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THE PRODUCTS OF K-SPACES WITH
 
POINT-COUNTABLE CLOSED K-NETWORKS
 

CHEN HUAIPENG 

ABSTRACT. Using a technique of [2] we prove the the
orem(CH +MC): Let X and Y be k-spaces with point
countable closed k-networks. Then X x Y is sequential 
if and only if one of the three properties below holds: 

a) X and Y have point-countable bases.
 
b) X or Y is locally compact.
 
c) X and Yare locally kw-spaces.
 

1. INTRODUCTION 

Throughout this paper, we shall assume that all spaces are 
regular, and all maps are continuous surjections. 

A cover F of a space is a k-network if for any !{ C U with !{ 
compact and U open, !( C UF' C U for some finite F' C F. 
A space X is in class T' [7] if X has the weak topology with 
respect to a countable cover of closed locally compact subsets. 
Y. Tanaka [7, Theorem 3.1] has proven: 

Theorem 3.1. Let X and Y be k-and ~-spaces, then X x Y is 
a k-space if and only if one of the three properties below holds: 

a) X and Yare metrizable spaces. 
b) X or Y is a locally compact metrizable space. 
c) X and Yare spaces of the class'1'. 

Here an ~-space [6] is a space with a a-locally finite k
network. A k-and ~-space is a quotient s-image of a metric 
space by [4, Theorem 6.1]. So it is desirable to consider the 
k-ness of the product X x Y of quotient s-images X, Y of met
ric spaces. If X and Yare Frechet, by [10, Theorem 9], it 
follows that X x Y is a k-space if and only if X and Y have 

63 



64 CHEN HUAIPENG 

point-countable bases. Otherwise b) or c) of the above theorem 
holds. Every quotient s-image of a metric space has a point-
countable k-network by [4, theorem 6.1]. In this paper, under 
CH(continuum hypothesis) and MC( there exists measurable 
cardinal) we prove the result: 

 
 

Theorem 1. Let X and Y be k-spaces with point-countable 
closed k-networks, then X x Y is sequential if and only if one 
of the three properties below holds: 

a) X and Y have point-countable bases. 
b) X or Y is locally compact. 
c) X and Yare locally kw-spaces. 

The author wishes to thank Y. Tanaka and the referee for 
their suggestions. 

2. LEMMAS 

Recall that a space X has countable tightness, t(X) ::; w, if 
x E A in X, then x E 0 for some countable 0 C A. 

Lemma 1. (10, Lemma 4). Suppose that X x Y has a k
system with t(X) ~ w, then the following condition (C1 ) or 
(C2 ) holds, 

(C1 ). If (An) t x in X, then there exists a nonclosed subset 
{an;n E w} of X with an E An. 

(02 ). If(An) is a k-sequence in Y, then some An is countably 
compact. 

Here (An) 1 x means a decreasing sequence {An; nEw} 
such that x E An \ {x} for nEw. A k-sequence [5] is a 
decreasing sequence {An; nEw} such that 0 = nnewAn is 
compact and each neighborhood of C contains some An. 

Lemma 2. (4, Lemma 1.7) If f : 
map, and if X is determined by the 
termined by f(P) = {f(P); PEP}. 

X ~ Y is a quotient 
cover P, then Y is de

We use "X is determined by P" just as "X has the weak 
topology with respect to P ". The terminology is due to [4, 
note 2]. 
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Lemma 3. Let Y be a quotient s-image of a metric space, and 
let Sw x Y be sequential. If Y is determined by cover P, then 
Sw x Y is determined by cover {Sn X P; PEP and Sn E 'P}. 

Proof· Let fl : M 1 ---+ Sw be a quotient s-map, and let f2 : 
M2 ---+ Y be a quotient s-map. Here M1 = ~nSn and M2 is 
a metric space. Let B be a a-locally finite base of M2 and 
let P = f2(B). M 1 x M2 is a metric space and M 1 x M2 is 
determined by cover {Sn x B; Sn E 'P and B E B}. fl X f2 
is a quotient s-map if Sw x Y is sequentiaL Then Sw x Y is 
determined by {Sn x P; Sn EPHand PEP} from Lemma 2. 

Lemma 4. Let Y be a quotient s-image of a metric space M, 
and let 'P = f(B). If Sw x Y is sequential, the P is a compact 
metric subset ofY for each PEP. Here B is a a-locally finite 
base of M. 

Proof. B = Un<wBn is a a-locally finite base of M, Let Bx = 
{Bn E B; x E Bn and B1 :> B2 :> ... } with {f(Bn); Bn E Bx } 

is a k-sequence. Then some f(Bn ) is a compact metric subset 
of Y by [10, Lemma 6]. Thus we can suppose that f(B) is 
compact for each B E B . 

Lemma 5 (CH). Let Y be a quotient s-image of a metric s
pace. If Sw x Y is sequential, then there exists a subcollection 
P y ofP such that 1P y I~ ~o and U P y is a neighborhood of 
y for each y E Y. 

Proof. Suppose there exists a point Yo of Y such that we take 
any subcollection P' of P, if I P , I~ No, then UP' is not a 
neighborhood of point Yo-

A. Let No be a Moore-Smith net which converges to Yo, Yo f/. 
No and 1No 1= ~o. Let 'Po = {P E P ; P n No =I 0}, then 
IPo I:::; No by P point-countable_ If we have defined a Moore
Smith net N(3 which converges to Yo with Yo rt N(3, 1N(3 I~ No, 
P(3 = {P E P ; P n N(3 =1= 0} and I P(3 I:::; No for all f3 < a, here 
a < WI- Then U(U(3<a P(3 ) is not a neighborhood of point Yo 
by I U,6<a 'P,6 I~ yNo. So we can take a Moore-Smith net Na 

which converges to Yo, Yo f/. Na , I Na I~ ~o and Na n[U(U(3<a 
'P,6 )] = 0- Let 'Pa = {P E P ; P n Na =1= 0}, then I 'Pa 
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I~ No by P point-countable. Then, by induction, there exists 
a collection {NOt; 0 < WI} such that: 

1) NOt converges to Yo, Yo f/. NOt and I NOt I~ No for each NOt. 

