TOPOLOGY PROCEEDINGS

Volume 15, 1990
Pages 63-82
http://topology.auburn.edu/tp/

THE PRODUCTS OF K-SPACES WITH POINT-COUNTABLE CLOSED K-NETWORKS

by
Chen Huaipeng

```
Topology Proceedings
Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
    Department of Mathematics & Statistics
    Auburn University, Alabama 36849, USA
E-mail: topolog@auburn.edu
ISSN: 0146-4124
```

COPYRIGHT © by Topology Proceedings. All rights reserved.

THE PRODUCTS OF K-SPACES WITH POINT-COUNTABLE CLOSED K-NETWORKS

CHEN HUAIPENG

Abstract

Using a technique of [2] we prove the the$\operatorname{orem}(\mathrm{CH}+\mathrm{MC})$: Let X and Y be k-spaces with pointcountable closed k-networks. Then $X \times Y$ is sequential if and only if one of the three properties below holds:

a) X and Y have point-countable bases.
b) X or Y is locally compact.
c) X and Y are locally k_{ω}-spaces.

1. Introduction

Throughout this paper, we shall assume that all spaces are regular, and all maps are continuous surjections.

A cover \mathcal{F} of a space is a k-network if for any $K \subset U$ with K compact and U open, $K \subset \cup \mathcal{F}^{\prime} \subset U$ for some finite $\mathcal{F}^{\prime} \subset \mathcal{F}$. A space X is in class $\mathcal{T}^{\prime}[7]$ if X has the weak topology with respect to a countable cover of closed locally compact subsets. Y. Tanaka [7, Theorem 3.1] has proven:

Theorem 3.1. Let X and Y be k-and \aleph-spaces, then $X \times Y$ is a k-space if and only if one of the three properties below holds:
a) X and Y are metrizable spaces.
b) X or Y is a locally compact metrizable space.
c) X and Y are spaces of the class \mathcal{T}^{\prime}.

Here an \aleph-space [6] is a space with a σ-locally finite k network. A k -and \aleph-space is a quotient s-image of a metric space by [4, Theorem 6.1]. So it is desirable to consider the k-ness of the product $X \times Y$ of quotient s-images X, Y of metric spaces. If X and Y are Fréchet, by [10, Theorem 9], it follows that $X \times Y$ is a k-space if and only if X and Y have
point-countable bases. Otherwise b) or c) of the above theorem holds. Every quotient s-image of a metric space has a pointcountable k-network by [4, theorem 6.1]. In this paper, under CH (continuum hypothesis) and MC (there exists measurable cardinal) we prove the result:

Theorem 1. Let X and Y be k-spaces with point-countable closed k-networks, then $X \times Y$ is sequential if and only if one of the three properties below holds:
a) X and Y have point-countable bases.
b) X or Y is locally compact.
c) X and Y are locally k_{ω}-spaces.

The author wishes to thank Y. Tanaka and the referee for their suggestions.

2. Lemmas

Recall that a space X has countable tightness, $t(X) \leq \omega$, if $x \in \bar{A}$ in X, then $x \in \bar{C}$ for some countable $C \subset A$.
Lemma 1. (10, Lemma 4). Suppose that $X \times Y$ has a k system with $t(X) \leq \omega$, then the following condition $\left(C_{1}\right)$ or $\left(C_{2}\right)$ holds,
$\left(C_{1}\right)$. If $\left(A_{n}\right) \downarrow x$ in X, then there exists a nonclosed subset $\left\{a_{n} ; n \in \omega\right\}$ of X with $a_{n} \in A_{n}$.
$\left(C_{2}\right)$. If $\left(A_{n}\right)$ is a k-sequence in Y, then some \bar{A}_{n} is countably compact.

Here $\left(A_{n}\right) \downarrow x$ means a decreasing sequence $\left\{A_{n} ; n \in \omega\right\}$ such that $x \in \overline{A_{n} \backslash\{x\}}$ for $n \in \omega$. A k-sequence [5] is a decreasing sequence $\left\{A_{n} ; n \in \omega\right\}$ such that $C=\cap_{n \in \omega} A_{n}$ is compact and each neighborhood of C contains some A_{n}.

Lemma 2. (4, Lemma 1.7) If $f: X \rightarrow Y$ is a quotient map, and if X is determined by the cover \mathcal{P}, then Y is determined by $f(\mathcal{P})=\{f(P) ; P \in \mathcal{P}\}$.

We use " X is determined by \mathcal{P} " just as " X has the weak topology with respect to $\mathcal{P} "$. The terminology is due to [4, note 2].

Lemma 3. Let Y be a quotient s-image of a metric space, and let $S_{\omega} \times Y$ be sequential. If Y is determined by cover \mathcal{P}, then $S_{\omega} \times Y$ is determined by cover $\left\{S_{n} \times P ; P \in \mathcal{P}\right.$ and $\left.S_{n} \in \varphi\right\}$.

Proof. Let $f_{1}: M_{1} \rightarrow S_{\omega}$ be a quotient s-map, and let $f_{2}:$ $M_{2} \rightarrow Y$ be a quotient s-map. Here $M_{1}=\Sigma_{n} S_{n}$ and M_{2} is a metric space. Let \mathcal{B} be a σ-locally finite base of M_{2} and let $\mathcal{P}=f_{2}(\mathcal{B}) . M_{1} \times M_{2}$ is a metric space and $M_{1} \times M_{2}$ is determined by cover $\left\{S_{n} \times B ; S_{n} \in \varphi\right.$ and $\left.B \in \mathcal{B}\right\}$. $f_{1} \times f_{2}$ is a quotient s-map if $S_{\omega} \times Y$ is sequential. Then $S_{\omega} \times Y$ is determined by $\left\{S_{n} \times P ; S_{n} \in \mathrm{P} H\right.$ and $\left.P \in \mathcal{P}\right\}$ from Lemma 2 .

Lemma 4. Let Y be a quotient s-image of a metric space M, and let $\mathcal{P}=f(\mathcal{B})$. If $S_{\omega} \times Y$ is sequential, the \bar{P} is a compact metric subset of Y for each $P \in \mathcal{P}$. Here \mathcal{B} is a σ-locally finite base of M.

Proof. $\mathcal{B}=\cup_{n<\omega} \mathcal{B}_{n}$ is a σ-locally finite base of M, Let $\mathcal{B}_{x}=$ $\left\{B_{n} \in \mathcal{B} ; x \in B_{n}\right.$ and $B_{1} \supset \underline{\left.B_{2} \supset \cdots\right\} \text { with }\left\{f\left(B_{n}\right) ; B_{n} \in \mathcal{B}_{x}\right\}, ~ f\left(B_{n}\right)}$ is a k -sequence. Then some $\overline{f\left(B_{n}\right)}$ is a compact metric subset of Y by [10, Lemma 6]. Thus we can suppose that $\overline{f(B)}$ is compact for each $B \in \mathcal{B}$.

Lemma 5 (CH). Let Y be a quotient s-image of a metric space. If $S_{\omega} \times Y$ is sequential, then there exists a subcollection \mathcal{P}_{y} of \mathcal{P} such that $\left|\mathcal{P}_{y}\right| \leq \aleph_{0}$ and $\cup \mathcal{P}_{y}$ is a neighborhood of y for each $y \in Y$.

Proof. Suppose there exists a point y_{0} of Y such that we take any subcollection \mathcal{P}^{\prime} of \mathcal{P}, if $\left|\mathcal{P}^{\prime}\right| \leq \aleph_{0}$, then $\cup \mathcal{P}^{\prime}$ is not a neighborhood of point y_{0}.
A. Let N_{0} be a Moore-Smith net which converges to $y_{0}, y_{0} \notin$ N_{0} and $\left|N_{0}\right|=\aleph_{0}$. Let $\mathcal{P}_{0}=\left\{P \in \mathrm{P} ; P \cap N_{0} \neq \emptyset\right\}$, then $\left|\mathcal{P}_{0}\right| \leq \aleph_{0}$ by \mathcal{P} point-countable. If we have defined a MooreSmith net N_{β} which converges to y_{0} with $y_{0} \notin N_{\beta},\left|N_{\beta}\right| \leq \aleph_{0}$, $\mathcal{P}_{\beta}=\left\{P \in \mathcal{P} ; P \cap N_{\beta} \neq \emptyset\right\}$ and $\left|\mathcal{P}_{\beta}\right| \leq \aleph_{0}$ for all $\beta<\alpha$, here $\alpha<\omega_{1}$. Then $\cup\left(\cup_{\beta<\alpha} \mathcal{P}_{\beta}\right)$ is not a neighborhood of point y_{0} by $\left|\cup_{\beta<\alpha} \mathcal{P}_{\beta}\right| \leq y \aleph_{0}$. So we can take a Moore-Smith net N_{α} which converges to $y_{0}, y_{0} \notin N_{\alpha},\left|N_{\alpha}\right| \leq \aleph_{0}$ and $N_{\alpha} \cap\left[U\left(\cup_{\beta<\alpha}\right.\right.$ $\left.\left.\mathcal{P}_{\beta}\right)\right]=\emptyset$. Let $\mathcal{P}_{\alpha}=\left\{P \in \mathcal{P} ; P \cap N_{\alpha} \neq \emptyset\right\}$, then $\mid \mathcal{P}_{\alpha}$
$1 \leq \aleph_{0}$ by \mathcal{P} point-countable. Then, by induction, there exists a collection $\left\{N_{\alpha} ; \alpha<\omega_{1}\right\}$ such that:

1) N_{α} converges to $y_{0}, y_{0} \notin N_{\alpha}$ and $\left|N_{\alpha}\right| \leq \aleph_{0}$ for each N_{α}.
2) P meets only one N_{α} for each P of \mathcal{P}.
B. Each $N_{\alpha}=\left\{x_{\alpha 1}, x_{\alpha 2}, \ldots, x_{\alpha n}, \ldots\right\}=\left\{1_{\alpha}, 2_{\alpha}, \ldots, n_{\alpha}, \ldots\right\}$. For each $f_{\alpha} \in{ }^{\omega} \omega$ let $H_{\alpha}=\cup_{n<\omega}\left(\left\{1_{n}, 2_{n}, \ldots, f(n)_{n}\right\} \times\right.$ $\left.\left\{1_{\alpha}, 2_{\alpha}, \ldots, n_{\alpha}\right\}\right) \subset S_{\omega} \times Y$. Let $H=\cup_{\alpha<\omega_{1}} H_{\alpha}$. Here $S_{n}=$ $\left\{1_{n}, 2_{n}, \ldots\right\}$ is a convergent sequence of S_{ω}.
a) $H \cap\left(S_{n} \times P\right)$ is closed in $S_{n} \times P$ for each $S_{n} \times P \in$ $\left\{S_{n} \times P ; S_{n} \in \varphi\right.$ and $\left.P \in \mathcal{P}\right\}$. In fact : P meets only one N_{α} by property 2) of $\left\{N_{\alpha} ; \alpha<\omega_{1}\right\}$. Then $\left(S_{n} \times P\right) \cap H=\left(S_{n} \times P\right.$) $\cap H_{\alpha}=\left(S_{n} \times P\right) \cap\left(\cup_{i \leq n}\left\{1_{i}, 2_{i}, \ldots, f(i)_{i}\right\} \times\left\{1_{\alpha}, 2_{\alpha}, \ldots, i_{\alpha}\right\}\right)$ has only finitely many points.
b) H is not closed. We prove $\left(\infty, y_{0}\right) \in \bar{H}-H$. Here " ∞ " denotes the nonisolated point in S_{ω}. If $f \in{ }^{\omega} \omega$, let U_{f} be the neighborhood of point " ∞ " in S_{ω} defined by $U_{f}=\{\infty\} \cup$ $\left\{n_{m} ; n \geq f(m)\right\}$. Let U be a neighborhood of point y_{0} in Y, then $N_{\alpha} \cap U \neq \emptyset$ for each $N_{\alpha} \in\left\{N_{\alpha} ; \alpha<\omega_{1}\right\}$. Then there exists $n(\alpha)_{\alpha} \in N_{\alpha} \cap U$. Let $g(\alpha)=n(\alpha)$, then $g \in{ }^{\omega_{1}} \omega$. By $f \in{ }^{\omega} \omega$, there exists function $f_{\alpha_{0}} \in{ }^{\omega} \omega$ such that $A=\{n \in$ $\left.\omega ; f_{\alpha_{0}}(n)>f(n)\right\}$ is infinite. Because $g\left(\alpha_{0}\right)=n\left(\alpha_{0}\right)$, there exists $n^{\prime} \in A$ with $n^{\prime}>n\left(\alpha_{0}\right)$. Then $\left(f_{\alpha_{0}}\left(n^{\prime}\right)_{n^{\prime}}, n\left(\alpha_{0}\right)_{\alpha_{0}}\right) \in$ $\left\{1_{n^{\prime}}, 2_{n^{\prime}}, \ldots, f_{\alpha_{0}}\left(n^{\prime}\right)_{n^{\prime}}\right\} \times\left\{1_{\alpha_{0}}, 2_{\alpha_{0}}, \ldots, n\left(\alpha_{0}\right)_{\alpha_{0}}, \ldots, n_{\alpha_{0}}^{\prime}\right\} \subset$ H. On the other hand the $n^{\prime} \in A$ gives $f_{\alpha_{0}}\left(n^{\prime}\right)>f\left(n^{\prime}\right)$, so $f_{\alpha_{0}}\left(n^{\prime}\right)_{n^{\prime}} \in\left\{n_{m} ; n \geq f(m)\right\} \subset U_{f}$ and $n\left(\alpha_{0}\right)_{\alpha_{0}} \in N_{\alpha_{0}} \cap U$. Then $\left(f_{\alpha_{0}}\left(n^{\prime}\right)_{n^{\prime}}, n\left(\alpha_{0}\right)_{\alpha_{0}}\right) \in\left(U_{f} \times U\right) \cap H_{\alpha_{0}} \subset\left(U_{f} \times U\right) \cap H$ and H is not closed. Then $S_{\omega} \times Y$ can not be determined by $\left\{S_{n} \times P ; S_{n} \in \varphi\right.$ and $\left.P \in \mathcal{P}\right\}$. But $S_{\omega} \times Y$ is determined by $\left\{S_{n} \times P ; S_{n} \in \varphi\right.$ and $\left.P \in \mathcal{P}\right\}$ because of Lemma 3. This is a contradiction.

Lemma 6. Let Y be a quotient s-image of a metric space. If $S_{\omega} \times Y$ is sequential, then Y satisfies the following condition (C_{3}),
(C_{3}). If Y has a collection $\left\{C_{n m} ; n, m<\omega\right\}$ such that

1) $C_{n m}$ is a closed set for each $C_{n m} \in\left\{C_{n m} ; n, m<\omega\right\}$,
2) $\left\{C_{n m} ; m<\omega\right\}$ is a discrete subcollection of $\left\{C_{n m} ; n, m<\right.$ $\omega\}$ for each $n<\omega$, then for each $x \in \overline{\bar{U}_{n m} C_{n m}}$, there exists a function $f \in{ }^{\omega} \omega$ with the $x \notin \overline{U\left\{C_{n m} ; m \geq f(n)\right\}}$.

Proof. If Y does not satisfy $\left(C_{3}\right)$, then there exists a collection $\left\{C_{n m} ; n, m<\omega\right\}$ in Y such that

1) $C_{n m}$ is closed for each $C_{n m} \in\left\{C_{n m} ; n, m<\omega\right\}$.
2) $\left\{C_{n m} ; m<\omega\right\}$ is a discrete subcollection of $\left\{C_{n m} ; n, m<\right.$ $\omega\}$ for each $n<\omega$. But there exists $x_{0} \in \overline{U_{n m} C_{n m}}$, with the $x_{0} \in \overline{U\left\{C_{n m} ; m \geq f(n)\right\}}$ for each $f \in{ }^{\omega} \omega$.

Let $A=\cup_{n m}\left(\left\{m_{n}\right\} \times C_{n m}\right)$. On the one hand; $\left(S_{n} \times P\right)$ $\cap A=\cup_{m}\left(\left\{m_{n}\right\} \times C_{n m}\right) \cap\left(S_{n} \times P\right)$ is closed in $S_{n} \times P$ by 1$)$ and 2) of (C_{3}). On the other hand: $\left(U_{f} \times U\right) \cap A \neq \emptyset$ for each $f \in{ }^{\omega} \omega$ and each neighborhood U of the x_{0}. In fact: for each $f \in{ }^{\omega} \omega$, if $x_{0} \in \bigcup\left\{C_{n m} ; m \geq f(n)\right\}$ then $U \cap\left(\cup\left\{C_{n m} ; m \geq f(n)\right\}\right) \neq \emptyset$. So, there exists $C_{n m} \in\left\{C_{n m} ; m \geq f(n)\right\}$ with $U \cap C_{n m} \neq \emptyset$. Then $\left(U_{f} \times U\right) \cap A \supset\left(U_{f} \times U\right) \cap\left(\left\{m_{n}\right\} \times C_{n m}\right) \neq \emptyset$. This implies that $S_{\omega} \times Y$ is not sequential. This is a contradiction.

Lemma 7. Let $\left(X \mathcal{T}_{1}\right)$ and $\left(X \mathcal{T}_{2}\right)$ be regular, and let $\mathcal{T}_{2} \subset \mathcal{T}_{1}$. If subset C of X is \mathcal{T}_{1}-compact, then C is \mathcal{T}_{2}-compact and $\mathcal{T}_{2}\left|C=\mathcal{T}_{1}\right| C$. Here $\mathcal{A} \mid B=\{A \cap B ; A \in \mathcal{A}\}$.

Proof. We only prove $\mathcal{T}_{2}\left|C=\mathcal{T}_{1}\right| C . \mathcal{T}_{2} \subset \mathcal{T}_{1}$ then $\mathcal{T}_{2}\left|C \subset \mathcal{T}_{1}\right| C$. On the other hand: if $O_{1} \in \mathcal{T}_{1}, O_{1} \cap C \in \mathcal{T}_{1} \mid C$ then $C-\left(O_{1} \cap C\right)$ is a \mathcal{T}_{1}-compact subset of $X . C-\left(O_{1} \cap C\right)$ is a \mathcal{T}_{2}-compact subset of X, then $C-\left(O_{1} \cap C\right)$ is a \mathcal{T}_{2}-compact subset of C. Then $C-\left(O_{1} \cap C\right)$ is a T_{2}-closed subset of C. Then $C-\left(C-\left(O_{1} \cap C\right)\right)=O_{1} \cap C$ is a \mathcal{T}_{2}-open subset of C. Then there exists $O_{2} \in \mathcal{T}_{2}$ with $O_{2} \cap C=O_{1} \cap C$. This implies $O_{1} \cap C \in \mathcal{T}_{2} \mid C$.

Lemma 8. Let Y be sequential. If Y is the union of countably many compact metric subsets of Y, then there exists a totally disconnected sequential space Z which is the union of countably many compact metric subsets of Z and there exists a perfect map $f: Z \rightarrow Y$.

Proof. If $\left(Y \mathcal{T}_{1}\right)$ is a regular sequential space which is the union of countably many compact metric subsets of Y. Then $\left(Y \mathcal{T}_{1}\right)$
is a paracompact σ-space. Then Y has a G_{δ}-diagonal by [3, Theorem 4.6]. Then $\left(Y \mathcal{T}_{1}\right)$ is submetrizable by [3, Corollary 2.9]. There exists a topology \mathcal{T}_{2} on Y such that $\mathcal{T}_{2} \subset \mathcal{T}_{1}$ and $\left(Y \mathcal{T}_{2}\right)$ is metrizable. $\left(Y \mathcal{T}_{1}\right)$ is the union of countably many compact subsets of $\left(Y \mathcal{T}_{1}\right)$, then $\left(Y \mathcal{T}_{2}\right)$ is the union of countably many compact subsets of $\left(Y \mathcal{T}_{2}\right)$ by Lemma 7. Then $\left(X \mathcal{T}_{2}\right)$ has a countable base \mathcal{B}. By [1, Chapter 6,252$],\left(X \mathcal{T}_{2}\right)$ is an image of a subspace $\left(Z \mathcal{O}_{2}\right)$ of the Baire space $B\left(\aleph_{0}\right)$ under an irreducible perfect map f. The Baire space $B\left(\aleph_{0}\right)$ is totally disconnected, so is the subspace $\left(Z \mathcal{O}_{2}\right)$. Let $\mathcal{K}=\left\{f^{-1}[K] ; K\right.$ is a compact subset of $\left.\left(Y \mathcal{T}_{1}\right)\right\}$. Then \mathcal{K} is a compact metrizable subset collection of $\left(Z \mathcal{O}_{2}\right)$ by Lemma 7 and \mathcal{K} is a cover of Z. Let
$\mathcal{O}_{1}=\left\{A \subset Z ; A \cap f^{-1}[K] \in \mathcal{O}_{2} \mid f^{-1}[K]\right.$ for each $\left.f^{-1}[K] \in \mathcal{K}\right\}$.
We can prove these results:
A) $\mathcal{O}_{2} \subset \mathcal{O}_{1}$ and \mathcal{O}_{1} is a topology of Z.

