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THE PRODUCTS OF K-SPACES WITH
POINT-COUNTABLE CLOSED K-NETWORKS

CHEN HUAIPENG

ABSTRACT. Using a technique of [2] we prove the the-
orem(CH +MC): Let X and Y be k-spaces with point-
countable closed k-networks. Then X x Y is sequential
if and only if one of the three properties below holds:

a) X and Y have point-countable bases.

b) X or Y is locally compact.

¢) X and Y are locally k,-spaces.

1. INTRODUCTION

Throughout this paper, we shall assume that all spaces are
regular, and all maps are continuous surjections.

A cover F of a space is a k-network if for any K C U with K
compact and U open, K C UF’ C U for some finite 7' C F.
A space X is in class 97 [7] if X has the weak topology with
respect to a countable cover of closed locally compact subsets.
Y. Tanaka [7, Theorem 3.1] has proven:

Theorem 3.1. Let X and Y be k-and R-spaces, then X XY is
a k-space if and only if one of the three properties below holds:
a) X andY are metrizable spaces.
b) X orY is a locally compact metrizable space.
¢) X and'Y are spaces of the class 7.

Here an N-space [6] is a space with a o-locally finite k-
network. A k-and R-space is a quotient s-image of a metric
space by [4, Theorem 6.1]. So it is desirable to consider the
k-ness of the product X x Y of quotient s-images X,Y of met-
ric spaces. If X and Y are Fréchet, by [10, Theorem 9], it
follows that X x Y is a k-space if and only if X and Y have
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64 CHEN HUAIPENG

point-countable bases. Otherwise b) or ¢) of the above theorem
holds. Every quotient s-image of a metric space has a point-
countable k-network by [4, theorem 6.1]. In this paper, under
CH(continuum hypothesis) and MC( there exists measurable
cardinal) we prove the result:

Theorem 1. Let X and Y be k-spaces with point-countable
closed k-networks, then X X Y is sequential if and only if one
of the three properties below holds:

a) X and Y have point-countable bases.

b) X orY is locally compact.

¢) X and Y are locally k,-spaces.

The author wishes to thank Y. Tanaka and the referee for
their suggestions.

2. LEMMAS

Recall that a space X has countable tightness, ¢(X) < w, if
z € Ain X, then z € C for some countable C C A.

Lemma 1. (10, Lemma 4). Suppose that X x Y has a k-
system with t(X) < w, then the following condition (Cy) or
(C3) holds,

(Cy). If (A,) | z in X, then there exists a nonclosed subset
{a.;n € w} of X with a, € A,. ;

(Cq). If (A,) is a k-sequence in Y, then some A, is countably
compact.

Here (A.) | = means a decreasing sequence {An; n € w}
such that z € A,\ {z} for n € w. A k-sequence [5] is a
decreasing sequence {A,; n € w} such that C = N, A, is
compact and each neighborhood of C' contains some A,.

Lemma 2. (4, Lemma 1.7) If f : X — Y is a quotient
map, and if X is determined by the cover P, then Y is de-
termined by f(P) = {f(P); P € P}.

We use “X is determined by P” just as “X has the weak
topology with respect to P ”. The terminology is due to [4,
note 2].
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Lemma 3. Let Y be a quotient s-image of @ metric space, and
let S, XY be sequential. If Y is determined by cover P, then
Su XY is determined by cover {S,x P; P€ P and S, € ¢}.

Proof. Let f; : My — S, be a quotient s-map, and let f; :
M; — Y be a quotient s-map. Here M; = X,S5, and M, is
a metric space. Let B be a o-locally finite base of M, and
let P = fo(B). M; x M, is a metric space and M; x M, is
determined by cover {S, X B; S, € ¢ and B € B}. f, X f,
is a quotient s-map if S, X Y is sequential. Then S, x Y is
determined by {S, x P; S,, €PH and P € P} from Lemma 2.

Lemma 4. Let Y be a quotient s-image of a metric space M,
and let P = f(B). If S, x Y is sequential, the P is a compact
metric subset of Y for each P € P. Here B is a o-locally finite
base of M.

Proof. B = U, B, is a o-locally finite base of M, Let B, =
{B,€B; t€ B, and By D By D} with {f(B,); B, € B,}
is a k-sequence. Then some f(B,) is a compact metric subset
of Y by [10, Lemma 6]. Thus we can suppose that f(B) is
compact for each B € B .

Lemma 5 (CH). Let Y be a quotient s-image of a metric s-
pace. If S, X Y is sequential, then there exists a subcollection
P, of P such that | P, |< Ro and U P, is a neighborhood of
y for eachy €Y.

Proof. Suppose there exists a point yo of Y such that we take
any subcollection P’ of P, if | P’ |< No, then UP’ is not a
neighborhood of point y,.

A. Let Ny be a Moore-Smith net which converges to yo, yo &
Ny and | Ny |= Ro. Let Py = {P € P; PN Ny # 0}, then
| Po |< Ro by P point-countable. If we have defined a Moore-
Smith net Ng which converges to yo with yo & Ng, | Ng |[< Ro,
Ps={Pe€eP; PNNg#0}and | Ps |< N for all B < a, here
a < w;y. Then U(Ug<coa Ps ) is not a neighborhood of point yo
by | Us<a Ps |< yRo. So we can take a Moore-Smith net N,
which converges to yo, yo € Na, | Na |< Ro and N, N[U(Up<a
Ps ) = 0. Let P, = {P € P; PN Ny # 0}, then | P,
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|< R by P point-countable. Then, by induction, there exists
a collection {N,; & < w;} such that:

1) N, converges to yo, yo € No and | Ny |< R for each N,

2) P meets only one N, for each P of P.