2) P meets only one NOt for each P of P. 

B.EachNOt ={XOt I,X0t2, ••• ,xOtn , ... }={10t,20t , ,nOt, ... }. 
For each JOt E Ww let HOt = Un<w({ln,2n, ,J(n)n}x 
{lOt, 2Ot , . .. , nOt}) C Sw X Y. Let H = UOt<Wl HOt. Here Sn = 
{In' 2n , . .• } is a convergent sequence of Sw. 

a) Hn (Sn x P ) is closed in Sn x P for each Sn x P E 
{Sn x P; Sn E c.p and PEP}. In fact: P meets only one NOt 
by property 2) of {NOt; a < WI}. Then (Sn x P) nH = (Sn x P 
) nHOt =(Sn X P) n(Ui:5n{Ii,2i, ... ,f(i)i} X {lOt,20t , ,iOt }) 
has only finitely many points. 

b) H is not closed. We prove (00, Yo) E H - H. Here "00" 
denotes the nonisolated point in Sw. If f E ww , let UJ be the 
neighborhood of point "00" in Sw defined by UJ = {(X)} U 
{nm ; n ~ J(m)}. Let U be a neighborhood of point Yo in Y, 
then NOt n U =I 0 for each NOt E {NOt; 0 < WI}. Then there 
exists n(a)Ot E NOt n U. Let g(o) = n(o), then 9 E WI W. By 
I E ww , there exists function IOto E such that A = {n EWw 
W; fOto(n) > f(n)} is infinite. Because g(oo) = n(oo), there 
exists n' E A with n' > n(oo). Then (fOto(n')n"n(oo)Oto) E 
{In" 2n,,··· ,fOto(n')n'} X {IOto' 2Oto ,··· , n(ao)Oto'··· , n'Oto} C 
H. On the other hand the n' E A gives fOto(n') > f(n'), so 
lOt0 (n')nl E {nm ; n 2:: I(m)} C UJ and n(oo)Oto E NOto n U. 
Then (IOto(n')nl,n(oo)Oto) E (UJ x U) n H Oto C (UJ x U) n H 
and H is not closed. Then Sw x Y can not be determined by 
{ Sn x P; Sn E c.p and PEP }. But Sw x Y is determined by 
{ Sn x P ; Sn E c.p and PEP } because of Lemma 3. This is 
a contradiction. 

Lemma 6. Let Y be a quotient s-image of a metric space. If 
Sw x Y is sequential, then Y satisfies the following condition 
(C3) , 

(C3). If Y has a collection {Cnm ; n, m < w} such that 

1) Cnm is a closed set for each Cnm E {Cnm ; n,m < w}, 
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2) {Cnm ; m < w} is a discrete subcollection of{Gnm ; n,m < 
w} for each n < w, then for each x E unmGnm , there exists a 
function f E W w with the x (j. U{Cnm ; m ~ f(n)}. 

Proof. If Y does not satisfy (C3 ), then there exists a collection 
{Cnm ; n,m < w} in Y such that 

1) Cnm is closed for each Cnm E {Cnm ; n, m < w}. 
2) {Cnm ; m < w} is a discrete subcollection of {Cnm ; n, m < 

w} for each n < w. But there exists Xo E UnmGnm , with the 
Xo E U{Cnm ; m ~ f(n)} for each f E W w . 

Let A = Unm ( {mn} x Gnm ). On the one hand; (Sn x P) 
nA = Um ( {mn } X Cnm ) n(Sn x P) is closed in Sn x P by 1) and 
2) of (C3 ). On the other hand: (Uf x U)nA =10 for each f E W w 
and each neighborhood U of the Xo. In fact: for each f E ww , if 
Xo E U{Cnm ; m ~ f(n)} then Un (U{Cnm ; m 2:: f(n)}) =10. 
So, there exists Cnm E {Cnm ; m ~ f(n)} with U n Gnm =10. 
Then (Uf x U) n A :) (Uf x U) n ({mn} x Cnm ) =I 0. This 
implies that Sw x Y is not sequential. This is a contradiction. 

Lemma 7. Let (X7i) and (X12) be regular, and let 12 C 7i. 
If subset C of X is 7i -compact, then C is 12-compact and 

12IG == 7iIG. Here AlB == {A n B; A E A}. 

Proof· We only prove 12IG == 7iIG. 12 c 7i then 12IG C 7iIG. 
On the other hand: if 0 1 E 7i, 01nG E 7i IG then C-(OlnC) 
is a 7i-compact subset of X. G - (01 n G) is a 12-compact 
subset of X, then G - (01 n G) is a 12-compact subset of 
C. Then C - (01 n C) is a 72-closed subset of C. Then 
C - (C - (01 n C)) = 0 1 n C is a 12-open subset of C. Then 
there exists O2 E 12 with O2 n G = 0 1 n C. This implies 
0 1 n C E 12IC. 

Lemma 8. Let Y be sequential. ffY is the union of countably 
many compact metric subsets of Y, then there exists a totally 
disconnected sequential space Z which is the union of countably 
many compact metric subsets of Z and there exists a perfect 
map f : Z ---+ Y. 

Proof If (Y7i) is a regular sequential space which is the union 
of countably many compact metric subsets of Y. Then (Y7i) 
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is a paracompact u-space. Then Y has a Gs-diagonal by [3, 
Theorem 4.6]. Then (Y1i) is submetrizable by [3, Corollary 
2.9]. There exists a topology 72 on Y such that 72 C 11. and 
(Y72) is metrizable. (Y1i) is the union of countably many 
compact subsets of (Y1i), then (Y72) is the union of countably 
many compact subsets of (Y72) by Lemma 7. Then (X72) 
has a countable base B. By [1, Chapter 6, 252], (X72) is an 
image of a subspace (Z02) of the Baire space B(~o) under an 
irreducible perfect map f. The Baire space B(~o) is totally 
disconnected, so is the subspace (Z02). Let K = {f-1[/<]; /< 
is a compact subset of (Y1i)}. Then K is a compact metrizable 
subset collection of (Z02) by Lemma 7 and K is a cover of Z. 
Let 

0 1= {A c Z; Anf-1[!<] E 02If-1[!<] for each f-1[!<] E K}. 