In fact:

1) $O \in \mathcal{O}_{2}$ then $O \cap f^{-1}[K] \in \mathcal{O}_{2} \mid f^{-1}[K]$ for each $f^{-1}[K] \in$ \mathcal{K}. This implies $O \in \mathcal{O}_{1}$. Then $X=\cup \mathcal{O}_{2} \subset \cup \mathcal{O}_{1} \subset X$.
2) If $A, B \in \mathcal{O}_{1}$, for each $f^{-1}[K], A \cap f^{-1}[K] \in \mathcal{O}_{2} \mid f^{-1}[K]$, then there exists $O_{1} \in \mathcal{O}_{2}$ with $A \cap f^{-1}[K]=O_{1} \cap f^{-1}[K]$. Also $B \cap f^{-1}[K]=O_{2} \cap f^{-1}[K]$. Then $(A \cap B) \cap f^{-1}[K]=$ $\left(O_{1} \cap O_{2}\right) \cap f^{-1}[K] \in \mathcal{O}_{2} \mid f^{-1}[K]$, which implies $A \cap B \in \mathcal{O}_{1}$.
3) If $A_{\alpha} \in \mathcal{O}_{1}, \alpha \in \Lambda$, for each $f^{-1}[K] \in \mathcal{K}, A_{\alpha} \cap f^{-1}[K] \in$ $\mathcal{O}_{2} \mid f^{-1}[K]$ then there exists $O_{\alpha} \in \mathcal{O}_{2}$ with $A_{\alpha} \cap f^{-1}[K]=$ $O_{\alpha} \cap f^{-1}[K]$. Then $\left(\cup_{\alpha \in \Lambda} A_{\alpha}\right) \cap f^{-1}[K]=\left(\cup_{\alpha \in \Lambda} O_{\alpha}\right) \cap f^{-1}[K] \in$ $\mathcal{O}_{2} \mid f^{-1}[K]$. This implies $\cup_{\alpha \in \Lambda} A_{\alpha} \in \mathcal{Q}_{1}$.
B) $\mathcal{O}_{1}\left|f^{-1}[K]=\mathcal{O}_{2}\right| f^{-1}[K]$ and $f^{-1}[K]$ is a \mathcal{O}_{1}-compact metric subset of Z for each $f^{-1}[K] \in \mathcal{K}$.
In fact:
4) $\mathcal{O}_{2} \subset \mathcal{O}_{1}$ then $\mathcal{O}_{2}\left|f^{-1}[K] \subset \mathcal{O}_{1}\right| f^{-1}[K]$. On the other hand $A \in \mathcal{O}_{1} \mid f^{-1}[K]$ then there exists $B \in \mathcal{O}_{1}$ with $A=$ $B \cap f^{-1}[K] . B \in \mathcal{O}_{1}$ then $B \cap f^{-1}[K] \in \mathcal{O}_{2} \mid f^{-1}[K]$. Then there exists $O_{2} \in \mathcal{O}_{2}$ with $B \cap f^{-1}[K]=O_{2} \cap f^{-1}[K] \in \mathcal{O}_{2} \mid f^{-1}[K]$. This implies $B \cap f^{-1}[K]=A \in \mathcal{O}_{2} \mid f^{-1}[K]$.
5) $\left(Z \mathcal{O}_{2}\right)$ is a metric space. If d is the metric, then ($f^{-1}[K] d$) is a compact metric subspace of $\left(Z \mathcal{O}_{1}\right)$ by $\mathcal{O}_{1} \mid f^{-1}[K]$ $=\mathcal{O}_{2} \mid f^{-1}[K]$.
C) $(Z \mathcal{O})$ is sequential.

In fact: \mathcal{K} is a compact metric subset collection of $\left(Z \mathcal{O}_{1}\right)$ by $B)$. On the other hand $\mathcal{O}_{1}=\left\{A \subset Z ;\right.$ for each $f^{-1}[K] \in$ $\mathcal{K}, A \cap f^{-1}[K] \in \mathcal{O}_{2}\left|f^{-1}[K]=\mathcal{O}_{1}\right| f^{-1}[K]$ by B). This implies $\left(Z \mathcal{O}_{1}\right)$ is sequential.
D) $\left(Z \mathcal{O}_{2}\right)$ is totally disconnected. $\mathcal{O}_{2} \subset \mathcal{O}_{1}$ then $\left(Z \mathcal{O}_{1}\right)$ is totally disconnected.

Above we have proven that $\left(Z \mathcal{O}_{1}\right)$ is a totally disconnected sequential space which is the union of countably many compact metric subsets of $\left(Z \mathcal{O}_{1}\right.$. Now we prove that $f:\left(Z \mathcal{O}_{1}\right) \rightarrow\left(Y \mathcal{T}_{1}\right)$ is a continuous perfect map. In fact: K is a compact metric subset of $\left(Y \tau_{1}\right)$ for each $f^{-1}[K] \in \mathcal{K}$. Let $O \subset K$, and let O be open in K. Then $O \in \mathcal{T}_{2} \mid K$ by Lemma $7 \mathcal{T}_{1}\left|K=\mathcal{T}_{2}\right| K$. We have known that $f:\left(Z \mathcal{O}_{2}\right) \rightarrow\left(Y \mathcal{T}_{2}\right)$ is a continuous perfect map. Then $f \mid f^{-1}[K]: f^{-1}[K] \rightarrow K$ is a continuous map. $\left(f \mid f^{-1}[K]\right)^{-1}(0) \in \mathcal{O}_{2}\left|f^{-1}[K]=\mathcal{O}_{1}\right| f^{-1}[K]$ then $\left(f \mid f^{-1}[K]\right)^{-1}(O)$ is an $\mathcal{O}_{1} \mid f^{-1}[K]$-open subset of $f^{-1}[K]$. If $O \in \mathcal{T}_{1}$, then for each $f^{-1}[K], f^{-1}[K] \cap f^{-1}[O]=f^{-1}[K \cap O]=$ $\left(f \mid f^{-1}[K]\right)^{-1}[O \cap K]$ is $\mathcal{O}_{1} \mid f^{-1}[K]$-open in $f^{-1}[K] .\left(Z \mathcal{O}_{1}\right)$ is determined by \mathcal{K} then $f^{-1}[O] \in \mathcal{O}_{1}$. This implies that f : $\left(Z \mathcal{O}_{1}\right) \rightarrow\left(Y \tau_{1}\right)$ is a continuous map. On the other hand $f^{-1}(x) \in \mathcal{K}$ then $f^{-1}(x)$ is \mathcal{O}_{1}-compact. If we take a closed subset B of $\left(Z \mathcal{O}_{1}\right)$ then $f^{-1}[K] \cap B$ is \mathcal{O}_{1}-compact. f is \mathcal{O}_{1-} continuous so $f\left[f^{-1}[K] \cap B\right]=K \cap f[B]$ is a \mathcal{T}_{1}-compact subset of Y. Then $K \cap f[B]$ is \mathcal{T}_{1}-closed. ($Y \mathcal{T}_{1}$) is sequential hence $f[B]$ is \mathcal{T}_{1}-closed. This implies that $f:\left(Z \mathcal{O}_{1}\right) \rightarrow\left(Y \mathcal{T}_{1}\right)$ is a continuous perfect map.

Lemma 9. Let Y be a quotient s-image of a metric space, and let $S_{\omega} \times Y$ be a sequential space. Suppose that there exists $\mathcal{P}^{\prime}=\left\{P_{n} \in \mathcal{P} ; n<\omega\right\}$ and $\left\{S_{n} ; n<\omega\right\}$ such that for each convergent sequence $S \cup\{x\}$ of Y and each $P_{n} \in \mathcal{P}^{\prime}$, if $\mid(S \cup$ $\{x\}) \cap P_{n} \mid<\aleph_{0}$ then $(S \cup\{x\}) \backslash\left(\cup\left\{S_{n}: n<\omega\right\}\right)$ is finite. Then Y is a k_{ω}-space.

Proof. Let $\mathcal{P}^{\prime \prime}=\left\{P \in \mathcal{P} ; P \cap\left(\cup_{n<\omega} S_{n}\right) \neq \emptyset\right\}$ then $\left|\mathcal{P}^{\prime \prime}\right| \leq \aleph_{0}$ since \mathcal{P} point-countable and $\left|\cup_{n<\omega} S_{n}\right| \leq \aleph_{0}$. Suppose that B is not closed then there exists a convergent sequence $S \cup\{x\}$ such that $(S \cup\{x\}) \cap B$ is not closed in $S \cup\{x\}$. We may assume $S \subset B$ without loss of generality. If there exists a $P_{n} \in$ \mathcal{P}^{\prime} with $\left|P_{n} \cap S\right|=\aleph_{0}$, then $\bar{P}_{n} \cap B$ is not closed in \bar{P}_{n}. If $\left|P_{n} \cap S\right|<\aleph_{0}$ for each $P_{n} \in \mathcal{P}^{\prime}$, then $S \cup\{x\} \backslash\left(\cup\left\{S_{n}: n<\omega\right\}\right)$ is finite. S is not closed then there exists a P such that $P \cap S$ is not closed in P. This $P \in \mathcal{P}^{\prime \prime}$ and $B \cap \bar{P}$ are not closed in \bar{P}. We prove that Y is determined by $\left\{\bar{P} ; P \in \mathcal{P}^{\prime}\right.$ or $\left.P \in \mathcal{P}^{\prime \prime}\right\}$. Then Y is a k_{ω}-space by Lemma 4.

Lemma 10. Let $f: Z \rightarrow Y$ be a perfect map. If Z is sequential then $S_{\omega} \times Z$ is sequential if and only if $S_{\omega} \times Y$ is sequential.
Proof. Let $I_{s_{\omega}}: S_{\omega} \rightarrow S_{\omega}$ be an identity map. Then $I_{S_{\omega}} \times f:$ $S_{\omega} \times Z \rightarrow S_{\omega} \times Y$ is a perfect map. If $S_{\omega} \times Z$ is sequential then $S_{\omega} \times Y$ is sequential. On the other hand: If $S_{\omega} \times Y$ is sequential then $S_{\omega} \times Z$ is a k-space. Since each compact subset of $S_{\omega} \times Z$ is a metric subset then $S_{\omega} \times Z$ is sequential.

Remark. In order to show the following Lemma 11, we shall use the assumption MC (there exists measurable cardinal) and a technique of [2]. The author does not know whether the assumption MC of Lemma 11 can be omitted. We say that C is a Cantor set if C is homeomorphic to $\{0,1\}^{\omega}$.

Lemma 11. ($\mathrm{CH}+\mathrm{MC}$). Let Y be a k-space with a pointcountable closed k-network $\left\{P_{\alpha} ; \alpha \in \Lambda\right\}$. If $S_{\omega} \times Y$ is a k-space, then Y is a locally k_{ω}-space.

Proof. We may assume Y is a quotient s-image of a metric space by [4, Theorem 6.1]. Firstly; each point y of Y has a neighborhood U which is the union of countably many compact metric subsets of Y by Lemma 5. Let U be a closed neighborhood. $S_{\omega} \times Y$ is a k-space then $S_{\omega} \times Y$ is sequential. Hence $S_{\omega} \times U$ is a sequential subspace. Without loss of generality, let $Y=U=\cup_{n<\omega} P_{n}$. We prove that Y is a k_{ω}-space.

Suppose that Y is not a k_{ω}-space.