B.Each Ny ={Za1,Za2s- -+ sTans--- } ={las2ay-+- yRay--- }-
For each f, € “w let Hy = Unco({lny2n,--.,f(n)n}X
{14,24y..- yn4}) C S, x Y. Let H = Uycy, H,. Here S, =
{1,,2,,...} is a convergent sequence of S,,.

a) HN (S, x P ) is closed in S, x P for each S, x P €
{S,. x P; S, € ¢ and P € P}. In fact : P meets only one N,
by property 2) of {N,; a@ <w;}. Then (S, x P) NH = (S, x P
) NHy =(Sn X P ) N(Ui<n{li,2iy ... 5 f(2)i} X {1ay 20, -+ y%a})
has only finitely many points.

b) H is not closed. We prove (00,y,) € H — H. Here “c0”
denotes the nonisolated point in S,. If f € “w, let Uy be the
neighborhood of point “c0” in S, defined by Uy = {oo} U
{nm; n > f(m)}. Let U be a neighborhood of point y in Y,
then N, NU # 0 for each N, € {Na; a < w;}. Then there
exists n(a)e € N, NU. Let g(a) = n(a), then g € “'w. By
f € “w, there exists function f,, € “w such that A = {n €
w; fao(n) > f(n)} is infinite. Because g(ap) = n(ay), there
exists n’ € A with n’ > n(ap). Then (fuo(n')nr,n(0)s,) €
{ln’,zn', s afao(n,)n’} X {laoyzaoa v )n(ao)aoa L] n,ao} C
H. On the other hand the n’ € A gives f,,(n') > f(n'), so
fao(n ) € {nm;n > f(m)} C Uy and n(ag)ay, € Nop N U.
Then (fao(n')nyn(0)as) € (Us x UYNHyy C (U x UYN H
and H is not closed. Then S, x Y can not be determined by
{Spx P; S, €pand P€ P }. But S, XY is determined by
{S,.xP; S, €pand P € P } because of Lemma 3. This is
a contradiction.

Lemma 6. Let Y be a quotient s-image of a metric space. If
S X Y is sequential, then Y satisfies the following condition

(03);
(Cs). IfY has a collection {Ch,,; n,m < w} such that

1) Crm is a closed set for each Cpp € {Crm; nym < w},
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2) {Crm; m < w} is a discrete subcollection of {Cpm; n,m <
w} for each n < w, then for each z € U,,,,C,n, there erists a
function f € “w with the z & U{Cp,.;m > f(n)}.

Proof. I Y does not satisfy (C3), then there exists a collection
{Cpm; n,m < w} in Y such that

1) Cpm is closed for each Cpy € {Crm; n,m < w}.

2) {Cpm; m < w} is a discrete subcollection of {C,,; n,m <
w} for each n < w. But there exists g € UppChm, with the
zo € U{Cpm; m > f(n)} for each f € “w.

Let A = Upm({mr} X Cpnr). On the one hand; (S, x P)
NA = Up({mn} X Crm) N (Snx P) is closed in S, X P by 1) and
2) of (C3). On the other hand: (Us;xU)NA # @ foreach f € “w
and each neighborhood U of the z¢. In fact: for each f € “w, if
2o € U{Cnm; m > f(n)} then U N (U{Cpm; m > f(n)}) # 0.
So, there exists Cp,, € {Cpm; m > f(n)} with UN Cp # 0.
Then (U x U)NA D (Us x U) N ({mn} x Cpm) # 0. This

implies that S, x Y is not sequential. This is a contradiction.

Lemma 7. Let (X7;) and (XT3) be regular, and let T, C 7.
If subset C of X is T;-compact, then C is Ty-compact and
T,|C =T|C. Here A|IB={ANB; A€ A}.

Proof. We only prove T,|C = T,|C. T, C T, then T2|C C T,|C.
On the other hand: if O; € T3, O;NC € T;|C then C—(0,NC)
is a 7;-compact subset of X. C — (0O; N C) is a Tp-compact
subset of X, then C — (O; N C) is a T,-compact subset of
C. Then C — (O N C) is a Tp-closed subset of C. Then
C—(C—-(0,nC))=0,NC is a T,-open subset of C'. Then
there exists Oy € 7, with O, N C = O; N C. This implies
O1NC € TfC.

Lemma 8. Let Y be sequential. IfY is the union of countably
many compact metric subsets of Y, then there exists a totally
disconnected sequential space Z which is the union of countably

many compact metric subsets of Z and there exists a perfect
map f:Z —Y.