We can prove these results: 

A) O2 C 0 1 and 0 1 is a topology of Z. 
In fact: 

1) 0 E O2then Onf-1[!<] E 02If-1[!<] for each f-1[!<] E 
JC. This implies 0 E 0 1 • Then X = U02 C U01 C X. 

2) If A, B E 01, for each f-1[/<], Anf-1[/<] E 02If-1[!<], 
then there exists 0 1 E O2 with A n f-1[!<] = 0 1 n f-1[/<]. 
Also B n f-1[K] = O2 n f-1[/<]. Then (A n B) n f-1[/<] = 
(01 n O2) n f- 1 [I<] E 02/f-1 [I<], which implies An B E 0 1 • 

3) If Aa E 0 1,a E A, for each f-1[!<] E JC, Aa n f-l[/<] E 
02If-1 [/<] then there exists Oa E O2 with Aa n f- 1 [!<] = 
Oa n f- 1 [!<]. Then (UaEAAa)nf-l[!<] = (UaEAOa)nf-1[!<] E 
02If-1[!<]. This implies UaEAAa E Ql. 

B) 011/-1[!<] = 0 21/-1[!<] and f-1[!<] is a 01-compact 
metric subset of Z for each 1-1 [!<] E IC. 
In fact: 

1) O2 C 0 1 then 021/-1[!<] C 011/-1 [!<]. On the other 
hand A E 01Ij-l[!<] then there exists B E 0 1 with A = 
Bnf-1 [/<]. B E 0 1 then Bnj-1[!<] E 02If-1 [!<]. Then there 
exists O2 E O2 with B n f-1[!<] = O2 n f-1[!<] E 02If-1[!<]. 
This implies B n f-1[/<] = A E 02If-1[/<]. 
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2) (Z02) is a metric space. If d is the metric, then 
(f-l[1<] d) is a compact metric subspace of (ZOt) by 0 1If-1[1<] 
= 02If-1[1<]. 

C) (ZO) is sequential. 
In fact: K, is a compact metric subset collection of (ZOI) by 
B). On the other hand 0 1 = {A C Z; for each f- 1 [1<] E 
K"An f-1 [1<] E 0 21/-1[1<] = 01If-1 [1<] by B). This jmplies 
(ZOI) is sequential. 

D) (Z02) is totally disconnected. O2 C 0 1 then (ZOI) is 
totally disconnected. 

Above we have proven that (Z( 1 ) is a totally disconnected 
sequential space which is the union of countably many compact 
metric subsets of (ZOI. Now we prove that f : (ZOI) --+ (Y'Ii) 
is a continuous perfect map. In fact : K is a compact metric 
subset of (Y'Ii) for each 1-1[/<] E K,. Let 0 C 1<, and let 0 
be open in 1<. Then 0 E 7211< by Lemma 7 'IiI1< = 7211<. 
We have known that f : (Z02) --+ (Y72) is a continuous 
perfect map. Then flf-1[1<] : f-1[1<] --+ 1< is a continu
ous map. (flf-1[1<])-I(O) E 02If-1[!<] = 01If-1[1<] then 
(flf-1[1<])-1(0) is an 01If-1[1<]-open subset of f-l[I<]. If 
o E 'Ii, then for each f-1[1<], f-1[1<]nf-1[0] = f-1[I<nO] = 
(flf-1[1<])-1[0 n /<] is 0 1If-1[/<]-open in f-1[/<]. (ZOl) is 
determined by K, then f- 1[0] E 0 1• This implies that f : 
(ZOl) --+ (Y'Ii) is a continuous map. On the other hand 
f-l(X) E K, then f-l(X) is 01-compact. If we take a closed 
subset B of (ZOl) then f- 1 [1<] n B is 01-compact. f is 0 1

continuous so f[f-1[]<]nB] = ]<nf[B] is a 1i-compact subset 
of Y. Then]< n f[B] is 1i-closed. (Y1i) is sequential hence 
f[B] is 'Ii-closed. This implies that f : (ZOI) ~ (Y'Ii) is a 
continuous perfect map. 

Lemma 9. Let Y be a quotient s-image of a metric space, 
and let Sw x Y be a sequential space. Suppose that there exists 
pI = {Pn E P; n < w} and {Sn; n < w} such that for each 
convergent sequence SU {x} of Y and each Pn E pI, ifl(SU 
{x}) n Pnl < ~o then (S U {x}) \ (U{Sn : n < w}) is finite. 
Then Y is a kw-space. 
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Proof. Let P" = {P E P; P n (Un<wSn) # 0 } then IPIII ~ ~o 
since P point-countable and IUn<w Sn I~ ~o. Suppose that B 
is not closed then there exists a convergent sequence S U {x} 
such that (S U {x}) n B is not closed in S U {x}. We may 
assume S C B without loss of generality. If there exists a Pn E 
P' with IPn n SI = ~o, then P n n B is not closed in P n. If 
IPn n SI < ~o for each Pn E'P', then S U{x} \ (U{Sn : n < w}) 
is finite. S is not closed then there exists a P such that P n S 
is not closed in P. This P Ep lI and B n P are not closed in 
P. We prove that Y is determined by {P; P E'P' or P EPIl}. 
Then Y is a kw-space by Lemma 4. 

Lemma 10. Let f : Z ~ Y be a perfect map. If Z is se
quential then Sw x Z is sequential if and only if Sw x Y is 
sequential. 

Proof Let I sw : Sw ~ Sw be an identity map. Then I sw x f : 
Sw x Z ~ Sw x Y is a perfect map. If Sw x Z is sequential 
then Sw x Y is sequential. On the other hand: If Sw x Y is 
sequential then Sw x Z is a k-space. Since each compact subset 
of Sw x Z is a metric subset then Sw x Z is sequential. 

Remark. In order to show the following Lemma 11, we shall 
use the assumption MC( there exists measurable cardinal) and 
a technique of [2]. The author does not know whether the 
assumption Me of Lemma 11 can be omitted. We say that C 
is a Cantor set if C is homeomorphic to {O,l}w. 

Lemma 11. (CH + MC). Let Y be a k-space with a point
countable closed k-network {Po; a E A}. IfSwxY is a k-space, 
then Y is a locally kw-space. 

