TOPOLOGY PROCEEDINGS

Volume 15, 1990

Pages 63-82

http://topology.auburn.edu/tp/

THE PRODUCTS OF K-SPACES WITH POINT-COUNTABLE CLOSED K-NETWORKS

by

Chen Huaipeng

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

THE PRODUCTS OF K-SPACES WITH POINT-COUNTABLE CLOSED K-NETWORKS

CHEN HUAIPENG

ABSTRACT. Using a technique of [2] we prove the theorem(CH +MC): Let X and Y be k-spaces with pointcountable closed k-networks. Then $X \times Y$ is sequential if and only if one of the three properties below holds:

- a) X and Y have point-countable bases.
- b) X or Y is locally compact.
- c) X and Y are locally k_{ω} -spaces.

1. INTRODUCTION

Throughout this paper, we shall assume that all spaces are regular, and all maps are continuous surjections.

A cover \mathcal{F} of a space is a k-network if for any $K \subset U$ with K compact and U open, $K \subset \cup \mathcal{F}' \subset U$ for some finite $\mathcal{F}' \subset \mathcal{F}$. A space X is in class \mathcal{T}' [7] if X has the weak topology with respect to a countable cover of closed locally compact subsets. Y. Tanaka [7, Theorem 3.1] has proven:

Theorem 3.1. Let X and Y be k-and \aleph -spaces, then $X \times Y$ is a k-space if and only if one of the three properties below holds:

- a) X and Y are metrizable spaces.
- b) X or Y is a locally compact metrizable space.
- c) X and Y are spaces of the class T'.

Here an \aleph -space [6] is a space with a σ -locally finite knetwork. A k-and \aleph -space is a quotient s-image of a metric space by [4, Theorem 6.1]. So it is desirable to consider the k-ness of the product $X \times Y$ of quotient s-images X, Y of metric spaces. If X and Y are Fréchet, by [10, Theorem 9], it follows that $X \times Y$ is a k-space if and only if X and Y have point-countable bases. Otherwise b) or c) of the above theorem holds. Every quotient s-image of a metric space has a pointcountable k-network by [4, theorem 6.1]. In this paper, under CH(continuum hypothesis) and MC(there exists measurable cardinal) we prove the result:

Theorem 1. Let X and Y be k-spaces with point-countable closed k-networks, then $X \times Y$ is sequential if and only if one of the three properties below holds:

- a) X and Y have point-countable bases.
- b) X or Y is locally compact.
- c) X and Y are locally k_{ω} -spaces.

The author wishes to thank Y. Tanaka and the referee for their suggestions.

2. Lemmas

Recall that a space X has countable tightness, $t(X) \leq \omega$, if $x \in \overline{A}$ in X, then $x \in \overline{C}$ for some countable $C \subset A$.

Lemma 1. (10, Lemma 4). Suppose that $X \times Y$ has a ksystem with $t(X) \leq \omega$, then the following condition (C_1) or (C_2) holds,

(C₁). If $(A_n) \downarrow x$ in X, then there exists a nonclosed subset $\{a_n; n \in \omega\}$ of X with $a_n \in A_n$.

(C₂). If (A_n) is a k-sequence in Y, then some \overline{A}_n is countably compact.

Here $(A_n) \downarrow x$ means a decreasing sequence $\{A_n; n \in \omega\}$ such that $x \in \overline{A_n \setminus \{x\}}$ for $n \in \omega$. A k-sequence [5] is a decreasing sequence $\{A_n; n \in \omega\}$ such that $C = \bigcap_{n \in \omega} A_n$ is compact and each neighborhood of C contains some A_n .

Lemma 2. (4, Lemma 1.7) If $f : X \to Y$ is a quotient map, and if X is determined by the cover \mathcal{P} , then Y is determined by $f(\mathcal{P}) = \{f(P); P \in \mathcal{P}\}.$

We use "X is determined by \mathcal{P} " just as "X has the weak topology with respect to \mathcal{P} ". The terminology is due to [4, note 2].

Lemma 3. Let Y be a quotient s-image of a metric space, and let $S_{\omega} \times Y$ be sequential. If Y is determined by cover \mathcal{P} , then $S_{\omega} \times Y$ is determined by cover $\{S_n \times P; P \in \mathcal{P} \text{ and } S_n \in \varphi\}$.