Proof. If (YT;) is a regular sequential space which is the union
of countably many compact metric subsets of Y. Then (Y7;)
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is a paracompact o-space. Then Y has a Gs-diagonal by (3,
Theorem 4.6]. Then (Y7;) is submetrizable by [3, Corollary
2.9]. There exists a topology T; on Y such that 7, C 7; and
(YT;) is metrizable. (Y7;) is the union of countably many
compact subsets of (Y7;), then (Y7;) is the union of countably
many compact subsets of (YTz) by Lemma 7. Then (X73)
has a countable base B. By [1, Chapter 6, 252], (X7;) is an
image of a subspace (Z0,) of the Baire space B(®o) under an
irreducible perfect map f. The Baire space B(R,) is totally
disconnected, so is the subspace (Z0,). Let K = {f~'[K]; K
is a compact subset of (Y7;)}. Then K is a compact metrizable
subset collection of (ZO;) by Lemma 7 and X is a cover of Z.
Let

O, = {A C Z; AnfYK] € O,|f}[K] for each f7'[K] € K}.
We can prove these results:

A) O, C Oy and O, is a topology of Z.
In fact:

1) O € O, then ONf~K] € Oy|f~ K] {or each f71[K] €
K. This implies O € O;. Then X = UO, C UO; C X.

2)If A,B € Oy, for each f7YK],ANf~[K] € O.|f}[K],
then there exists O; € O, with AN f7YK] = O, N f}K].
Also BN f7'[K] = O, N f7YK]. Then (AN B)N f7YK] =
(01 N 05) N f-1[K] € Oy|f~}[K], which implies AN B € O,.

3)If Ay € O1,a € A, for each f7K] € K, AN f[K] €
O,|f~'[K] then there exists O, € O, with A, N f~YK] =
OaN fHK]. Then (UseaAo) N fK] = (UaeaOx) N fYK] €
O,|f~*[K]. This implies UpeprAx € Q1.

B) Ou|fYK] = O|f'[K] and f~}[K] is a O;-compact
metric subset of Z for each f~1[K] € K.
In fact:

1) O, C O, then O,|f'[K] C Oy|f~}[K]. On the other
hand A € O,|f '[K] then there exists B € O; with A =
BN f~Y[K]. B € O; then BN f~![K] € O,|f~'[K]. Then there
exists Oz € O; with BN f71[K] = 0, N f~YK] € O,|f}[K].
This implies BN f~Y[K] = A € O,|f[K].
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2) (Z0O,) is a metric space. If d is the metric, then
(f~'[K] d) is a compact metric subspace of (ZO;) by O,|f![K]
= Oo| fY[K].

C) (Z0) is sequential.
In fact: K is a compact metric subset collection of (Z0,) by
B). On the other hand O, = {A C Z; for each f'[K] €
K,AN fK] € O,|f'[K] = O1|f~![K] by B). This implies
(Z0,) is sequential.

D) (Z0O,) is totally disconnected. O, C O, then (Z0,) is
totally disconnected.

Above we have proven that (Z0,) is a totally disconnected
sequential space which is the union of countably many compact
metric subsets of (Z0O;. Now we prove that f : (Z0,) — (YTy)
is a continuous perfect map. In fact : K is a compact metric
subset of (Y'T;) for each f7'[K] € K. Let O C K, and let O
be open in K. Then O € T3|K by Lemma 7 T1|K = T|K.
We have known that f : (Z0;) — (YT;) is a continuous
perfect map. Then f|f~}[K] : f~}[K] — K is a continu-
ous map. (f|fHK])"'(0) € Oq|f K] = Oi|f'[K] then
(fIf7Y[K])~Y(O) is an O,|f"![K]-open subset of f~![K]. If
O € Ty, then for each fY[K], fK]Nf1[0] = fH{KNO] =
(fIfYK])HO N K] is Oy|f ! [K]-open in f~Y[K]. (ZO,) is
determined by K then f~!'[0] € O,. This implies that f :
(Z0,) — (YTh) is a continuous map. On the other hand
f~(z) € K then f~'(z) is Oy-compact. If we take a closed
subset B of (Z(O;) then f~'[K]N B is O;-compact. f is O;-
continuous so f[f~[K]NB] = KN f[B] is a Ti-compact subset
of Y. Then K N f[B] is T;-closed. (Y'Ty) is sequential hence
f[B] is Ti-closed. This implies that f : (ZO;) — (YTy) is a
continuous perfect map.

Lemma 9. Let Y be a quotient s-image of a metric space,
and let S, X Y be a sequential space. Suppose that there exists
P'={P, € P; n < w} and {S,; n < w} such that for each
convergent sequence SU {z} of Y and each P, € P', if |(SU
{z}) N P,| < Rg then (S U {z}) \ (U{Ss : n < w}) is finite.
Then Y 1is a k,-space.
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Proof. Let P" = {P € P; PN (UncwSn) # @ } then |P"] <R
since P point-countable and |U,«,, S| < Ro. Suppose that B
is not closed then there exists a convergent sequence S U {z}
such that (SU {z}) N B is not closed in S U {z}. We may
assume S C B without loss of generality. If there exists a P, €
P’ with |P, N S| = R, then P, N B is not closed in P,. If
|P. N S| < N for each P, €P’, then SU {z} \ (U{Sn : n <w})
is finite. S is not closed then there exists a P such that PN S
is not closed in P. This P €P” and BN P are not closed in
P. We prove that Y is determined by {P; P €P’ or P €P"}.
Then Y is a k,-space by Lemma 4.

Lemma 10. Let f : Z — Y be a perfect map. If Z is se-
quential then S, x Z is sequential if and only if S, X Y 1is
sequential.