Proof We may assume Y is a quotient s-image of a metric 
space by [4, Theorem 6.1]. Firstly; each point y of Y has a 
neighborhood U which is the union of countably many com
pact metric subsets of Y by Lemma 5. Let U be a closed 
neighborhood. Sw x Y is a k-space then Sw x Y is sequential. 
Hence Sw x U is a sequential subspace. Without loss of gener
ality, let Y = U == Un<wPn. We prove that Y is a kw-space. 

Suppose that Y is not a kw-space. 
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Let So := 0, Po' = {Pn; un<wPn := Y}, then there exists 
a sequence Sl converging to Xl and IPn n Sll < No for each 
Pn E P~. Here Sl = Sl U {Xl}. Let P~ = {P E P; P n 8 1 =1= 

0}·1'P~1 ~ No since l' point-countable. Let a < WI. Suppose 
that for each f3 < a we have taken Sp such that 

1) Sp converges to xp, xf3 f/. Sf3 and Sp := S{3 U {x{3}. 

2) IP n Spl < No for each P E US<f3Ps. 

3) P{3' = {P E P; P n Sf3 # 0}. Because of IUf3<a P f3 '1 ~ 
~o I{Sp; f3 < o}1 ~ ~o and Lemma 9 there exists sequence 
Sa converging to Xa such that 1) IP n Sal < No for each P E 
Uf3<aPP'· 2) San(Uf3<a Sf3) = 0. Let P~ = {P E l' ; pnSa =1= 0} 
then I Pa'i ~ No. Then, by induction, there exists a collection 
cp':= {Sa; a < WI} such that: 

(C*) : 

1) Sa converges to Xa,Xa fj. Sa and Sa = Sa U {xa} for 
each Sa E cp'. 

2) ISa n PI < No for each P E Up<a Pf3'. 

3) If (3 < a then Sf3 n Sa := 0. 
4) Let E = {Xa; Sa converges to Xa and a < WI}. Then 

lEI := ~1' so we may assume xf3 =1= X a for f3 < o. 

In fact: If lEI := ~o then there exists an X ao with I{a{3 : 

xaf3 = xao ' x af3 E E} I := ~1. Sao is not closed, so there exists 
a Pao E P such that Pao n Sao is not closed in Pao . Then 
IPao n Sao I = ~o and the X ao E Pao E P~o· Let (3 < WI. For 
each fJ < {3, Pa6 n Sa6 is not closed in Pa6 , IPa6 n Sa61 = ~o 

and X ao = X a6 E Pa6 E P~6. Since Saf3 is not closed, then there 
exists aPE l' such that P n Saf3 is not closed in P. Then 
IP n Saf31 = ~o and Xao = xaf3 E Paf3 E P~{j. Since for each 6 < 
{3, IPa6 nsa6 == ~o hence Pa6 E 'P~6 and 'P~6 C US'<afj 'P's,. Then 
IPa6 n Saf3 1 < No and Pa{j f/. {Pa6 ; fJ < {3} by IPafj n Safjl = ~o. 
By induction there exists a collection {Paf3 ; {3 < WI} such that 
I{Pa{j;{3 < w1}1 = ~1 and Xao E nf3<wI Pa{j. This contradicts 
the point-countable of 1'. Thus we any assume xf3 =1= Xa for 
(3 < o. The following shows that we may assume E contains a 
Cantor set C. 
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As Y = Un<wPn , by Lemma 8, there exists a sequential 
space Z which is the union of countable many compact met
ric subsets of Z and there exists a perfect map f : Z ---+ 

Y such that f-1[y] = Z is determined by {f-1[P]; P E 
P }. {f-~ E P } is a point-countable cover of Z and 
f-1[P] = f-1[P] is compact. Y is not a kw-spcae, so Z is not a 
kw-space. Analogously we can prove that there exists a collec
tion {Sa; a < W1} with property (C*). f-1(P O) is a totally dis
connected compact metrizable subset of Z and If-1 [P]o n EI = 
N1 so there exists a Cantor set C with ICnE nj-1[po]1 = N1 . 

MC implies that every uncountable subset of Cantor set con
tains a Cantor set. Then E contains a Cantor set C. By Lemma 
10, Sw x Y is sequential if and only if Sw x Z is sequential. Then 
we amy assume E contains a Cantor set C. Y is a submetric 
space, then there exists all (Y12) which is a metric space with 
12 C 1i. Here (Y1i) is a sequential space. Let d be a metric for 
(Y12). Then d-open ball of (Y12) is open in (Y1i) and every 
1i-compact set is a 12-colnpact set by Lemma 7. 

A) Let C = {x a ; a < W1} be a Cantor subset of E. Let 
c.p == {Sa E ep'; Sa converges to Xa and X a E C}. 

Since C is a compact metric subset and P is a point-countable 
collection, there are only countably many P with 0 c (P nC) =I 
0. Here Oc(pnC) denotes the interior of pnC in the subspace 
c. Let P~ = {P E P ; 0 c (P n C) =I 0} = {Pn ; n < w}. 
Then for each P EP \ P~, Oc(P n C) == 0 that is, P n C is 
nowhere dense in C since P is a collection of closed subsets 
of Y. Now pick a Yo E C. Let Po == {P E P \ P~ ; Yo E 
P} = {P1n ; n < w}. If YfJ and PfJ have been defined for all 
(3 < a, where a < Wt, pick a Ya E C \ [U(UfJ<Ol PfJ )]. Because 
the Cantor set C can not be denoted as the union of count
ably many nowhere dense subsets of C. Let P a == {P E P \ 
P~; Ya E P} == {Pan; n < w}. Then, by induction, there exists 
a subset A = {Ya; a < Wt} of C with IAI = N1 . Then there 
exists a Cantor set Co of A with IP n Col:::; 1 for each PEP 
\ P~. If Pn EP~, then at most there exists one San E ep with 
ISOlnnPnl = No by2)of(C*). Letao == sup{an; ISannPnl = No 
and Pn E P~}. If a > ao then ISOl n Pnl < ~o. Thus we may 
assume without loss of generality that 
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1) IP n CI ~ 1 for each PEP \ P~. 