Let $S_{0}=\emptyset, \mathcal{P}_{0}{ }^{\prime}=\left\{P_{n} ; \cup_{n<\omega} P_{n}=Y\right\}$, then there exists a sequence S_{1} converging to x_{1} and $\left|P_{n} \cap \bar{S}_{1}\right|<\aleph_{0}$ for each $P_{n} \in \mathcal{P}_{0}^{\prime}$. Here $\bar{S}_{1}=S_{1} \cup\left\{x_{1}\right\}$. Let $\mathcal{P}_{1}^{\prime}=\left\{P \in \mathcal{P} ; P \cap \bar{S}_{1} \neq\right.$ $\emptyset\} .\left|\mathcal{P}_{1}^{\prime}\right| \leq \aleph_{0}$ since \mathcal{P} point-countable. Let $\alpha<\omega_{1}$. Suppose that for each $\beta<\alpha$ we have taken S_{β} such that

1) S_{β} converges to $x_{\beta}, x_{\beta} \notin S_{\beta}$ and $\bar{S}_{\beta}=S_{\beta} \cup\left\{x_{\beta}\right\}$.
2) $\left|P \cap S_{\beta}\right|<\aleph_{0}$ for each $P \in \cup_{\delta<\beta} \mathcal{P}_{\delta}$.
3) $\mathcal{P}_{\beta}{ }^{\prime}=\left\{P \in \mathcal{P} ; P \cap \bar{S}_{\beta} \neq \emptyset\right\}$. Because of $\left|\cup_{\beta<\alpha} \mathcal{P}_{\beta}{ }^{\prime}\right| \leq$ $\aleph_{0}\left|\left\{S_{\beta} ; \beta<\alpha\right\}\right| \leq \aleph_{0}$ and Lemma 9 there exists sequence S_{α} converging to x_{α} such that 1) $\left|P \cap \bar{S}_{\alpha}\right|<\aleph_{0}$ for each $P \in$ $\left.\cup_{\beta<\alpha} \mathcal{P}_{\beta}{ }^{\prime} \cdot 2\right) S_{\alpha} \cap\left(\cup_{\beta<\alpha} S_{\beta}\right)=\emptyset$. Let $\mathcal{P}_{\alpha}^{\prime}=\left\{P \in \mathcal{P} ; P \cap \bar{S}_{\alpha} \neq \emptyset\right\}$ then $\left|\mathcal{P}_{\alpha}{ }^{\prime}\right| \leq \aleph_{0}$. Then, by induction, there exists a collection $\varphi^{\prime}=\left\{S_{\alpha} ; \alpha<\omega_{1}\right\}$ such that:
$\left(C^{*}\right):$
4) S_{α} converges to $x_{\alpha}, x_{\alpha} \notin S_{\alpha}$ and $\bar{S}_{\alpha}=S_{\alpha} \cup\left\{x_{\alpha}\right\}$ for each $S_{\alpha} \in \varphi^{\prime}$.
5) $\left|S_{\alpha} \cap P\right|<\aleph_{0}$ for each $P \in \cup_{\beta<\alpha} \mathcal{P}_{\beta}{ }^{\prime}$.
6) If $\beta<\alpha$ then $S_{\beta} \cap S_{\alpha}=\emptyset$.
7) Let $E=\left\{x_{\alpha} ; S_{\alpha}\right.$ converges to x_{α} and $\left.\alpha<\omega_{1}\right\}$. Then $|E|=\aleph_{1}$, so we may assume $x_{\beta} \neq x_{\alpha}$ for $\beta<\alpha$.

In fact: If $\mid E\}=\aleph_{0}$ then there exists an $x_{\alpha_{0}}$ with $\mid\left\{\alpha_{\beta}\right.$: $\left.x_{\alpha_{\beta}}=x_{\alpha_{0}}, x_{\alpha_{\beta}} \in E\right\} \mid=\aleph_{1} . S_{\alpha_{0}}$ is not closed, so there exists a $P_{\alpha_{0}} \in \mathcal{P}$ such that $P_{\alpha_{0}} \cap S_{\alpha_{0}}$ is not closed in $P_{\alpha_{0}}$. Then $\left|P_{\alpha_{0}} \cap S_{\alpha_{0}}\right|=\aleph_{0}$ and the $x_{\alpha_{0}} \in P_{\alpha_{0}} \in \mathcal{P}_{\alpha_{0}}^{\prime}$. Let $\beta<\omega_{1}$. For each $\delta<\beta, P_{\alpha_{\delta}} \cap S_{\alpha_{\delta}}$ is not closed in $P_{\alpha_{\delta}},\left|P_{\alpha_{\delta}} \cap S_{\alpha_{\delta}}\right|=\aleph_{0}$ and $x_{\alpha_{0}}=x_{\alpha_{\delta}} \in P_{\alpha_{\delta}} \in \mathcal{P}_{\alpha_{\delta}}^{\prime}$. Since $S_{\alpha_{\beta}}$ is not closed, then there exists a $P \in \mathcal{P}$ such that $P \cap S_{\alpha_{\beta}}$ is not closed in P. Then $\left|P \cap S_{\alpha_{\beta}}\right|=\aleph_{0}$ and $x_{\alpha_{0}}=x_{\alpha_{\beta}} \in P_{\alpha_{\beta}} \in \mathcal{P}_{\alpha_{\beta}}^{\prime}$. Since for each $\delta<$ $\beta, \mid P_{\alpha_{\delta}} \cap S_{\alpha_{\delta}}=\aleph_{0}$ hence $P_{\alpha_{\delta}} \in \mathcal{P}_{\alpha_{\delta}}^{\prime}$ and $\mathcal{P}_{\alpha_{\delta}}^{\prime} \subset \cup_{\delta^{\prime}<\alpha_{\beta}} \mathcal{P}_{\delta^{\prime}}^{\prime}$. Then $\left|P_{\alpha_{\delta}} \cap S_{\alpha_{\beta}}\right|<\aleph_{0}$ and $P_{\alpha_{\beta}} \notin\left\{P_{\alpha_{\delta}} ; \delta<\beta\right\}$ by $\left|P_{\alpha_{\beta}} \cap S_{\alpha_{\beta}}\right|=\aleph_{0}$. By induction there exists a collection $\left\{P_{\alpha_{\beta}} ; \beta<\omega_{1}\right\}$ such that $\left|\left\{P_{\alpha_{\beta}} ; \beta<\omega_{1}\right\}\right|=\aleph_{1}$ and $x_{\alpha_{0}} \in \cap_{\beta<\omega_{1}} P_{\alpha_{\beta}}$. This contradicts the point-countable of \mathcal{P}. Thus we any assume $x_{\beta} \neq x_{\alpha}$ for $\beta<\alpha$. The following shows that we may assume E contains a Cantor set C.

As $Y=\cup_{n<\omega} P_{n}$, by Lemma 8 , there exists a sequential space Z which is the union of countable many compact metric subsets of Z and there exists a perfect map $f: Z \rightarrow$ Y such that $f^{-1}[Y]=Z$ is determined by $\left\{f^{-1}[P] ; \quad P \in\right.$ $\mathcal{P}\}$. $\left\{f^{-1}[P] ; P \in \mathcal{P}\right\}$ is a point-countable cover of Z and $f^{-1}[\bar{P}]=\overline{f^{-1}[P]}$ is compact. Y is not a k_{ω}-spcae, so Z is not a k_{ω}-space. Analogously we can prove that there exists a collection $\left\{S_{\alpha} ; \alpha<\omega_{1}\right\}$ with property $\left(C^{*}\right) . f^{-1}\left(\bar{P}_{0}\right)$ is a totally disconnected compact metrizable subset of Z and $\left|f^{-1}[\bar{P}]_{0} \cap E\right|=$ \aleph_{1} so there exists a Cantor set C with $\left|C \cap E \cap f^{-1}\left[\bar{P}_{0}\right]\right|=\aleph_{1}$. MC implies that every uncountable subset of Cantor set contains a Cantor set. Then E contains a Cantor set C. By Lemma $10, S_{\omega} \times Y$ is sequential if and only if $S_{\omega} \times Z$ is sequential. Then we amy assume E contains a Cantor set $C . Y$ is a submetric space, then there exists an $\left(Y \mathcal{T}_{2}\right)$ which is a metric space with $\mathcal{T}_{2} \subset \mathcal{T}_{1}$. Here $\left(Y \mathcal{T}_{1}\right)$ is a sequential space. Let d be a metric for $\left(Y \mathcal{T}_{2}\right)$. Then d-open ball of $\left(Y \mathcal{T}_{2}\right)$ is open in $\left(Y \mathcal{T}_{1}\right)$ and every \mathcal{T}_{1}-compact set is a \mathcal{T}_{2}-compact set by Lemma 7 .
A) Let $C=\left\{x_{\alpha} ; \alpha<\omega_{1}\right\}$ be a Cantor subset of E. Let $\varphi=\left\{S_{\alpha} \in \varphi^{\prime} ; S_{\alpha}\right.$ converges to x_{α} and $\left.x_{\alpha} \in C\right\}$.

Since C is a compact metric subset and \mathcal{P} is a point-countable collection, there are only countably many P with $O_{C}(P \cap C) \neq$ Ø. Here $O_{C}(P \cap C)$ denotes the interior of $P \cap C$ in the subspace C. Let $\mathcal{P}_{0}^{\prime}=\left\{P \in \mathcal{P} ; O_{C}(P \cap C) \neq \emptyset\right\}=\left\{P_{n} ; n<\omega\right\}$. Then for each $P \in \mathcal{P} \backslash \mathcal{P}_{0}^{\prime}, O_{C}(P \cap C)=\emptyset$ that is, $P \cap C$ is nowhere dense in C since \mathcal{P} is a collection of closed subsets of Y. Now pick a $y_{0} \in C$. Let $\mathcal{P}_{0}=\left\{P \in \mathcal{P} \backslash \mathcal{P}_{0}^{\prime} ; y_{0} \in\right.$ $P\}=\left\{P_{1 n} ; n<\omega\right\}$. If y_{β} and \mathcal{P}_{β} have been defined for all $\beta<\alpha$, where $\alpha<\omega_{1}$, pick a $y_{\alpha} \in C \backslash\left[\cup\left(\cup_{\beta<\alpha} \mathcal{P}_{\beta}\right)\right]$. Because the Cantor set C can not be denoted as the union of countably many nowhere dense subsets of C. Let $\mathcal{P}_{\alpha}=\{P \in \mathcal{P} \backslash$ $\left.\mathcal{P}_{0}^{\prime} ; y_{\alpha} \in P\right\}=\left\{P_{\alpha n} ; n<\omega\right\}$. Then, by induction, there exists a subset $A=\left\{y_{\alpha} ; \alpha<\omega_{1}\right\}$ of C with $|A|=\aleph_{1}$. Then there exists a Cantor set C_{0} of A with $\left|P \cap C_{0}\right| \leq 1$ for each $P \in \mathcal{P}$ $\backslash \mathcal{P}_{0}^{\prime}$. If $P_{n} \in \mathcal{P}_{0}^{\prime}$, then at most there exists one $S_{\alpha_{n}} \in \varphi$ with $\left|S_{\alpha_{n}} \cap P_{n}\right|=\aleph_{0}$ by 2$)$ of (C^{*}). Let $\alpha_{0}=\sup \left\{\alpha_{n} ;\left|S_{\alpha_{n}} \cap P_{n}\right|=\aleph_{0}\right.$ and $\left.P_{n} \in \mathcal{P}_{0}^{\prime}\right\}$. If $\alpha>\alpha_{0}$ then $\left|S_{\alpha} \cap P_{n}\right|<\aleph_{0}$. Thus we may assume without loss of generality that