Proof. Let I, : S, — S, be an identity map. Then Ig, x f :
Su X Z — S, xY is a perfect map. If S, x Z is sequential
then S, x Y is sequential. On the other hand: If S, x Y is
sequential then S, X Z is a k-space. Since each compact subset
of S, X Z is a metric subset then S, x Z is sequential.

Remark. In order to show the following Lemma 11, we shall
use the assumption MC( there exists measurable cardinal) and
a technique of [2]. The author does not know whether the
assumption MC of Lemma 11 can be omitted. We say that C

is a Cantor set if C is homeomorphic to {0,1}“.

Lemma 11. (CH + MC). LetY be a k-space with a point-
countable closed k-network {Py; a € A}. IfS,xY is a k-space,
then Y s a locally k,-space.

Proof. We may assume Y is a quotient s-image of a metric
space by [4, Theorem 6.1]. Firstly; each point y of ¥ has a
neighborhood U which is the union of countably many com-
pact metric subsets of ¥ by Lemma 5. Let U be a closed
neighborhood. S, x Y is a k-space then S, X Y is sequential.
Hence S, x U is a sequential subspace. Without loss of gener-
ality, let Y = U = U, P,. We prove that Y is a k,-space.
Suppose that Y is not a k,-space.
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Let So = 0, Py’ = {Py; UncoPn = Y}, then there exists
a sequence S; converging to z; and |P, N §;] < R, for each
Pn € Pé Hel'egl = SIU{IIII} Let P{ = {P S P, Pﬂ—gl 7&
8}.1P;] < N since P point-countable. Let a < w;. Suppose
that for each B < a we have taken Sj such that

1) Sg converges to x5, 5 & S and S5 = S5 U {3}
2) IP N Sﬂl < Rq for each P € UscpPs.

3) Py’ = {P € P; PN Sy # 0}. Because of | Upcq Py'| <
Ro [{Ss; B < a}| < No and Lemma 9 there exists sequence
S, converging to z, such that 1) [P NS,| < R, for each P €
Ug<aPs’. 2) So,ﬂ(U[kaSg) ={. Let P.={PeP; PNS, # 0}
then | P,’| < Ro. Then, by induction, there exists a collection
¢ = {S,; @ < w;} such that:

(C7):

1) S, converges to z,,z4 € Sy and S, = S, U {24} for
each S, € ¢'.

2) |S, N P| < R for each P € Upe, Py
3)If f < athen SgNS, =0.

4) Let E = {z4; S, converges to z, and @ < w;}. Then
|E| = Ry, so we may assume zg # z, for f < c.

In fact: If |[E| = Ro then there exists an z4, with |[{as :
Tag = Tay,Tay € E}| = V1. Sa, is not closed, so there exists
a Py, € P such that P,, N S,, is not closed in P,,. Then
|Pag N Sao| = Ro and the zo, € Py, € P,,. Let 8 < wy. For
each § < B, P,, N Sy, is not closed in Py, |Pay, N Sys| = Ro
and 2., = T4, € Py, € Py, Since Sy, is not closed, then there
exists a P € P such that PN S, is not closed in P. Then
|PN Sa,l =Ro and 24, = 24, € Pa, € P, Since for each § <
B, | PasNSa; = Vo hence P,, € P, and P/, C Us'ca, Pjs. Then
|Pos N Sagl < Ng and Py, & {Pay; 6 < B} by [Pay N Sasl = Ro.
By induction there exists a collection {Po,ﬁ; B < w; } such that
HPus; B < wi}| = Ry and 74, € Npcu, Pay- This contradicts
the point-countable of P. Thus we any assume zg # z, for
B < a. The following shows that we may assume E contains a
Cantor set C.
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As Y = U, P, , by Lemma 8, there exists a sequential
space Z which is the union of countable many compact met-
ric subsets of Z and there exists a perfect map f : Z —
Y such that f7}[Y] = Z is determined by {f~'[P]; P €
P }. {f[P];P € P } is a point-countable cover of Z and
f~Y[P] = f~1[P] is compact. Y is not a k,-spcae, so Z is not a
k.,-space. Analogously we can prove that there exists a collec-
tion {S,; @ < w;} with property (C*). f~1(Po) is a totally dis-
connected compact metrizable subset of Z and |f~'[P]oN E| =
X, so there exists a Cantor set C with [CNE N f~1[Po]| = ¥;.
MC implies that every uncountable subset of Cantor set con-
tains a Cantor set. Then F contains a Cantor set C. By Lemma
10, S, x Y is sequential if and only if S, X Z is sequential. Then
we amy assume F contains a Cantor set C'. Y is a submetric
space, then there exists an (Y'73) which is a metric space with
T, C Tq. Here (YT) is a sequential space. Let d be a metric for
(YT;). Then d-open ball of (Y73) is open in (Y'T;) and every

T;-compact set is a T-compact set by Lemma 7.

A) Let C = {z4; @ < w1} be a Cantor subset of E. Let
0 ={S, € ¢'; S, converges to z, and z, € C}.