2) IPn n Sa I < ~o for each Sa E c.p and each Pn E P~. 

B) Let C(O) and C(l) be two Cantor subsets of C with 
C(O) n C(l) == 0. Let d(C(O), C(l)) == rl > 2/nl, and let 
V(81 ) be a 1/n l open ball of C(81 ) in (Y12). Let c.p(81 ) == 
{(Sa n V(81 )) \ (PI U CO); Sa E c.p, Sa converges to X a and 
X a E C(81 )}. Here PI E Po, 81 == 0,1. If X a E C(81 ), then (San 
V(81 )) \ (PI U Co) is a sequence which converges to x a • Then 
1c.p(81 ) I == ~1 and Uc.p(81) C V(81) \ (PI U Co). V(81 ) \ (PI U Co) 
is an open subset of Y which is the union of countably many 
compact metric subsets of Y. Then there exists a compact 
metric subset !«81) which is a subset of V(81 ) \ (PI U Co) such 
that !«81) meets ~1-many sequences in c.p(81 ). Let 

D(81 ) == {xa E C(81 ); Sa E c.p(81 ), Sa n !«81 ) -I- 0 
and Sa converges to x a}, 

then ID(81 )1 == ~1. 

If it has been defined that : 

a) {C(8182 ••• 8n); 8i == 0,1. i == 1,2, ... ,n} is a collection 
of mutually disjoint Cantor sets. 

b) {V(8182 ••• 8n); 8i == 0,1. i == 1,2, ... ,n} is a collection 
of mutually disjoint open balls such that 

V(8182 ••• 8n ) n [Uj~n-l(U{!«8182 8j); 8i == 0,1. 

i == 1,2, ,j})] == 0. 

Here V(8182 ••• 8n ) == {y; d(y, C(8182 ••• 8n )) < lInn}. 

c) {c.p(8182 ••• 8n ); 8i == 0,1,. i == 1,2, ,n} such that 
r.p(81 ••• 8n) == {(Sa n V(81 ••• 8n)) - (PI U U Pn U CO); Sa E 
r.p(81 ••• 8n- 1 ), Sa converges to X a and X a E C(81 ••• 8n)} and 
1c.p(81 • •• 8n)1 == ~1, here Pi E p~ == {Pn E P; Oc(Pn n C) =1= 0}. 

d) {I«81 ••• 8n ); 8i == 0,1. i == 1,2, ... ,n} is a collection of 
compact subsets such that I{(81 ••• 8n ) is a subset of open sub
set V(81 ••• 8n )\(P1 U ...UPnUCO) and I{Sa E r.p(81 ••• 8n ); san 
!«81 •• • 8n ) -I- 0}1 == ~1. 
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e) {D(61 ••• 6n); 6i = 0,1. i = 1,2, ... ,n}, where D(61 ••• 6n) 
= {xa E C(61 ••• 6n); So E c.p(6162 ••• 6n), So converges to X a 
and So n ]{(61 62 ••• 6n) =1= 0} C C(6162 ••• 6n ). 

Take C(81 ••• 8n O) and C(81 ••• 8n l) which are two disjoint 
Cantor subsets of D(61 ••• 6n). Bye), ]{(61 ... 6n) and Co are 
'Ii-compact, thus ]{(61 ... 6n ) and Co are 72-compact. Then 
d(C, Uj<n[U{]{(61 ••. 6j ); 6i = 0,1. i = 1,2, ... ,j}]) = rn +1 > 
oby b) and d) of B). Choose nn+l with (_2_) < rn+l such that

nn+l 

V(61... 6n+1) {y; d(y, C(61... 6n +1)) < _1_} C
nn+l 

V(61... 6n+1) C V(6162 ••• h'n) and V(61 6nO)nV(61... 6n l) = 
0, then {V(61.. . 6n+1); 6i = 0,1. i = 1,2, , n+ I} is a collec
tion of mutually disjoint open balls. Let c.p( 61 .•. 6n+1) = {(So n 
V(81 ... 8n+1 )) - (PI U · · · U Pn+1 U Co); So E c.p( 81 • • .8n), So 
converges to X a and X a E C(61 6n)}, where Pn +1 E Po. 
Then (So n V(h'1 ... 6n+1 )) \ (PI U U Pn+1 U Co) is a se
quence which converges to X a for each X a E C(h'1 62 ••• 6n+1) 
and 1c.p(61 ••• 6n+1 )1 == ~1. V(61... 6n+1 ) \ (PI U ... U Pn+1 U 
Co) is an open subset of Y which is the union of countably 
many compact metric subsets of Y, so there exists a com
pact subset ]((6162 ••• 6n+1) C V(6162 ••• 6n+1) \ (PI U ... U 
Pn +1 UCO) such that ]{(81 •• • 8n+1 ) meets ~1 many sequences in 
c.p(8182 ••• 8n+1). If D(81... 8n+1 ) == {x a E C(81 ••• 8n+1); So E 
c.p(h'1 ... 6n+1 ), So n ]{(61 .•• 6n+1 ) =1= 0 and So converges to 
x a }, then D(61....6n+1) C C(61 ••• 6n+1) C D(61... 6n) and 
ID(h'1 ... h'n+l) I = N1 . Then, by induction, there exist: 

1)K: == {]{(61 ••• 6n ); 8i = 0,1. i = 1,2, ... ,n. n> O.} 
with [U{]{(81 .. . 8j ); 8i == 0,1. i == 1,2, ... ,j. j 2:: n}]nPn = 0 
for each Pn E 'Po. 

2) C = {C(81 ••• 8n ); 8i = 0,1. i = 1,2, ... ,n. n > 
O} and {V(81 ••• 8n); 8i = 0,1. i = 1,2, ... , n. n > O} 
such that nn>O(U{C( h'1 ... h'n); 8i == 0,1. i == 1,2, ... , n}) = 
nn>o(U{V(81 ••• 6n); 6i == 0,1. i == 1,2, ... ,n.}) == C* and 
C* is a Cantor set. If C* == {x(8182 ••• ); 8i == 0,1. i = 
1,2, ... , n. n > O}= {x a ; Q < WI}' then x(8182 ••• 8n ••• ) == 
C(81 ) nC(8182 ) n ... == V(81 ) nV(8182 ) n ... and IC* nPI ::; 1 
for each PEP \ 'Po . 

