-countable bases.

b) X orY is locally compact.

¢) X andY are locally k,-spaces.

Proof. “only if”

1) If X contains a copy of S, then S, X Y is sequential. If
Y is a closed image of a metric space, then df~!(y) is locally
compact and Lindeloff for every y € Y by [ 9, Proposition 2.4].
We may assume without loss of generality that Y is a closed s-
image of a metric space. Then Y has a closed point-countable
k-network. Then Y is a locally k,-space by Lemma 11. So
does X .

2) X contains a copy of S, and Y contains no copy of S,,,
then S, x Y is sequential. As in the proof 1) we may assume
Y is a closed s-image of a metric space. As in the proof 2) of
“only if 7 of Theorem 1, Y is locally compact.

3) X and Y contain no copies of S,. Then we may assume
that X and Y are closed s-images of metric spaces by [11,
Theorem 1.7 ii]. Then X and Y have closed point-countable
k-networks. As in the proof 3, of “only if” of Theorem 1, then
X is locally compact or Y is locally compact or X and Y have
point-countable bases.

“if” We omit the straightforword proof.

The above theorem 2 is analogous to Theorem 1.1 of [9].
The following Theorem 3 is analogous to Theorem 3.1 of [7].

Theorem 3. Let X and Y be k-and R-spaces. Then X XY s
a k-and R-space if and only if one of the three properties holds:
a) X and'Y have point-countable bases.
b) X orY is locally compact.
c) X and 'Y are locally k,-spaces.

Proof. Every k-and R-space is a k-space with o-locally finite k-
network, then every k-and R-space has a closed point-countable
k-network. Then the Theorem 3 is a Corollary of Theorem 1.
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