Since C is a compact metric subset and P is a point-countable
collection, there are only countably many P with Oc(PNC) #
0. Here Oc(PNC) denotes the interior of PNC in the subspace
C. Let Py={P€P; Oc(PN C)# 0} ={P; n < w}.
Then for each P €P \ Py, Oc(PNC) = 0 that is, PN C is
nowhere dense in C' since P is a collection of closed subsets
of Y. Now pick ayo € C. Let Po = {P € P\ Py; ¥ €
P} = {Pin; n < w}. If ys and Ps have been defined for all
B < a, where a < wy, pick a yo, € C \ [U(Up<a Ps )]. Because
the Cantor set C' can not be denoted as the union of count-
ably many nowhere dense subsets of C. Let P, = {P € P\
Po; Yo € P} = {Pan; n < w}. Then, by induction, there exists
a subset A = {yo; @ < w} of C with |A| = ;. Then there
exists a Cantor set Cy of A with |[PNCy| < 1 for each P € P
\ Pg. If P, €Py, then at most there exists one S,, € ¢ with
|Sa, NP,| = R by 2) of (C*). Let ap = sup{an; |Sa,,NPal = Ro
and P, € Py}. If @ > aq then |S, N P,| < Ro. Thus we may
assume without loss of generality that
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1) |[PNC|<1foreach P€ P\ P
2) | P, N Sq| < Ro for each S, € ¢ and each P, € P),.

B) Let C(0) and C(1) be two Cantor subsets of C with
C(0)NnC(1) = 0. Let d(C(0),C(1)) = r; > 2/ny, and let
V(6;) be a 1/n; open ball of C(6;) in (YT). Let ¢(6;) =
{(Sa NV (81))\ (PLU Co); So € 9, S, converges to z, and
zo € C(61)}. Here Py € Py, 6, = 0,1. If 2, € C(61), then (S,N
V(61)) \ (P1U(Cy) is a sequence which converges to z,. Then
|o(61)] = Ry and Ugp(6:1) C V(é1) \ (PLUCo). V(81) \ (P1UCo)
is an open subset of Y which is the union of countably many
compact metric subsets of Y. Then there exists a compact
metric subset K(é;) which is a subset of V(é;) \ (P UC)p) such
that K(6;) meets ®;-many sequences in ¢(é;). Let

D(8) = {oa€C6:1); Sa € p(61), SaNK(5;)#0

and S, converges to z,},

then ID(61)| = Nl.

If it has been defined that :

a) {C(6:16,...6,); 6; =0,1.¢=1,2,... ,n} is a collection
of mutually disjoint Cantor sets.

b) {V(6162...6,); 6; =0,1.72=1,2,... ,n} is a collection
of mutually disjoint open balls such that

V(61625n) N [U]‘Sn_l(U{I((6152...5j); 5,‘ = 0,1.
i=1,2,...,5)] =0.

Here V(6162...6,) = {y; d(y, C(6162...6,)) < 1/n,}.

¢) {p(b162...6,); 6 = 0,1,. 1 = 1,2,...,n} such that
W(61...6,) ={(SanNV(b1...6,)) — (PLU...UP,UCQCy); S« €
(61 ...6,-1), S converges to z, and z, € C(6;...6,)} and
lp(b1 - ..8,)| =Ry, here P, € Py = {P, € P; Oc(P,NC) # 0}.

d) {K(61...6,); 6; =0,1.2=1,2,... ,n} is a collection of
compact subsets such that K(é;...6,) is a subset of open sub-
set V(61...6,)\(PU...UP,UCp) and [{Ss € (61 ...6,); SaN
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e){D(6;...6,); 6 =0,1.1=1,2,... ,n}, where D(6; ... 6,)
= {z, € C(b1...6,); Sa € 30(616 6 n )y Oa converges to T,
and S, N K(6:6;...6,) £0) C Clb16s... 5n).

Take C(6;...6,0) and C(6;...6,1) which are two disjoint
Cantor subsets of D(6;...6,). By €), K(61...6,) and Cy are
T;-compact, thus K(6;...6,) and Cyp are Tp-compact. Then
d(C, UjcnV{K(61...65); 6 =0,1.0 =1, 2 s JH) = Tap >
0 by b) and d) of B). Choose n,4; with (-2~ ) < Th41 such that
V(b1...0:+1) = {y; d(y,C(61.. 6n+1)) < nn“} C
V((Sl e 6n+1) C V((Sl(Sz 6 ) and V((Sl 6 O)HV((Sl (S 1) =
0, then {V(61...6n41); 6: =0,1.i=1,2,... ,n+1} is a collec-
tion of mutually disjoint open balls Let 30(61 cbng1) = {(SaN
V(&l...6n+1)) — (Pl U...UPn+1 UC()); So, € 30(616.,1), Sa
converges to z, and z, € C(6;...6,)}, where P,y € P,.
Then (Sa N V(51...6n+1)) \ (Pl u...u Pn+1 U Co) is a se-
quence which converges to z, for each z, € C(6163...6n41)
and Igo((sl .. .6n+1)| = Nl. V((Sl . .6n+1) \ (Pl u...uU Pn+1 U
Co) is an open subset of ¥ which is the union of countably
many compact metric subsets of Y, so there exists a com-
pact subset I{((Sl&g e 6n+1) C V((Sl(Sg [N 6n+1) \ (Pl U...uU
P, 1UC)) such that K(8; ... 6,41) meets R; many sequences in
QO((Sl(SQ .o 6n+1)' If D((Sl n+1) {il:a € C((Sl 6n+1) S €
©(8y...0n41)y So N K(6;...6,41) # 0 and S, converges to
il:a}, then D((Sl"((s‘n-f-l) C C((Sl 6n+1) C D((Sl 671) and
|D(81...6n41)] = 1. Then, by induction, there exist:

1) K = {K(6;...6,); 6 =0,1.4=1,2,...,n. n>0.}
with [U{K(61...6;);6;=0,1.i=1,2,...,5. 7 > n}NP, =0
for each P, € Py.