3) If c.po == {So E c.p; So converges to X a and X a E C*}, 
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then I'PoI == ~1. If Sex E 'Po, Sex converges to X ex and X ex = 
x(8182 ... ) E C*, then Sex n 1«61 ••• 6n) =1= 0 for n > o. 

C) We use the results of B) to construct a collection {Cnm ; n, 
m < w} which does not satisfy condition (C3 ). 

i) Let Al = {x(OO ... )}, and let C1 = {P E P \ Po ; pnA1 =I 
0} = {PIn; n < w}. For each n < w; let K(O ... O i) = 

In fact PIIU...UP1n meets infinitely many sets in K(O ... 0 1), 

n 
{I((O ... 0 1 8182 ... 8m ); 

n 
I{(O ... 0 1 81 ... 8m ) c V(O 

n 
0 I)} 

thus (PIIU ...UP1n ) meets only finitely many sets in K(O 0 1). 
n 

n 
so P I1 U.. .UP1n meets infinitely many sets in K(O ... 0 1 0) or in 

n n	 n 
K(O ... O11) by K(O ... 0 1) == {I((O ... 01)} U K(O ... 0 1 0) U 

n 
K(O . .. 0 1 1). Then we may assume P1I U ... U PIn meets in

n n 
finitely many sets in K(O . .. 0 1 81 ). Because K(O . .. 0 1 61 ) = 

n	 n n 
{!{(0 ... 0 1 81 )} U K (0 ... 0 1 810) U K (0 ... 0 1 81 1), then 

PI1 U ... U PIn meets infinitely many sets in K(O ... 0 1 
n 

810), 
or in K(O . .. 0 1 

n 
811). We may assume P11 U ... U PIn meet

s infinitely many sets in K(O ... 0 1 
n 

8182). Then, by induc
n	 n 

tion, there exist K(O ... 0 1 81 ) :> K(O ... 0 1 8182 ) :> ... such 
n 

that P11 U ... U PIn meets infinitely many sets in K(O . .. 0 1 
n n 

81 ••• 8m ). UK(O ... O 1 81 ••• 8m ) C V(O ... O Ib1 ••• 8m ) so 

(Pll U · · · U PIn) n V(O. · · 0 
n 

1 81 · · · 8m) ,=I 0. nm>o V(O. · · 0 
n

1 

81 ••• 8m ) = {x(O ... O 
n 
1 6162 •.. )} so x(O ... O 

n 
1 8182 ... ) E 

PII U ... U PIn = P II n ... PIn. This is a contradiction to Pli E 
C1 and IPli n C*I ~ 1 for i = 1, 2, ... , n. Then there exists an 

nn and KIn = {I«O ... O16I ... 6n ); 8i = 0,1. i = 1,2, ... nn} 

such that: 

(1)	 (P11 U · · · U PIn) n (UK1n ) = 0. 
(2)	 If Sex converges to X ex , Sex E 'Po and X ex = x(o ... a n 

1 
8162 ,. • .) ¢ Al then Sex n (UK1n ) =1= 0. 

Let	 K1 = Un >oK1n , then 

(1) P meets only finitely many sets in Kl for each P E Cl. 
(2)	 P meets only finitely many sets in K1 for each PEP. 



76 CHEN HUAIPENG 

n 
(3) If Sa converges to X a, X a == x(O ... 0 1 6162 , ••• ) and 

X a ¢ AI, then Sa n (UK1n) I- 0 for each Sa E 'Po· 

In fact: 
1) We omit the proof. 

2) For each PEP. 

a) if P n C* == 0, then there exists an n with P n (U 
{V(81 ... 8n); 8i == 0,1. i = 1,2, ,n}) == 0 by G* == nn>O(U 
{V(81 ••• 8n ); 8i == 0,1. i == 1, ,n}). Then P meets only 
finitely many sets in K1 . 

b) if P n G* I- 0 and P E Po, then P meets only finite
ly many sets in K1 • If P ¢ Po, then IP n G*I ::; 1. Sup

pose that there exists a infinite subcollection {I((O ... 0 1 
n 

8n1 · · · 8nnn ); n < w} of K1 such that P n ]«0 ... 0 
n 
1 

8n1 · · · 8nnn ) -:I 0 for each ]{(0 · · · 0 
n 
1 8n1 ... 8nnn ). Because 

n n-I n-I 
I{(O . .. 0 1 8n1 ... 8nnn ) C V(O... 0), P n V(O. . . 0) l-

n
0. V(O) :) V(OO) :) ... and nn>oV(O ... 0) == {x(OO ... )} 
so x(OO ... ) E P == P and P E C1 • This is a contradiction to 

1). 

3) We omit the proof. 
If GIn == Ui~n(UK1i), then {GIn; 1 ~ n < w} has the prop

erties: 

1) P meets only finitely many sets in {GIn; 1 ~ n < w} for 
each PEP. 

n 
2) If Sa converges to X a, X a = x(O ... 0 1 61 ,62 ••• ) and 

X a tJ. AI, then Sa n GIn f:. 0 for each Sa E 'Po· 
ii) If An - 1 == {x(81 , 82 .•• ); there exist n - 2 many l's in 

81 ,82 , ..• } and {Cn - 1 m; n - 1 ~ m < w} have been defined 
so that: 

1) P meets only finitely many sets in {Gn - I m; n -1 ~ m < 
w} for each PEP. 

2) For each Sa E 'Po, if Sa converges to X a, X a == x(81' ••• 8:n" 
m'+j+1 _ , 

10 ... 0 1 8182 ..• ) tJ. An-I'X~ == x(81 ••• 8:n,IOO ... ) E 
An - I and j ~ m, then ~)a n Cn - 1 m f:. 0. 

Let An == {x(8182 •.. ); there exist n-l many l's in 81 , 82 ••• } 

then An == An U ... U A2 U Al and IAnl == No. Let An == 
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{Xl,X2' ... }' and let Cn = {P E P \ Po'; P n An =I 0} 
{Pni ; i < w}. Pick Xm E An. Then Xm = x(61'62' ... ) 
x(81' •.. 8:n,IOO ... ). 