Proof. Let $f_1 : M_1 \to S_{\omega}$ be a quotient s-map, and let $f_2 : M_2 \to Y$ be a quotient s-map. Here $M_1 = \sum_n S_n$ and M_2 is a metric space. Let \mathcal{B} be a σ -locally finite base of M_2 and let $\mathcal{P} = f_2(\mathcal{B})$. $M_1 \times M_2$ is a metric space and $M_1 \times M_2$ is determined by cover $\{S_n \times B; S_n \in \varphi \text{ and } B \in \mathcal{B}\}$. $f_1 \times f_2$ is a quotient s-map if $S_{\omega} \times Y$ is sequential. Then $S_{\omega} \times Y$ is determined by $\{S_n \times P; S_n \in \mathcal{P}H \text{ and } P \in \mathcal{P}\}$ from Lemma 2.

Lemma 4. Let Y be a quotient s-image of a metric space M, and let $\mathcal{P} = f(\mathcal{B})$. If $S_{\omega} \times Y$ is sequential, the \overline{P} is a compact metric subset of Y for each $P \in \mathcal{P}$. Here \mathcal{B} is a σ -locally finite base of M.

Proof. $\mathcal{B} = \bigcup_{n < \omega} \mathcal{B}_n$ is a σ -locally finite base of M, Let $\mathcal{B}_x = \{B_n \in \mathcal{B}; x \in B_n \text{ and } B_1 \supset \underline{B_2} \supset \cdots \}$ with $\{f(B_n); B_n \in \mathcal{B}_x\}$ is a k-sequence. Then some $\overline{f(B_n)}$ is a compact metric subset of Y by [10, Lemma 6]. Thus we can suppose that $\overline{f(B)}$ is compact for each $B \in \mathcal{B}$.

Lemma 5 (CH). Let Y be a quotient s-image of a metric space. If $S_{\omega} \times Y$ is sequential, then there exists a subcollection \mathcal{P}_{y} of \mathcal{P} such that $|\mathcal{P}_{y}| \leq \aleph_{0}$ and $\cup \mathcal{P}_{y}$ is a neighborhood of y for each $y \in Y$.

Proof. Suppose there exists a point y_0 of Y such that we take any subcollection \mathcal{P}' of \mathcal{P} , if $|\mathcal{P}'| \leq \aleph_0$, then $\cup \mathcal{P}'$ is not a neighborhood of point y_0 .

A. Let N_0 be a Moore-Smith net which converges to $y_0, y_0 \notin N_0$ and $| N_0 | = \aleph_0$. Let $\mathcal{P}_0 = \{P \in P ; P \cap N_0 \neq \emptyset\}$, then $|\mathcal{P}_0| \leq \aleph_0$ by \mathcal{P} point-countable. If we have defined a Moore-Smith net N_β which converges to y_0 with $y_0 \notin N_\beta$, $| N_\beta | \leq \aleph_0$, $\mathcal{P}_\beta = \{P \in \mathcal{P} ; P \cap N_\beta \neq \emptyset\}$ and $| \mathcal{P}_\beta | \leq \aleph_0$ for all $\beta < \alpha$, here $\alpha < \omega_1$. Then $\bigcup (\bigcup_{\beta < \alpha} \mathcal{P}_\beta)$ is not a neighborhood of point y_0 by $| \bigcup_{\beta < \alpha} \mathcal{P}_\beta | \leq y \aleph_0$. So we can take a Moore-Smith net N_α which converges to $y_0, y_0 \notin N_\alpha$, $| N_\alpha | \leq \aleph_0$ and $N_\alpha \cap [\bigcup (\bigcup_{\beta < \alpha} \mathcal{P}_\beta)] = \emptyset$. Let $\mathcal{P}_\alpha = \{P \in \mathcal{P} ; P \cap N_\alpha \neq \emptyset\}$, then $| \mathcal{P}_\alpha$

 $|\leq \aleph_0$ by \mathcal{P} point-countable. Then, by induction, there exists a collection $\{N_{\alpha}; \alpha < \omega_1\}$ such that:

1) N_{α} converges to $y_0, y_0 \notin N_{\alpha}$ and $|N_{\alpha}| \leq \aleph_0$ for each N_{α} .

2) P meets only one N_{α} for each P of \mathcal{P} .