2) C = {C(6...6,); & =10,1. 1 =1,2,...,n. n >
0} and {V(61...6,); & = 0,1. 7 = 1,2,...,n. n > 0}
such that mn>0(U{C( 61 6n), 6,' = 0, .o
mn>0(U{V(61...6n); = 0,1 1 =
C* is a Cantor set. If C* = {z(6162...); & 0,1. ¢ =
L,2,...,n.n> 0} = {za; @ < wi}, then (6:62...6,...) =
C(6)NC(816)N...=V(6)NV(6:6)N... and |C*ﬂP| <1

foreach Pe P\ Py .
3) If oo = {Sa € ¢; S, converges to z, and z, € C*},
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then |po| = RNi. If S, € g, S, converges to z, and z,
2(6165...) € C*, then S, N K(8;...6,) # @ for n > 0.

C) We use the results of B) to construct a collection {Crm; n,
m < w} which does not satisfy condition (Cs).

i) Let A; = {2(00...)},andlet C; = {P € P\ Py ; PN4, #
0} = {Pin; n < w}. For each n < w; let K(0...0 711) =
{K(0...01 6:6;...8,); K(0...01 6,...6,) C V(0.
thus (PnU .UPy,,) meets only finitely many sets in IC( ..0

In fact Pj;U...UP;, meets infinitely many sets in IC(

0 1))
1).
01),
so P1U. . .UP;, meets infinitely many sets in X(0...0 1 0) orin
K(0...011) by £(0...01) = {K(0...01)}UK(0...0 T 0) U
K(0...0 1 1). Then we may assume Pj; U...U Py, meets in-
finitely many sets in K(0...0 1 61). Because K(0...0 1 6) =
{K(0...0 1 &)} UK(0...0 1 6§0)UK(0...0 1 &1), then
P, U...U Py, meets infinitely many sets in X(0...0 1 6,0),
or in £(0...0 711 611). We may assume Pj; U...U P, meet-
s infinitely many sets in X(0...0 1 6162). Then, by induc-
tion, there exist K(0...0 1 61) D K(0...0 1 6162) D ... such
that Pj; U...U P, meets infinitely many sets in X(0...0 T
8y...6y). UK(0...01 6...6,) C V(0...01 6...8,) so
(PHU UPL)NV(0...016...6,)#0. Npso V(0...01

§1...6m) = {2(0...0 1 6:6,...)} s0 (0...0 1 6:6,...) €
P, U .U Py, = PiN...P,. This is a contradiction to Pj; €
C; and |P1,~ NC* <1fori=1,2,...,n. Then there exists an

iy and Kip = {K(0...016,...6,); 6; =0,1.i=1,2,...n,}
such that:
(1) (PyU...UPy) N (UKy,) = 0.

(2) If S, converges to Za, Sa € po and z, = z(0...0 1
6152, .o ) ¢ Al then Sa N (UICln) ?é @

Let K:l = Un>0K:1n, then

(1) P meets only finitely many sets in Ky for each P € C;.
(2) P meets only finitely many sets in Xy for each P € P.
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(3) If S, converges to za, To = 2(0...0 1 816,...) and
zo € Ay, then S, N (UK1,) # B for each S, € wo.

In fact :

1) We omit the proof.

2) For each P € P.

a) if PN C* = 0, then there exists an n with P N (U
{V(6;...6,); 6 =0,1.:=1,2,...,n}) =0 by C* = Naxo(U
{V(6,...8,); & = 0,1. ¢ = 1,...,n}). Then P meets only
finitely many sets in K.

b)if PNC* # @ and P € Py, then P meets only finite-
ly many sets in K;. If P ¢ Py, then |P N C*| < 1. Sup-

pose that there exists a infinite subcollection {K(0...0 1
5n1 bum); m < w} of Ky such that P n K(0...0 1
,mn) # 0 for each K(0...0 111 5n1 .6pn,). Because

1

K(O. T 61 6an) C V(0..."0), PN V(0. L0 #

9. V(0 ) D V(00) D ... and N,5eV(0. ) {:I:(OO I}
so 2(00...) € P= P and P €(,. Th]S is a contradiction to
1).

3) We omit the proof.

If Cin = Uin(UK1:), then {Cin; 1 < n < w} has the prop-
erties:

1) P meets only finitely many sets in {Ci,; 1 < n < w} for
each P € P.

2) If S, converges to z,, ¢, = z(0...0 1 61,62...) and
T, & Ay, then S, N Cy, # B for each S, € pg.

i) If Ape1 = {2(61,62...); there exist n — 2 many 1’s in
81,62,...} and {Cy_1 m; n —1 < m < w} have been defined
so that:

1) P meets only finitely many sets in {Cr—1 m; n—1<m <
w} for each P € P.

2) For each S, € ¢y, if S, converges to o, o = (6, ...8! .,
10...0 "0 66,...) & Aur,7, = 2(6...6.,100...) €
A,_1and j > m, then S, NC,_; , # 0.