For each j < w, let 
" m'+i+l " m'+i+l

K(81 ... 8m,IO ... 0 1) = {I«81 ... 8m ,IO ... 0 1 
, m'+i+l ,

81 · • • 6n); 1« 61 ••• 6:n,IO ... 0 1 61 . · · 8n) C V( 81 ... 6:n, 
m'+i+l 

10 ... 0 1 )}. TakePniECn, i==1,2, ... ,m+j+I.Then, 
as in the proof of i), there exists an n(j) and a subcollection 

" m'+i+l
Kni(xm) == {I«81 ••• 6m ,IO ... 0 1 8n1 ... 8nn(i»); 8ni = 

, m'+i+l 
0,1. i == 1,2, ... ,n(j)} of J(,(81 ••• 8:n,10 ... 0 1 ) such 
that; 

1) (Pn1 U ... U Pm+i+1) n (UJ(,nj(xm)) = 0. 
2) For each Sa E 'Po, if Sa converges to Xa, Xa == x(81' • • • 8:n, 

m'+j+1 __ ,
10 ... 0 1 8162 ••• ) ¢ An and x~ == x(61 ••• 8:n,100 ... ) = 
Xm E An' then Sa n (UJ(,nj(Xm)) =I 0. 

Let Kn(xm) = Uj>oKnj(xm). Then J(,n(xm) satisfies: 

1) (Pn1 U ... U Pn m+j) n [UKnj(x m)] = 0, here Pni E Cn for 
i== 1,2, ... ,m+j. 

2) P meets only finitely many sets in J(,n(x m) for each P E 
P. 

3) For each Sa E 'Po, if Sa converges to X a, X a == x(61' • • • 6:n, 
m'+j+l __ , 

10 ... 0 1 8182 ••• ) rf. An and x~ == x(81 ••• 8:n,100 ... ) == 
X m E An, then Sa n (UKni(xm)) =f 0. 

We prove only 2). In fact, if PEP \ Po', suppose that P 
meets infinitely many sets in lCn(xm). Then there exist infinite
ly many J(,ni(xm) such that P meets sets in J(,nj(xm) because 
Kn(xm) == Uj>OJ(,nj(x m) and \lCnj(xm)\ < ~o. UlCnj(xm) C 

m'+i m'+j
V(81' ... 8~,IO ... 0 0 ) so P n V(81' ... 8:n,10 ... 0 0 ) =I 0. 

m'+j
Then {xm} == nj>oV(81' ... 8~,10 ... 0 0 ) C P and P E Cn. 
This is a contradiction to 1). 

Let ICn == U{ICn(xm); X m E An}. Then K n satisfies: 

1) Pnmn[uu{lCnj(Xi); j ~ m, i > O}] = 0for each Pnm E Cn. 
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2) P meets only finitely many sets in J(,n for each PEP. 

3) For each SOl E 'Po, SOl converges to XOl , XOl = X(81' ... 8:n, 
m+j+l _ " 

10 ... 0 1 8182 ••• ) f/.: An' X~ = X(81 ... 8m ,IOO ... ) = 
Xm E An andj ~ m so SOln[uU{J(,nj(Xi); j 2:: m, i> O}] # 0. 

In fact: 
1) for each PEP \ Po, if j ~ m, then Pnm n (UJ(,nj(Xi)) = 0 

for i > 0 by (Pn1 U... UPn m+j)n(UKnj(xm)) = 0. Then Pnmn 
[U(Uj>mJ(,nj(Xi))] == 0 for i > o. Then Pnm n [U{UJ(,nj(Xi); j ~ 

m, i >O}] = 0. 
2) Let PEP \ Po. If P meets infinitely many sets in J(,n = 

U{J(,n(xm); Xm E Am}, then there exists a sets {ml' m2' ... } 
such that P meets sets in J(,n(x mi ) for each mi by property 2) of 
J(,n(x mi ). {xmi ; i > O}e An' so we may assume {xmi ;i > O} 
is a sequence which converges to x and x = X(81 82... ) E An. 
We may also assume {xmi ; i ~ n} e V(81 ... 8n), so Vn(x mi ) = 
V( 81 .. . 8n) for each i ~ n. Here Xmi = X(CIC2 ... ), V(cl) :J 
V(c1c2) :J and Vn(x rni ) == V(C1C2 ... Cn) == V(81 82... 8n) so 
Xmi = X(81 8n8n1 ... 8n niOOO ... ), UJ(,n(x mi ) C V(81 82... 8n) 
and P n V(8t 82... 8n) # 0. P is compact, so X(81 82... ) E P 
and PEen. This is a contradiction to property 1) of J(,n. 

3) SOl E 'Po, SOl converges to XOl , XOl = X(8I' ... 8:n, 
m'+j+l _.. ,

10 ... 0 1 8182 ••• ) ¢: An and x~ = x(81 ••• 8:n,1000 ... ) = 
Xn E An' so SOl n (UKnj(xn)) # 0. If j ~ m , then SOl n (U U 
{Knj(Xi); j ~ m, i > O}) =F 0. 

Let Cnm == U U {PKnj(Xi); j ~ m, i > O} for m ~ n . Then 
{Cnm ; m ~ n} satisfies: 

1) P meets only finitely many sets in {Cnm ; m ~ n} for each 
PE P. 

2) For each SOl E 'Po, if SOl converges to XOl , XOl == x(8t ' ... 8:n, 
m'+j+1 _ ,

10... 1 8182 ••• ) f/. An' X~ == x(81 ... 8:n,1000 ... ) E An 
and j ~ m, then SOl n Cnm # 0. 

Then, by induction, there exists a collection {Cnm ; n :::; m < 
w} such that: 

1) Cnm is closed in (Y1i) for each Cnm E {Cnm ;n :::; m < w}. 
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2) For each n, {Cnm ; m ~ n} is a discrete collection. 

Now we prove C* n (U{Cnm ; m ~ f(n)}) =I 0 and C* n 
(U{Cnm;m ~ f(n)}) = 0 for each f E Ww. 