1) $|P \cap C| \leq 1$ for each $P \in \mathcal{P} \backslash \mathcal{P}_{\mathbf{0}}^{\prime}$.
2) $\left|P_{n} \cap S_{\alpha}\right|<\aleph_{0}$ for each $S_{\alpha} \in \varphi$ and each $P_{n} \in \mathcal{P}_{0}^{\prime}$.
B) Let $C(0)$ and $C(1)$ be two Cantor subsets of C with $C(0) \cap C(1)=\emptyset$. Let $d(C(0), C(1))=r_{1}>2 / n_{1}$, and let $V\left(\delta_{1}\right)$ be a $1 / n_{1}$ open ball of $C\left(\delta_{1}\right)$ in $\left(Y \mathcal{T}_{2}\right)$. Let $\varphi\left(\delta_{1}\right)=$ $\left\{\left(S_{\alpha} \cap V\left(\delta_{1}\right)\right) \backslash\left(P_{1} \cup C_{0}\right) ; S_{\alpha} \in \varphi, S_{\alpha}\right.$ converges to x_{α} and $\left.x_{\alpha} \in C\left(\delta_{1}\right)\right\}$. Here $P_{1} \in \mathcal{P}_{0}, \delta_{1}=0$, 1. If $x_{\alpha} \in C\left(\delta_{1}\right)$, then $\left(S_{\alpha} \cap\right.$ $\left.V\left(\delta_{1}\right)\right) \backslash\left(P_{1} \cup C_{0}\right)$ is a sequence which converges to x_{α}. Then $\left|\varphi\left(\delta_{1}\right)\right|=\aleph_{1}$ and $\cup \varphi\left(\delta_{1}\right) \subset V\left(\delta_{1}\right) \backslash\left(P_{1} \cup C_{0}\right) . V\left(\delta_{1}\right) \backslash\left(P_{1} \cup C_{0}\right)$ is an open subset of Y which is the union of countably many compact metric subsets of Y. Then there exists a compact metric subset $K\left(\delta_{1}\right)$ which is a subset of $V\left(\delta_{1}\right) \backslash\left(P_{1} \cup C_{0}\right)$ such that $K\left(\delta_{1}\right)$ meets \aleph_{1}-many sequences in $\varphi\left(\delta_{1}\right)$. Let

$$
\begin{gathered}
D\left(\delta_{1}\right)=\left\{x_{\alpha} \in C\left(\delta_{1}\right) ; S_{\alpha} \in \varphi\left(\delta_{1}\right), \quad S_{\alpha} \cap K\left(\delta_{1}\right) \neq \emptyset\right. \\
\text { and } \left.S_{\alpha} \text { converges to } x_{\alpha}\right\}
\end{gathered}
$$

then $\left|D\left(\delta_{1}\right)\right|=\aleph_{\mathbf{1}}$.
If it has been defined that:
a) $\left\{C\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right) ; \delta_{i}=0,1 . i=1,2, \ldots, n\right\}$ is a collection of mutually disjoint Cantor sets.
b) $\left\{V\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right) ; \delta_{i}=0,1 . i=1,2, \ldots, n\right\}$ is a collection of mutually disjoint open balls such that

$$
\begin{array}{r}
V\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right) \cap\left[\cup _ { j \leq n - 1 } \left(\cup \left\{K\left(\delta_{1} \delta_{2} \ldots \delta_{j}\right) ; \delta_{i}=0,1\right.\right.\right. \\
i=1,2, \ldots, j\})]=\emptyset
\end{array}
$$

Here $V\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right)=\left\{y ; d\left(y, C\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right)\right)<1 / n_{n}\right\}$.
c) $\left\{\varphi\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right) ; \delta_{i}=0,1, . i=1,2, \ldots, n\right\}$ such that $\varphi\left(\delta_{1} \ldots \delta_{n}\right)=\left\{\left(S_{\alpha} \cap V\left(\delta_{1} \ldots \delta_{n}\right)\right)-\left(P_{1} \cup \ldots \cup P_{n} \cup C_{0}\right) ; S_{\alpha} \in\right.$ $\varphi\left(\delta_{1} \ldots \delta_{n-1}\right), S_{\alpha}$ converges to x_{α} and $\left.x_{\alpha} \in C\left(\delta_{1} \ldots \delta_{n}\right)\right\}$ and $\left|\varphi\left(\delta_{1} \ldots \delta_{n}\right)\right|=\aleph_{1}$, here $P_{i} \in \mathcal{P}_{0}^{\prime}=\left\{P_{n} \in \mathcal{P} ; O_{C}\left(P_{n} \cap C\right) \neq \emptyset\right\}$.
d) $\left\{K\left(\delta_{1} \ldots \delta_{n}\right) ; \delta_{i}=0,1 . i=1,2, \ldots, n\right\}$ is a collection of compact subsets such that $K\left(\delta_{1} \ldots \delta_{n}\right)$ is a subset of open subset $V\left(\delta_{1} \ldots \delta_{n}\right) \backslash\left(P_{1} \cup \ldots \cup P_{n} \cup C_{0}\right)$ and $\mid\left\{S_{\alpha} \in \varphi\left(\delta_{1} \ldots \delta_{n}\right) ; S_{\alpha} \cap\right.$ $\left.K\left(\delta_{1} \ldots \delta_{n}\right) \neq \emptyset\right\} \mid=\aleph_{1}$.
e) $\left\{D\left(\delta_{1} \ldots \delta_{n}\right) ; \delta_{i}=0,1 . i=1,2, \ldots, n\right\}$, where $D\left(\delta_{1} \ldots \delta_{n}\right)$ $=\left\{x_{\alpha} \in C\left(\delta_{1} \ldots \delta_{n}\right) ; S_{\alpha} \in \varphi\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right), S_{\alpha}\right.$ converges to x_{α} and $\left.S_{\alpha} \cap K\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right) \neq \emptyset\right\} \subset C\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right)$.

Take $C\left(\delta_{1} \ldots \delta_{n} 0\right)$ and $C\left(\delta_{1} \ldots \delta_{n} 1\right)$ which are two disjoint Cantor subsets of $D\left(\delta_{1} \ldots \delta_{n}\right)$. By e), $K\left(\delta_{1} \ldots \delta_{n}\right)$ and C_{0} are \mathcal{T}_{1}-compact, thus $K\left(\delta_{1} \ldots \delta_{n}\right)$ and C_{0} are \mathcal{I}_{2}-compact. Then $d\left(C, \cup_{j \leq n}\left[\cup\left\{K\left(\delta_{1} \ldots \delta_{j}\right) ; \delta_{i}=0,1 . i=1,2, \ldots, j\right\}\right]\right)=r_{n+1}>$ 0 by b) and d) of B). Choose n_{n+1} with $\left(\frac{2}{n_{n+1}}\right)<r_{n+1}$ such that $V\left(\delta_{1} \ldots \delta_{n+1}\right)=\left\{y ; d\left(y, C\left(\delta_{1} \ldots \delta_{n+1}\right)\right)<\frac{1}{n_{n+1}}\right\} \subset$ $\overline{V\left(\delta_{1} \ldots \delta_{n+1}\right)} \subset V\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right)$ and $V\left(\delta_{1} \ldots \delta_{n} 0\right) \cap V\left(\delta_{1} \ldots \delta_{n} 1\right)=$ \emptyset, then $\left\{V\left(\delta_{1} \ldots \delta_{n+1}\right) ; \delta_{i}=0,1 . i=1,2, \ldots, n+1\right\}$ is a collection of mutually disjoint open balls. Let $\varphi\left(\delta_{1} \ldots \delta_{n+1}\right)=\left\{\left(S_{\alpha} \cap\right.\right.$ $\left.V\left(\delta_{1} \ldots \delta_{n+1}\right)\right)-\left(P_{1} \cup \ldots \cup P_{n+1} \cup C_{0}\right) ; S_{\alpha} \in \varphi\left(\delta_{1} \ldots \delta_{n}\right), S_{\alpha}$ converges to x_{α} and $\left.x_{\alpha} \in C\left(\delta_{1} \ldots \delta_{n}\right)\right\}$, where $P_{n+1} \in \mathcal{P}_{0}$. Then $\left(S_{\alpha} \cap V\left(\delta_{1} \ldots \delta_{n+1}\right)\right) \backslash\left(P_{1} \cup \ldots \cup P_{n+1} \cup C_{0}\right)$ is a sequence which converges to x_{α} for each $x_{\alpha} \in C\left(\delta_{1} \delta_{2} \ldots \delta_{n+1}\right)$ and $\left|\varphi\left(\delta_{1} \ldots \delta_{n+1}\right)\right|=\aleph_{1} . V\left(\delta_{1} \ldots \delta_{n+1}\right) \backslash\left(P_{1} \cup \ldots \cup P_{n+1} \cup\right.$ C_{0}) is an open subset of Y which is the union of countably many compact metric subsets of Y, so there exists a compact subset $K\left(\delta_{1} \delta_{2} \ldots \delta_{n+1}\right) \subset V\left(\delta_{1} \delta_{2} \ldots \delta_{n+1}\right) \backslash\left(P_{1} \cup \ldots \cup\right.$ $\left.P_{n+1} \cup C_{0}\right)$ such that $K\left(\delta_{1} \ldots \delta_{n+1}\right)$ meets \aleph_{1} many sequences in $\varphi\left(\delta_{1} \delta_{2} \ldots \delta_{n+1}\right)$. If $D\left(\delta_{1} \ldots \delta_{n+1}\right)=\left\{x_{\alpha} \in C\left(\delta_{1} \ldots \delta_{n+1}\right) ; S_{\alpha} \in\right.$ $\varphi\left(\delta_{1} \ldots \delta_{n+1}\right), S_{\alpha} \cap K\left(\delta_{1} \ldots \delta_{n+1}\right) \neq \emptyset$ and S_{α} converges to $\left.x_{\alpha}\right\}$, then $D\left(\delta_{1} \ldots \delta_{n+1}\right) \subset C\left(\delta_{1} \ldots \delta_{n+1}\right) \subset D\left(\delta_{1} \ldots \delta_{n}\right)$ and $\left|D\left(\delta_{1} \ldots \delta_{n+1}\right)\right|=\aleph_{1}$. Then, by induction, there exist:

1) $\mathcal{K}=\left\{K\left(\delta_{1} \ldots \delta_{n}\right) ; \quad \delta_{i}=0,1 . i=1,2, \ldots, n . \quad n>0.\right\}$ with $\left[\cup\left\{K\left(\delta_{1} \ldots \delta_{j}\right) ; \delta_{i}=0,1 . i=1,2, \ldots, j . j \geq n\right\}\right] \cap P_{n}=\emptyset$ for each $P_{n} \in \mathcal{P}_{0}$.
2) $\mathcal{C}=\left\{C\left(\delta_{1} \ldots \delta_{n}\right) ; \quad \delta_{i}=0,1 . \quad i=1,2, \ldots, n . \quad n>\right.$ $0\}$ and $\left\{V\left(\delta_{1} \ldots \delta_{n}\right) ; \delta_{i}=0,1 . i=1,2, \ldots, n . n>0\right\}$ such that $\cap_{n>0}\left(\cup\left\{C\left(\delta_{1} \ldots \delta_{n}\right) ; \delta_{i}=0,1 . i=1,2, \ldots, n\right\}\right)=$ $\cap_{n>0}\left(\cup\left\{V\left(\delta_{1} \ldots \delta_{n}\right) ; \delta_{i}=0,1 . i=1,2, \ldots, n.\right\}\right)=C^{*}$ and C^{*} is a Cantor set. If $C^{*}=\left\{x\left(\delta_{1} \delta_{2} \ldots\right) ; \delta_{i}=0,1 . i=\right.$ $1,2, \ldots, n . n>0\}=\left\{x_{\alpha} ; \alpha<\omega_{1}\right\}$, then $x\left(\delta_{1} \delta_{2} \ldots \delta_{n} \ldots\right)=$ $C\left(\delta_{1}\right) \cap C\left(\delta_{1} \delta_{2}\right) \cap \ldots=V\left(\delta_{1}\right) \cap V\left(\delta_{1} \delta_{2}\right) \cap \ldots$ and $\left|C^{*} \cap P\right| \leq 1$ for each $P \in \mathcal{P} \backslash \mathcal{P}_{0}$.
3) If $\varphi_{0}=\left\{S_{\alpha} \in \varphi ; S_{\alpha}\right.$ converges to x_{α} and $\left.x_{\alpha} \in C^{*}\right\}$,
then $\left|\varphi_{0}\right|=\aleph_{1}$. If $S_{\alpha} \in \varphi_{0}, S_{\alpha}$ converges to x_{α} and $x_{\alpha}=$ $x\left(\delta_{1} \delta_{2} \ldots\right) \in C^{*}$, then $S_{\alpha} \cap K\left(\delta_{1} \ldots \delta_{n}\right) \neq \emptyset$ for $n>0$.
C) We use the results of B) to construct a collection $\left\{C_{n m} ; n\right.$, $m<\omega\}$ which does not satisfy condition $\left(C_{3}\right)$.
i) Let $A_{1}=\{x(00 \ldots)\}$, and let $\mathcal{C}_{1}=\left\{P \in \mathcal{P} \backslash \mathcal{P}_{0} ; P \cap \bar{A}_{1} \neq\right.$ $\emptyset\}=\left\{P_{1 n} ; n<\omega\right\}$. For each $n<\omega$; let $\mathcal{K}\left(0 \ldots 0{ }_{1}^{n}\right)=$ $\left\{K\left(0 \ldots 0{ }_{1}^{n} \delta_{1} \delta_{2} \ldots \delta_{m}\right) ; K\left(0 \ldots 0{ }_{1}^{n} \delta_{1} \ldots \delta_{m}\right) \subset V(0 \ldots 0 \stackrel{n}{1})\right\}$ thus $\left(P_{11} \cup \ldots \cup P_{1 n}\right)$ meets only finitely many sets in $\mathcal{K}\left(0 \ldots 0{ }_{1}^{n}\right)$.

In fact $P_{11} \cup \ldots \cup P_{1 n}$ meets infinitely many sets in $\mathcal{K}(0 \ldots 01)$, so $P_{11} \cup \ldots \cup P_{1 n}$ meets infinitely many sets in $\mathcal{K}\left(0 \ldots 0{ }_{1}^{n} 0\right)$ or in $\mathcal{K}\left(0 \ldots 01_{1}^{n} 1\right)$ by $\mathcal{K}\left(0 \ldots 01_{1}^{n}\right)=\{K(0 \ldots 01)\} \cup \mathcal{K}\left(0 \ldots 01_{1}^{n}\right) \cup$ $\mathcal{K}(0 \ldots 0 \stackrel{n}{1} 1)$. Then we may assume $P_{11} \cup \ldots \cup P_{1 n}$ meets infinitely many sets in $\mathcal{K}\left(0 \ldots 0{ }_{1}^{n} \delta_{1}\right)$. Because $\mathcal{K}\left(0 \ldots 0{ }_{1}^{n} \delta_{1}\right)=$ $\left\{K\left(0 \ldots 0 \stackrel{n}{1}_{1}^{c} \delta_{1}\right)\right\} \cup \mathcal{K}\left(0 \ldots 0{ }_{1}^{n} \delta_{1} 0\right) \cup \mathcal{K}\left(0 \ldots 0{ }_{1}^{n} \delta_{1} 1\right)$, then $P_{11} \cup \ldots \cup P_{1 n}$ meets infinitely many sets in $\mathcal{K}\left(0 \ldots 0{ }_{1}^{n} \delta_{1} 0\right)$, or in $\mathcal{K}\left(0 \ldots 0{ }_{1}^{n} \delta_{1} 1\right)$. We may assume $P_{11} \cup \ldots \cup P_{1 n}$ meets infinitely many sets in $\mathcal{K}\left(0 \ldots 0{ }_{1}^{n} \delta_{1} \delta_{2}\right)$. Then, by induction, there exist $\mathcal{K}\left(0 \ldots 0{ }_{1}^{n} \delta_{1}\right) \supset \mathcal{K}\left(0 \ldots 0{ }_{1}^{n} \delta_{1} \delta_{2}\right) \supset \ldots$ such that $P_{11} \cup \ldots \cup P_{1 n}$ meets infinitely many sets in $\mathcal{K}\left(0 \ldots 0{ }_{1}^{n}\right.$ $\left.\delta_{1} \ldots \delta_{m}\right) \cup \mathcal{K}\left(0 \ldots 0{ }_{1}^{n} \delta_{1} \ldots \delta_{m}\right) \subset V\left(0 \ldots 0{ }_{1}^{n} \delta_{1} \ldots \delta_{m}\right)$ so $\left(P_{11} \cup \ldots \cup P_{1 n}\right) \cap V\left(0 \ldots 0 \stackrel{n}{1} \delta_{1} \ldots \delta_{m}\right) \neq \emptyset . \cap_{m>0} V\left(0 \ldots 0{ }_{1}^{n}\right.$ $\frac{\left.\delta_{1} \ldots \delta_{m}\right)=\left\{x\left(0 \ldots 0{ }_{1}^{n} \delta_{1} \delta_{2} \ldots\right)\right\} \text { so } x\left(0 \ldots 0{ }_{1}^{n} \delta_{1} \delta_{2} \ldots\right) \in, ~(0)}{P_{1}}$ $\overline{P_{11} \cup \ldots \cup P_{1 n}}=P_{11} \cap \ldots P_{1 n}$. This is a contradiction to $P_{1 i} \in$ \mathcal{C}_{1} and $\left|P_{1 i} \cap C^{*}\right| \leq 1$ for $i=1,2, \ldots, n$. Then there exists an n_{n} and $\mathcal{K}_{1 n}=\left\{K\left(0 \ldots 0 \stackrel{n}{1} \delta_{1} \ldots \delta_{n}\right) ; \delta_{i}=0,1 . i=1,2, \ldots n_{n}\right\}$ such that:
(1) $\left(P_{11} \cup \ldots \cup P_{1 n}\right) \cap\left(\cup \mathcal{K}_{1 n}\right)=\emptyset$.
(2) If S_{α} converges to $x_{\alpha}, S_{\alpha} \in \varphi_{0}$ and $x_{\alpha}=x\left(0 \ldots 0{ }_{1}^{n}\right.$ $\left.\delta_{1} \delta_{2}, \ldots\right) \notin \bar{A}_{1}$ then $S_{\alpha} \cap\left(\cup \mathcal{K}_{1 n}\right) \neq \emptyset$.
Let $\mathcal{K}_{1}=\cup_{n>0} \mathcal{K}_{1 n}$, then
(1) P meets only finitely many sets in \mathcal{K}_{1} for each $P \in \mathcal{C}_{1}$.
(2) P meets only finitely many sets in \mathcal{K}_{1} for each $P \in \mathcal{P}$.
(3) If S_{α} converges to $x_{\alpha}, x_{\alpha}=x\left(0 \ldots 0{ }_{1}^{n} \delta_{1} \delta_{2}, \ldots\right)$ and $x_{\alpha} \notin \bar{A}_{1}$, then $S_{\alpha} \cap\left(\cup \mathcal{K}_{1 n}\right) \neq \emptyset$ for each $S_{\alpha} \in \varphi_{0}$.
In fact :

1) We omit the proof.
2) For each $P \in \mathcal{P}$.
a) if $P \cap C^{*}=\emptyset$, then there exists an n with $P \cap(\cup$ $\left.\left\{V\left(\delta_{1} \ldots \delta_{n}\right) ; \delta_{i}=0,1 . i=1,2, \ldots, n\right\}\right)=\emptyset$ by $C^{*}=\cap_{n>0}(\cup$ $\left.\left\{V\left(\delta_{1} \ldots \delta_{n}\right) ; \delta_{i}=0,1 . i=1, \ldots, n\right\}\right)$. Then P meets only finitely many sets in \mathcal{K}_{1}.
b) if $P \cap C^{*} \neq \emptyset$ and $P \in \mathcal{P}_{0}$, then P meets only finitely many sets in \mathcal{K}_{1}. If $P \notin \mathcal{P}_{0}$, then $\left|P \cap C^{*}\right| \leq 1$. Suppose that there exists a infinite subcollection $\left\{K\left(0 \ldots 0{ }_{1}^{n}\right.\right.$ $\left.\left.\delta_{n 1} \ldots \delta_{n n_{n}}\right) ; n<\omega\right\}$ of \mathcal{K}_{1} such that $P \cap K\left(0 \ldots 0{ }_{1}^{n}\right.$ $\left.\delta_{n 1} \ldots \delta_{n n_{n}}\right) \neq \emptyset$ for each $K\left(0 \ldots 0{ }_{1}^{n} \delta_{n 1} \ldots \delta_{n n_{n}}\right)$. Because $K\left(0 \ldots 0{ }_{1}^{n} \delta_{n 1} \ldots \delta_{n n_{n}}\right) \subset V\left(0 \ldots{ }_{0}^{n-1}\right), P \cap V\left(0 \ldots{ }_{0}^{n-1}\right) \neq$ Ø. $V(0) \supset V(00) \supset \ldots$ and $\cap_{n>0} V\left(0 \ldots{ }_{0}^{n}\right)=\{x(00 \ldots)\}$ so $x(00 \ldots) \in \bar{P}=P$ and $P \in \mathcal{C}_{1}$. This is a contradiction to 1).
3) We omit the proof.

If $C_{1 n}=\cup_{i \geq n}\left(\cup \mathcal{K}_{1 i}\right)$, then $\left\{C_{1 n} ; 1 \leq n<\omega\right\}$ has the properties:

1) P meets only finitely many sets in $\left\{C_{1 n} ; 1 \leq n<\omega\right\}$ for each $P \in \mathcal{P}$.
2) If S_{α} converges to $x_{\alpha}, x_{\alpha}=x\left(0 \ldots 0{ }_{1}^{n} \delta_{1}, \delta_{2} \ldots\right)$ and $x_{\alpha} \notin \bar{A}_{1}$, then $S_{\alpha} \cap C_{1 n} \neq \emptyset$ for each $S_{\alpha} \in \varphi_{0}$.
ii) If $A_{n-1}=\left\{x\left(\delta_{1}, \delta_{2} \ldots\right)\right.$; there exist $n-2$ many 1's in $\left.\delta_{1}, \delta_{2}, \ldots\right\}$ and $\left\{C_{n-1 m} ; n-1 \leq m<\omega\right\}$ have been defined so that:
3) P meets only finitely many sets in $\left\{C_{n-1 m} ; n-1 \leq m<\right.$ $\omega\}$ for each $P \in \mathcal{P}$.
4) For each $S_{\alpha} \in \varphi_{0}$, if S_{α} converges to $x_{\alpha}, x_{\alpha}=x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime}\right.$, $\left.10 \ldots 0{ }_{1}^{m^{\prime}+j+1} \delta_{1} \delta_{2} \ldots\right) \notin \bar{A}_{n-1}, x_{\alpha}^{\prime}=x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 100 \ldots\right) \in$ A_{n-1} and $j \geq m$, then $S_{\alpha} \cap C_{n-1 m} \neq \emptyset$.