Let A, = {z(6,63...); there exist n—1 many 1’sin é;,6>... }

then A, = A, U...U A, U A; and [A,] = Ro. Let 4, =
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{z1,22,...},and let C, = {P € P\ Py/; PNA, # 0} =
{Pni; ¢ < w}. Pick z,, € A,. Then z,, = z(6,/8,...) =
z(&'...8,100...).

For each 7 < w, let

K@) ...8,10...0 ") = {K(6'...8,10...0 " F"
§i...b); K(6y'...6,10...0 " T 8...6) C V(6'... 8.,
m'+5+1

10...0 1 )}. Take P; €C,, 1 =1,2,... ,m+j+1. Then,
as in the proof of i), there exists an n(j) and a subcollection
m'+5+1
Kni(zm) = {K(8) .. 8,00...0 " T 8u1er bnnii); Oui =
m'+5+1
0,1. i = 1,2,...,n(j)} of K(6/...8.,10...0 T ) such
that;

2) For each Sy € o, if Sy converges to z,, T, = (8 ...8,
m'+3+41 —
10...0 1 66;...) ¢ A, and 2!, = 2(8,"...6,,100...) =

Tm € An, then Sy N (UK, (zm)) # 0.

Let Kp(zm) = Uj»0Knj(zm). Then K, (z,,) satisfies:

1) (PaiU...UP, ny;) N[UK,(2)] = 0, here P,; € C, for
1=1,2,... ,m+7.

2) P meets only finitely many sets in K, (z,,) for each P €
P.

3) For each S, € o, if S, converges to z4, T, = (81 ... 8.,

m'+j+1 —_
0.0 1T 668,...) ¢ A, and 2", = (8, ...8.,100...) =
Tm € Ap, then S, N (UK,;(zn)) # 0.

We prove only 2). In fact, if P € P \ Py’, suppose that P
meets infinitely many sets in K,,(z,,). Then there exist infinite-
ly many K, ;(z,,) such that P meets sets in X,,;(z,,) because
Kn(zm) = Uj»oKnj(zm) and |Knj(zm)] < Ro. UKnj(zm) C

m'+j m'+j
V() ...6,10...0 0 )so PNV(§'...8,10...0 0 ) 0.
Then {zm} = NjsoV(&'...8,10...0 0°) C P and P € C,.
This is a contradiction to 1).
Let K, = U{K,.(zn); Tm € An}. Then K, satisfies:
1) Pam N[UU{Kpj(z:); 7 = m, © > 0}] = 0 for each Py, € C.
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2) P meets only finitely many sets in X,, for each P € P.

3) For each S, € @p, S, converges to x4, To = z(61'... 6,
m+j+1

10...0 1 6:6,...) ¢ A, 2! = z(&'...6,,100...) =

[ m

Tm € A, and j > mso S, N[UU{K,;(z;); 1 =m, i > 0}] #0.

In fact:

1) for each P € P \ P, if j > m, then Py, N(UK,;(2z:)) = 0
for i > 0 by (P U...UP, nmy;)N(UK,i(zn)) = 0. Then PN
U(UjomKnj(x:))] = 0 for ¢ > 0. Then Py, N [U{UK,;(2i); 7 2
m, t>0}]=0.

2) Let P € P\ Po. If P meets infinitely many sets in K, =
U{K.(zm); Tm € An}, then there exists a sets {m;,ma,...}
such that P meets sets in K, (z,,,) for each m; by property 2) of
Kn(zm): {zm; t >0} C A, so we may assume {z,,,;7 > 0}
is a sequence which converges to z and = = z(6,6;...) € A,.
We may also assume {z,,;; 1 2 n} C V(6 ...6,),50 Vo(zm,)
V(61 ...6,) for each : > n. Here o, = z(e162...),V(e1)
V(€1€2) ... and Vn(l‘,-,“) = V(€1€2 . .En) = V(élég n)
Tm; = (61 ... 60601 ... 60 1,000...), UK, () C V(5152 b
and PNV (6:16;...6,) # 0. P is compact, so z(6;82...) €
and P € C,. This is a contradiction to property 1) of K,.

3) S, € o, S, converges to z,, T, = z(6 .

m/+5+1 —
10...0 1 665...) ¢ Anand o/, = x(6,'...8,1000...) =

Tn € Ap, 50 So N(UK,(x,)) # 0. If j > m , then S, N (VU
{Kni(z:); 5 2 m, i>0})#0.

Let Cpm = UU{PK,;(z;); 7 > m, ¢t >0} form > n . Then
{Crm; m > n} satisfies:

1) P meets only finitely many sets in {Cpm; m > n} for each
PeP.

2) For each S, € g, if S, converges to z4, o = (8, ... 68,

m'+j+1 —
10... T 66;...) ¢ Ay, 2, = 2(6'...6.,1000...) € A,
and j > m, then S, N Cy.,, # 0.

Then, by induction, there exists a collection {Cpn; n <m <

w} such that:
1) Cum is closed in (Y'Ty) for each Cpyn € {Crm;n < m < w}.

8UII

‘ﬁ\_/
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2) For each n,{C,,,; m > n} is a discrete collection.

Now we prove C* N (U{Crpm; m> f(n)}) # 0 and C* N
(U{Crm;m > f(n)}) = 0 for each f € “w.