In fact: If f E w w , let f(i) = ni and let 0 < nl < n2 < 
ml m2 

n3 •••• Pick X a = x(O ... 0 1 0 ... 0 1 0 ... ) E C*, where 
mi == nl + n2 + ··· + ni > i. Take Sa E 'Po such that Sa 

ml m2 mi 
converges to X a , X a == x(O ... O 1 0 ... 0 1 ... 0 1 o... ) f/. Ai 

ml m2 mi-l 

and x~ == x(O . .. 0 1 0 ... 0 1 ... 0 1 000 ... ) == X m E Ai, 
so Sa n (UKini(X m )) f:. 0 and Sa n Cini =I 0 since Ci ni = 
U U {Kij(xm ); j ~ ni, m > O} for i ~ 1. Then Xa E C* n 
U{Cini ; i < w} =1= 0, hence X a E C* n U{Cnm ; m 2: f{n)} f:. 0. 

D) Let 9 : Y ---+ Y/ {C*}. Then 9 is a continuous perfect 
map. Then {g[Cnm ]; m ~ n} satisfies: 

1) g[Cnm ] is closed for each g[Cnm ] E {g[Cnm ]; n ~ m < w} 
in Yj{C*}. 

2) {g[Cnm ]; m < w} is a discrete subcollection of {g[Cnm ]; 

m 2: n} for each n < w. 

3) There exists a C* E U{g[Cnm ]; m ~ n} with C* E 
U{g[Cnm ]; m ~ f(n)} for each f E W w . 

Then Sw x (Yj{C*}) is not sequential by Lemma 6. Thus 
Sw x Y is not sequential by Lemma 10. This is a contradiction 
to the conclusion of Lemma 10. Then Y is a kw-space. 

RESULTS (CH + MC). 

Theorem 1. Let X and Y be k-spaces with point-countable 
closed k-networks. Then X x Y is a k-space if and only if one 
of the three properties below holds: 

a) X and Y have point-countable bases. 
b) X or Y is locally compact. 
c) X and Yare locally kw-spaces. 

Proof. If X contains a copy of 8 2 and X contains no copy of 
Sw, then the perfect image X / {So} of X contains a copy of 
Sw, where So is the converging sequence of 8 2 which has no 
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isolated point. By Lemma 10, (X/ { So}) x Y is sequential if 
and only if X x Y is sequential. 

"only if": 

1) If X and Y contain copies of Sw or S2. Then X and Y 
are locally kw-spaces by lemma 11. 

2) If X contains a copy of 8w or 8 2 , and Y contains no copy 
of Sw and S2. X X Y is sequential then Sw x Y is sequential. 
Then P is compact metrizable for each P E 'P by Lemma 4. 
Then Y has a point countable base by [11, Corollary 4.5]. Sw is 
not strongly Frechet then Y is locally compact by [8, Theorem 
1.1]. 

3) X and Y contain 110 copies of 8w and 8 2 • Y x X is 
sequential and t(Y) ::; w then Y satisfies (C1 ) or X satisfies 
(C2 ) by Lemma 1. 

At the same time X x Y is sequential and t(X) ::; w so X 
satisfies (C1 ) or Y satisfies (C2 ) by Lemma 1. Then there exist 
four cases: 

case 1. X satisfies (C1 ) and Y satisfies (C1 ). Then X and 
Y have point-countable l)ases by [5, Theorem 9.8]. 

case 2. X satisfies (C1 ) and X satisfies (C2 ). Then X has 
a point-countable base by (C1 ). Then X is locally compact by 
(C2). 

case 3. Y satisfies (C1 ) and Y satisfies (C2 ). Same as case 
2. 

case 4. X satisfies (02 ) and Y satisfies (C2 ). If X satisfies 
(C2 ) then P is a compact metrizable set for each P E'P. Then 
X has a point-countable base by [11, lemma 4.1]. So does Y. 

"if" we omit the straightforward proof. 

Corollary. Let X and Y be quotient s-images of locally com
pact metric spaces. Then X x Y is sequential if and only if 
one of the three properties below holds: 

a) X and Y have poirtt-countable bases.
 
b) X or Y is locally compact.
 
c) X and Yare locally kw-spaces.
 

Proof A quotient s-image of a locally compact metric space 
has a point-countable closed k-network. 



81 PRODUCT OF K-SPACES 

Theorem 2. Let X and Y be closed images of metric spaces. 
Then X X Y is sequential if and only if one of three properties 
below holds: 

a) X and Y have point-countable bases. 
b) X or Y is locally compact. 
c) X and Yare locally kw-spaces. 

Proof "only if" 

1) If X contains a copy of Sw then Sw X Y is sequential. If 
Y is a closed image of a metric space, then a/-1 (y) is locally 
compact and Lindeloff for every y E Y by [ 9, Proposition 2.4]. 
We may assume without loss of generality that Y is a closed s
image of a metric space. Then Y has a closed point-countable 
k-network. Then Y is a locally kw-space by Lemma 11. So 
does X . 

2) X contains a copy of Sw and Y contains no copy of Sw, 
then Sw X Y is sequential. As in the proof 1) we may assume 
Y is a closed s-image of a metric space. As in the proof 2) of 
"only if " of Theorem 1, Y is locally compact. 

3) X and Y contain no copies of Sw. Then we may assume 
that X and Yare closed s-images of metric spaces by [11, 
Theorem 1.7 ii]. Then X and Y have closed point-countable 
k-networks. As in the proof 3, of "only if" of Theorem 1, then 
X is locally compact or Y is locally compact or X and Y have 
point-countable bases. 

"if" We omit the straightforword proof. 
The above theorem 2 is analogous to Theorem 1.1 of [9]. 

The following Theorem 3 is analogous to Theorem 3.1 of [7]. 

Theorem 3. Let X and Y be k-and ~-spaces. Then X x Y is 
a k-and N-space if and only if one of the three properties holds: 

a) X and Y have point-countable bases. 
b) X or Y is locally compact. 
c) X and Yare locally kw-spaces. 

Proof. Every k-and ~-space is a k-space with a-locally finite k
network, then every k-and ~-space has a closed point-countable 
k-network. Then the Theorem 3 is a Corollary of Theorem 1. 
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