Let $A_{n}=\left\{x\left(\delta_{1} \delta_{2} \ldots\right)\right.$; there exist $n-1$ many 1 's in $\left.\delta_{1}, \delta_{2} \ldots\right\}$ then $\bar{A}_{n}=A_{n} \cup \ldots \cup A_{2} \cup A_{1}$ and $\left|\bar{A}_{n}\right|=\aleph_{0}$. Let $\bar{A}_{n}=$
$\left\{x_{1}, x_{2}, \ldots\right\}$, and let $\mathcal{C}_{n}=\left\{P \in \mathcal{P} \backslash \mathcal{P}_{0}^{\prime} ; P \cap \bar{A}_{n} \neq \emptyset\right\}=$ $\left\{P_{n i} ; i<\omega\right\}$. Pick $x_{m} \in \bar{A}_{n}$. Then $x_{m}=x\left(\delta_{1}{ }^{\prime} \delta_{2}{ }^{\prime} \ldots\right)=$ $x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 100 \ldots\right)$.

For each $j<\omega$, let
$\mathcal{K}\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 10 \ldots 0{ }_{1}^{m^{\prime}+j+1}\right)=\left\{K\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 10 \ldots 0{ }_{1}^{m^{\prime}+j+1}\right.\right.$
$\left.\delta_{1} \ldots \delta_{n}\right) ; K\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 10 \ldots{\stackrel{m}{ }{ }^{\prime}+j+1}_{1}^{1} \delta_{1} \ldots \delta_{n}\right) \subset V\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime}\right.$
$\left.\left.10 \ldots \stackrel{m}{1}^{m^{\prime}+j+1}\right)\right\}$. Take $P_{n i} \in \mathcal{C}_{n}, i=1,2, \ldots, m+j+1$. Then, as in the proof of i$)$, there exists an $\mathrm{n}(\mathrm{j})$ and a subcollection $\mathcal{K}_{n j}\left(x_{m}\right)=\left\{K\left(\delta_{1}{ }^{\prime} \ldots \delta_{m}^{\prime}, 10 \ldots \stackrel{m}{1}_{m^{\prime}+j+1}^{1} \delta_{n 1} \ldots \delta_{n n(j)}\right) ; \delta_{n i}=\right.$ $0,1 . i=1,2, \ldots, n(j)\}$ of $\mathcal{K}\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 10 \ldots 0{ }_{1}^{m^{\prime}+j+1}\right)$ such that;

1) $\left(P_{n 1} \cup \ldots \cup P_{m+j+1}\right) \cap\left(\cup \mathcal{K}_{n j}\left(x_{m}\right)\right)=\emptyset$.
2) For each $S_{\alpha} \in \varphi_{0}$, if S_{α} converges to $x_{\alpha}, x_{\alpha}=x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime}\right.$ $\left.10 \ldots 0{ }_{1}^{m^{\prime}+j+1} \delta_{1} \delta_{2} \ldots\right) \notin \bar{A}_{n}$ and $x_{\alpha}^{\prime}=x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 100 \ldots\right)=$ $x_{m} \in A_{n}$, then $S_{\alpha} \cap\left(\cup \mathcal{K}_{n j}\left(x_{m}\right)\right) \neq \emptyset$.

Let $\mathcal{K}_{n}\left(x_{m}\right)=\cup_{j>0} \mathcal{K}_{n j}\left(x_{m}\right)$. Then $\mathcal{K}_{n}\left(x_{m}\right)$ satisfies:

1) $\left(P_{n 1} \cup \ldots \cup P_{n m+j}\right) \cap\left[\cup \mathcal{K}_{n j}\left(x_{m}\right)\right]=\emptyset$, here $P_{n i} \in \mathcal{C}_{n}$ for $i=1,2, \ldots, m+j$.
2) P meets only finitely many sets in $\mathcal{K}_{n}\left(x_{m}\right)$ for each $P \in$ \mathcal{P}.
3) For each $S_{\alpha} \in \varphi_{0}$, if S_{α} converges to $x_{\alpha}, x_{\alpha}=x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime}\right.$ $\left.10 \ldots{\stackrel{m}{ }{ }^{\prime}+j+1}_{1}^{1} \delta_{1} \delta_{2} \ldots\right) \notin \bar{A}_{n}$ and $x_{\alpha}^{\prime}=x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 100 \ldots\right)=$ $x_{m} \in A_{n}$, then $S_{\alpha} \cap\left(\cup \mathcal{K}_{n j}\left(x_{m}\right)\right) \neq \emptyset$.

We prove only 2). In fact, if $P \in \mathcal{P} \backslash \mathcal{P}_{0}$, suppose that P meets infinitely many sets in $\mathcal{K}_{n}\left(x_{m}\right)$. Then there exist infinitely many $\mathcal{K}_{n j}\left(x_{m}\right)$ such that P meets sets in $\mathcal{K}_{n j}\left(x_{m}\right)$ because $\mathcal{K}_{n}\left(x_{m}\right)=\cup_{j>0} \mathcal{K}_{n j}\left(x_{m}\right)$ and $\left|\mathcal{K}_{n j}\left(x_{m}\right)\right|<\aleph_{0} . \cup \mathcal{K}_{n j}\left(x_{m}\right) \subset$ $V\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 10 \ldots 00^{m^{\prime}+j}\right)$ so $P \cap V\left(\delta_{1}{ }^{\prime} \ldots \delta_{m}^{\prime}, 10 \ldots 0^{m^{\prime}+j} 0^{\prime}\right) \neq \emptyset$. Then $\left\{x_{m}\right\}=\cap_{j>0} V\left(\delta_{1}{ }^{\prime} \ldots \delta_{m}^{\prime} 10 \ldots 00^{m^{\prime}+j}\right) \subset P$ and $P \in \mathcal{C}_{n}$. This is a contradiction to 1).

Let $\mathcal{K}_{n}=\cup\left\{\mathcal{K}_{n}\left(x_{m}\right) ; x_{m} \in \bar{A}_{n}\right\}$. Then \mathcal{K}_{n} satisfies:

1) $P_{n m} \cap\left[\cup \cup\left\{\mathcal{K}_{n j}\left(x_{i}\right) ; j \geq m, i>0\right\}\right]=\emptyset$ for each $P_{n m} \in \mathcal{C}_{n}$.
2) P meets only finitely many sets in \mathcal{K}_{n} for each $P \in \mathcal{P}$.
3) For each $S_{\alpha} \in \varphi_{0}, S_{\alpha}$ converges to $x_{\alpha}, x_{\alpha}=x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime}\right.$ $\left.10 \ldots 0{ }_{1}^{m+j+1} \delta_{1} \delta_{2} \ldots\right) \notin \bar{A}_{n}, x_{\alpha}^{\prime}=x\left(\delta_{1}^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 100 \ldots\right)=$ $x_{m} \in A_{n}$ and $j \geq m$ so $S_{\alpha} \cap\left[\cup \cup\left\{\mathcal{K}_{n j}\left(x_{i}\right) ; j \geq m, i>0\right\}\right] \neq \emptyset$.

In fact:

1) for each $P \in \mathcal{P} \backslash \mathcal{P}_{0}$, if $j \geq m$, then $P_{n m} \cap\left(\cup \mathcal{K}_{n j}\left(x_{i}\right)\right)=\emptyset$ for $i>0$ by $\left(P_{n 1} \cup \ldots \cup P_{n m+j}\right) \cap\left(\cup \mathcal{K}_{n j}\left(x_{m}\right)\right)=\emptyset$. Then $P_{n m} \cap$ $\left[\cup\left(\cup_{j \geq m} \mathcal{K}_{n j}\left(x_{i}\right)\right)\right]=\emptyset$ for $i>0$. Then $P_{n m} \cap\left[\cup\left\{\cup \mathcal{K}_{n j}\left(x_{i}\right) ; j \geq\right.\right.$ $m, i>0\}]=\emptyset$.
2) Let $P \in \mathcal{P} \backslash \mathcal{P}_{0}$. If P meets infinitely many sets in $\mathcal{K}_{n}=$ $\cup\left\{\mathcal{K}_{n}\left(x_{m}\right) ; x_{m} \in A_{m}\right\}$, then there exists a sets $\left\{m_{1}, m_{2}, \ldots\right\}$ such that P meets sets in $\mathcal{K}_{n}\left(x_{m_{i}}\right)$ for each m_{i} by property 2) of $\mathcal{K}_{n}\left(x_{m_{i}}\right) .\left\{x_{m_{i}} ; i>0\right\} \subset A_{n}$, so we may assume $\left\{x_{m_{i}} ; i>0\right\}$ is a sequence which converges to x and $x=x\left(\delta_{1} \delta_{2} \ldots\right) \in \bar{A}_{n}$. We may also assume $\left\{x_{m_{i}} ; i \geq n\right\} \subset V\left(\delta_{1} \ldots \delta_{n}\right)$, so $V_{n}\left(x_{m_{i}}\right)=$ $V\left(\delta_{1} \ldots \delta_{n}\right)$ for each $i \geq n$. Here $x_{m_{i}}=x\left(\varepsilon_{1} \varepsilon_{2} \ldots\right), V\left(\varepsilon_{1}\right) \supset$ $V\left(\varepsilon_{1} \varepsilon_{2}\right) \supset \ldots$ and $V_{n}\left(x_{m_{i}}\right)=V\left(\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{n}\right)=V\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right)$ so $x_{m_{i}}=x\left(\delta_{1} \ldots \delta_{n} \delta_{n 1} \ldots \delta_{n n_{i}} 000 \ldots\right), \cup \mathcal{K}_{n}\left(x_{m_{i}}\right) \subset V\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right)$ and $P \cap V\left(\delta_{1} \delta_{2} \ldots \delta_{n}\right) \neq \emptyset . P$ is compact, so $x\left(\delta_{1} \delta_{2} \ldots\right) \in P$ and $P \in \mathcal{C}_{n}$. This is a contradiction to property 1) of \mathcal{K}_{n}.
3) $S_{\alpha} \in \varphi_{0}, S_{\alpha}$ converges to $x_{\alpha}, x_{\alpha}=x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime}\right.$ $\left.10 \ldots{ }_{1}^{m^{\prime}+j+1} \delta_{1} \delta_{2} \ldots\right) \notin \bar{A}_{n}$ and $x_{\alpha}^{\prime}=x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 1000 \ldots\right)=$ $x_{n} \in A_{n}$, so $S_{\alpha} \cap\left(\cup \mathcal{K}_{n j}\left(x_{n}\right)\right) \neq \emptyset$. If $j \geq m$, then $S_{\alpha} \cap(\cup \cup$ $\left.\left\{\mathcal{K}_{n j}\left(x_{i}\right) ; j \geq m, i>0\right\}\right) \neq \emptyset$.