In fact: If f € “w, let f(:) = n; and let 0 < n; < ny <
ns....Pick 2o = 2(0...0 1 0...0 1 0...) € C*, where
m; = ny+n2+...+n; > i Take S, € o sqch that S,
converges t0 To, T4 :a:(O...OnilO...O T ...Oni'O...) ¢ A;
and 2/, =2(0...0 1 0...0 1 ...0 1 000...) =z, € A
50 So N (UKin(zm)) # 0 and S, N Cin, # @ since C; ,,, =
UU{K;(zm); § > n;, m >0} for i > 1. Then z, € C* N
U{Cin;; t <w} # 0, hence 2o, € C*NU{Cpm; m > f(n)} #0.

D) Let g : Y — Y/{C*}. Then g is a continuous perfect
map. Then {g[Cnn]; m > n} satisfies:

1) g[Crm] is closed for each g[Cpm] € {g[Can); n < m < w}
in Y/{C*}.

2) {g[Crm]; m < w} is a discrete subcollection of {g[Cpn];
m > n} for each n < w.

3) There exists a C* € U{g[Cun); m >n} with C* €
U{g[Cnm]; m > f(n)} for each f € “w.

Then S, x (Y/{C*}) is not sequential by Lemma 6. Thus

S. X Y is not sequential by Lemma 10. This is a contradiction
to the conclusion of Lemma 10. Then Y is a k,-space.

REesuLTs (CH + MC).

Theorem 1. Let X and Y be k-spaces with point-countable
closed k-networks. Then X x Y is a k-space if and only if one
of the three properties below holds:

a) X and'Y have point-countable bases.

b) X orY is locally compact.

¢) X andY are locally k,-spaces.

Proof. If X contains a copy of S; and X contains no copy of
S., then the perfect image X/{So} of X contains a copy of
Sw, where Sy is the converging sequence of S; which has no
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isolated point. By Lemma 10, (X/{So}) x Y is sequential if
and only if X x Y is sequential.

“only if”:
1) f X and Y contain copies of S, or S;. Then X and Y
are locally k,-spaces by lemma 11.

2) If X contains a copy of S, or Sy, and Y contains no copy
of S, and S,. X x Y is sequential then S, x Y is sequential.
Then P is compact metrizable for each P € P by Lemma 4.
Then Y has a point countable base by [11, Corollary 4.5]. S,, is
not strongly Fréchet then Y is locally compact by [8, Theorem
1.1].

3) X and Y contain no copies of S, and S, . ¥ x X is
sequential and #(Y) < w then Y satisfies (C)) or X satisfies
(C;) by Lemma 1.

At the same time X X Y is sequential and {(X) < wso X
satisfies (C1) or Y satisfies (C;) by Lemma 1. Then there exist
four cases:

case 1. X satisfies (C1) and Y satisfies (C;). Then X and
Y have point-countable bases by {5, Theorem 9.8].

case 2. X satisfies (Cy) and X satisfies (Cy). Then X has
a point-countable base by (C1). Then X is locally compact by
(C2).

case 3. Y satisfies (C) and Y satisfies (C;). Same as case
2.

case 4. X satisfies (C;) and Y satisfies (C;). If X satisfies
(Cy) then P is a compact metrizable set for each P €P. Then
X has a point-countable base by {11, lemma 4.1]. So does Y.

“if” we omit the straightforward proof.

Corollary. Let X and Y be quotient s-images of locally com-
pact metric spaces. Then X x Y is sequential if and only if
one of the three properties below holds:

a) X andY have point-countable bases.

b) X orY is locally compact.

¢) X and Y are locally k,-spaces.

Proof. A quotient s-image of a locally compact metric space
has a point-countable closed k-network.
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Theorem 2. Let X and Y be closed tmages of metric spaces.
Then X XY is sequential if and only if one of three properties
below holds:

a) X and Y have point-countable bases.

b) X orY is locally compact.

c) X and Y are locally k,-spaces.

Proof. “only if”

1) If X contains a copy of S, then S, x Y is sequential. If
Y is a closed image of a metric space, then 9f~!(y) is locally
compact and Lindeldff for every y € Y by [ 9, Proposition 2.4].
We may assume without loss of generality that Y is a closed s-
image of a metric space. Then Y has a closed point-countable
k-network. Then Y is a locally k,-space by Lemma 11. So
does X .

2) X contains a copy of S, and Y contains no copy of S,
then S, X Y is sequential. As in the proof 1) we may assume
Y is a closed s-image of a metric space. As in the proof 2) of
“only if ” of Theorem 1, Y is locally compact.

3) X and Y contain no copies of S,. Then we may assume
that X and Y are closed s-images of metric spaces by [11,
Theorem 1.7 ii]. Then X and Y have closed point-countable
k-networks. As in the proof 3, of “only if” of Theorem 1, then
X is locally compact or Y is locally compact or X and Y have
point-countable bases.

“if” We omit the straightforword proof.

The above theorem 2 is analogous to Theorem 1.1 of [9].
The following Theorem 3 is analogous to Theorem 3.1 of [7].

Theorem 3. Let X and Y be k-and R-spaces. Then X XY is
a k-and N-space if and only if one of the three properties holds:
a) X and'Y have point-countable bases.
b) X orY is locally compact.
¢) X and Y are locally k,-spaces.

Proof. Every k-and R-space is a k-space with o-locally finite k-
network, then every k-and R-space has a closed point-countable
k-network. Then the Theorem 3 is a Corollary of Theorem 1.
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