Let $C_{n m}=\cup \cup\left\{P \mathcal{K}_{n j}\left(x_{i}\right) ; j \geq m, i>0\right\}$ for $m \geq n$. Then $\left\{C_{n m} ; m \geq n\right\}$ satisfies:

1) P meets only finitely many sets in $\left\{C_{n m} ; m \geq n\right\}$ for each $P \in \mathcal{P}$.
2) For each $S_{\alpha} \in \varphi_{0}$, if S_{α} converges to $x_{\alpha}, x_{\alpha}=x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime}\right.$ $\left.10 \ldots{ }_{1}^{m^{\prime}+j+1} \delta_{1} \delta_{2} \ldots\right) \notin \bar{A}_{n}, x_{\alpha}^{\prime}=x\left(\delta_{1}{ }^{\prime} \ldots \delta_{m^{\prime}}^{\prime} 1000 \ldots\right) \in A_{n}$ and $j \geq m$, then $S_{\alpha} \cap C_{n m} \neq \emptyset$.

Then, by induction, there exists a collection $\left\{C_{n m} ; n \leq m<\right.$ $\omega\}$ such that:

1) $C_{n m}$ is closed in $\left(Y \mathcal{T}_{1}\right)$ for each $C_{n m} \in\left\{C_{n m} ; n \leq m<\omega\right\}$.
2) For each $n,\left\{C_{n m} ; m \geq n\right\}$ is a discrete collection.

Now we prove $C^{*} \cap \overline{\left(\cup\left\{C_{n m} ; m \geq f(n)\right\}\right)} \neq \emptyset$ and $C^{*} \cap$ $\left(\cup\left\{C_{n m} ; m \geq f(n)\right\}\right)=\emptyset$ for each $f \in{ }^{\omega} \omega$.

In fact: If $f \in{ }^{\omega} \omega$, let $f(i)=n_{i}$ and let $0<n_{1}<n_{2}<$ $n_{3} \ldots$ Pick $x_{\alpha}=x\left(0 \ldots 01_{1}^{m_{1}} 0 \ldots 01_{1}^{m_{2}} 0 \ldots\right) \in C^{*}$, where $m_{i}=n_{1}+n_{2}+\ldots+n_{i}>i$. Take $S_{\alpha} \in \varphi_{0}$ such that S_{α} converges to $x_{\alpha}, x_{\alpha}=x\left(0 \ldots 01_{1}^{m_{1}} 0 \ldots 0{ }_{1}^{m_{2}} \ldots 0 \stackrel{m_{i}}{1} 0 \ldots\right) \notin \bar{A}_{i}$ and $x_{\alpha}^{\prime}=x\left(0 \ldots 01_{1}^{m_{1}} 0 \ldots 0{ }_{1}^{m_{2}} \ldots 0{ }_{1}^{m_{i-1}} 000 \ldots\right)=x_{m} \in A_{i}$, so $S_{\alpha} \cap\left(\cup \mathcal{K}_{i n_{i}}\left(x_{m}\right)\right) \neq \emptyset$ and $S_{\alpha} \cap C_{i n_{i}} \neq \emptyset$ since $C_{i n_{i}}=$ $\cup \cup\left\{\mathcal{K}_{i j}\left(x_{m}\right) ; j \geq n_{i}, m>0\right\}$ for $i \geq 1$. Then $x_{\alpha} \in C^{*} \cap$ $\bar{U}\left\{C_{i_{i}} ; i<\omega\right\} \neq \emptyset$, hence $x_{\alpha} \in C^{*} \cap \overline{U\left\{C_{n m} ; m \geq f(n)\right\}} \neq \emptyset$.
D) Let $g: Y \rightarrow Y /\left\{C^{*}\right\}$. Then g is a continuous perfect map. Then $\left\{g\left[C_{n m}\right] ; m \geq n\right\}$ satisfies:

1) $g\left[C_{n m}\right]$ is closed for each $g\left[C_{n m}\right] \in\left\{g\left[C_{n m}\right] ; n \leq m<\omega\right\}$ in $Y /\left\{C^{*}\right\}$.
2) $\left\{g\left[C_{n m}\right] ; m<\omega\right\}$ is a discrete subcollection of $\left\{g\left[C_{n m}\right]\right.$; $m \geq n\}$ for each $n<\omega$.
3) There exists a $C^{*} \in \overline{\cup\left\{g\left[C_{n m}\right] ; m \geq n\right\}}$ with $C^{*} \in$ $\overline{U\left\{g\left[C_{n m}\right] ; m \geq f(n)\right\}}$ for each $f \in{ }^{\omega} \omega$.

Then $S_{\omega} \times\left(Y /\left\{C^{*}\right\}\right)$ is not sequential by Lemma 6. Thus $S_{\omega} \times Y$ is not sequential by Lemma 10. This is a contradiction to the conclusion of Lemma 10. Then Y is a k_{ω}-space.

Results ($\mathrm{CH}+\mathrm{MC}$).
Theorem 1. Let X and Y be k-spaces with point-countable closed k-networks. Then $X \times Y$ is a k-space if and only if one of the three properties below holds:
a) X and Y have point-countable bases.
b) X or Y is locally compact.
c) X and Y are locally k_{ω}-spaces.

Proof. If X contains a copy of S_{2} and X contains no copy of S_{ω}, then the perfect image $X /\left\{S_{0}\right\}$ of X contains a copy of S_{ω}, where S_{0} is the converging sequence of S_{2} which has no
isolated point. By Lemma $10,\left(X /\left\{S_{0}\right\}\right) \times Y$ is sequential if and only if $X \times Y$ is sequential.
"only if":

1) If X and Y contain copies of S_{ω} or S_{2}. Then X and Y are locally k_{ω}-spaces by lemma 11 .
2) If X contains a copy of S_{ω} or S_{2}, and Y contains no copy of S_{ω} and $S_{2} . X \times Y$ is sequential then $S_{\omega} \times Y$ is sequential. Then P is compact metrizable for each $P \in \mathcal{P}$ by Lemma 4. Then Y has a point countable base by [11, Corollary 4.5]. S_{ω} is not strongly Fréchet then Y is locally compact by $[8$, Theorem 1.1].
3) X and Y contain no copies of S_{ω} and $S_{2} . Y \times X$ is sequential and $t(Y) \leq \omega$ then Y satisfies $\left(C_{1}\right)$ or X satisfies $\left(C_{2}\right)$ by Lemma 1.

At the same time $X \times Y$ is sequential and $t(X) \leq \omega$ so X satisfies $\left(C_{1}\right)$ or Y satisfies $\left(C_{2}\right)$ by Lemma 1. Then there exist four cases:
case 1. X satisfies $\left(C_{1}\right)$ and Y satisfies $\left(C_{1}\right)$. Then X and Y have point-countable bases by [5, Theorem 9.8].
case 2. X satisfies $\left(C_{1}\right)$ and X satisfies $\left(C_{2}\right)$. Then X has a point-countable base by $\left(C_{1}\right)$. Then X is locally compact by $\left(C_{2}\right)$.
case 3. Y satisfies $\left(C_{1}\right)$ and Y satisfies $\left(C_{2}\right)$. Same as case 2.
case 4. X satisfies $\left(C_{2}\right)$ and Y satisfies $\left(C_{2}\right)$. If X satisfies $\left(C_{2}\right)$ then P is a compact metrizable set for each $P \in \mathcal{P}$. Then X has a point-countable base by [11, lemma 4.1]. So does Y.
"if" we omit the straightforward proof.
Corollary. Let X and Y be quotient s-images of locally compact metric spaces. Then $X \times Y$ is sequential if and only if one of the three properties below holds:
a) X and Y have point-countable bases.
b) X or Y is locally compact.
c) X and Y are locally k_{ω}-spaces.

Proof. A quotient s-image of a locally compact metric space has a point-countable closed k-network.

Theorem 2. Let X and Y be closed images of metric spaces. Then $X \times Y$ is sequential if and only if one of three properties below holds:
a) X and Y have point-countable bases.
b) X or Y is locally compact.
c) X and Y are locally k_{ω}-spaces.

Proof. "only if"

1) If X contains a copy of S_{ω} then $S_{\omega} \times Y$ is sequential. If Y is a closed image of a metric space, then $\partial f^{-1}(y)$ is locally compact and Lindelöff for every $y \in Y$ by [9 , Proposition 2.4]. We may assume without loss of generality that Y is a closed simage of a metric space. Then Y has a closed point-countable k -network. Then Y is a locally k_{ω}-space by Lemma 11 . So does X.
2) X contains a copy of S_{ω} and Y contains no copy of S_{ω}, then $S_{\omega} \times Y$ is sequential. As in the proof 1) we may assume Y is a closed s-image of a metric space. As in the proof 2) of "only if" of Theorem $1, Y$ is locally compact.
3) X and Y contain no copies of S_{ω}. Then we may assume that X and Y are closed s-images of metric spaces by [11, Theorem 1.7 ii]. Then X and Y have closed point-countable k-networks. As in the proof 3, of "only if" of Theorem 1, then X is locally compact or Y is locally compact or X and Y have point-countable bases.
"if" We omit the straightforword proof.
The above theorem 2 is analogous to Theorem 1.1 of [9]. The following Theorem 3 is analogous to Theorem 3.1 of [7].

Theorem 3. Let X and Y be k-and \aleph-spaces. Then $X \times Y$ is a k-and \aleph-space if and only if one of the three properties holds:
a) X and Y have point-countable bases.
b) X or Y is locally compact.
c) X and Y are locally k_{ω}-spaces.

Proof. Every k-and \aleph-space is a k-space with σ-locally finite knetwork, then every k-and \aleph-space has a closed point-countable k-network. Then the Theorem 3 is a Corollary of Theorem 1.

References

1. A. V. Arhangel'skiï and A.I. Ponomarev, Fundamentals of General Topology, Chapter 6 No 252 D. Reidel Publishing Co Boston.
2. G. Gruenhage, k-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), 478-482.
3. -, Generalized metric spaces, Handbook of set Theoretic Topology, 423-501.
4. G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by pointcountable covers, Pacific. Jour. of Math. 113 (1984), 303-332.
5. E. Michael, A quintuple quotient quest, General and Appl. 2 (1972), 91-138.
6. P. O'Meara, On paracompactness in function spaces with the compactopen topology, Proc. Amer. Math. Soc. 29 (1972), 183-189.
7. Y. Tanaka, A characterization for the products of k-and \aleph-spaces and related results. Proc. Amer. Math. Soc. 59 (1976), 149-155.
8. -, Products of sequential spaces, Proc. Amer. Math. Soc. 54 (1976), 371-375.
9. -, A characterization for the product closed images of metric spaces to be a k-space, Proc. Amer. Math. Soc. 74 (1979), 166-170.
10. ——, Point-countable k-systems and products of k-spaces, Pacific Jour. Math. 101 (1982), 199-208.
11. -, Metrizability of certain quotient spaces, Fund. Math. CXIX (1983), 157-168.

Quinhai Normal University
Xining, China