B. Each $N_{\alpha} = \{x_{\alpha 1}, x_{\alpha 2}, \dots, x_{\alpha n}, \dots\} = \{1_{\alpha}, 2_{\alpha}, \dots, n_{\alpha}, \dots\}.$ For each $f_{\alpha} \in {}^{\omega}\omega$ let $H_{\alpha} = \bigcup_{n < \omega} \{\{1_n, 2_n, \dots, f(n)_n\} \times \{1_{\alpha}, 2_{\alpha}, \dots, n_{\alpha}\}\} \subset S_{\omega} \times Y.$ Let $H = \bigcup_{\alpha < \omega_1} H_{\alpha}.$ Here $S_n = \{1_n, 2_n, \dots\}$ is a convergent sequence of $S_{\omega}.$

a) $H \cap (S_n \times P)$ is closed in $S_n \times P$ for each $S_n \times P \in \{S_n \times P; S_n \in \varphi \text{ and } P \in \mathcal{P}\}$. In fact : P meets only one N_{α} by property 2) of $\{N_{\alpha}; \alpha < \omega_1\}$. Then $(S_n \times P) \cap H = (S_n \times P) \cap H_{\alpha} = (S_n \times P) \cap (\bigcup_{i \leq n} \{1_i, 2_i, \ldots, f(i)_i\} \times \{1_{\alpha}, 2_{\alpha}, \ldots, i_{\alpha}\})$ has only finitely many points.

b) H is not closed. We prove $(\infty, y_0) \in \overline{H} - H$. Here " ∞ " denotes the nonisolated point in S_{ω} . If $f \in {}^{\omega}\omega$, let U_f be the neighborhood of point " ∞ " in S_{ω} defined by $U_f = \{\infty\} \cup$ $\{n_m; n \ge f(m)\}$. Let U be a neighborhood of point y_0 in Y, then $N_{\alpha} \cap U \neq \emptyset$ for each $N_{\alpha} \in \{N_{\alpha}; \alpha < \omega_1\}$. Then there exists $n(\alpha)_{\alpha} \in N_{\alpha} \cap U$. Let $g(\alpha) = n(\alpha)$, then $g \in {}^{\omega_1}\omega$. By $f \in {}^{\omega}\omega$, there exists function $f_{\alpha_0} \in {}^{\omega}\omega$ such that $A = \{n \in {}^{\omega}\omega\}$ ω ; $f_{\alpha_0}(n) > f(n)$ is infinite. Because $g(\alpha_0) = n(\alpha_0)$, there exists $n' \in A$ with $n' > n(\alpha_0)$. Then $(f_{\alpha_0}(n')_{n'}, n(\alpha_0)_{\alpha_0}) \in$ $\{1_{n'}, 2_{n'}, \dots, f_{\alpha_0}(n')_{n'}\} \times \{1_{\alpha_0}, 2_{\alpha_0}, \dots, n(\alpha_0)_{\alpha_0}, \dots, n'_{\alpha_0}\} \subset$ H. On the other hand the $n' \in A$ gives $f_{\alpha_0}(n') > f(n')$, so $f_{\alpha_0}(n')_{n'} \in \{n_m; n \geq f(m)\} \subset U_f \text{ and } n(\alpha_0)_{\alpha_0} \in N_{\alpha_0} \cap U.$ Then $(f_{\alpha_0}(n')_{n'}, n(\alpha_0)_{\alpha_0}) \in (U_f \times U) \cap H_{\alpha_0} \subset (U_f \times U) \cap H$ and H is not closed. Then $S_{\omega} \times Y$ can not be determined by $\{S_n \times P; S_n \in \varphi \text{ and } P \in \mathcal{P}\}$. But $S_\omega \times Y$ is determined by $\{S_n \times P; S_n \in \varphi \text{ and } P \in \mathcal{P}\}$ because of Lemma 3. This is a contradiction.

Lemma 6. Let Y be a quotient s-image of a metric space. If $S_{\omega} \times Y$ is sequential, then Y satisfies the following condition (C_3) ,

(C₃). If Y has a collection $\{C_{nm}; n, m < \omega\}$ such that 1) C_{nm} is a closed set for each $C_{nm} \in \{C_{nm}; n, m < \omega\}$, 2) $\{C_{nm}; m < \omega\}$ is a discrete subcollection of $\{C_{nm}; n, m < \omega\}$ for each $n < \omega$, then for each $x \in \overline{\bigcup_{nm} C_{nm}}$, there exists a function $f \in {}^{\omega}\omega$ with the $x \notin \overline{\bigcup_{nm} C_{nm}; m \ge f(n)}\}$.

Proof. If Y does not satisfy (C_3) , then there exists a collection $\{C_{nm}; n, m < \omega\}$ in Y such that

1) C_{nm} is closed for each $C_{nm} \in \{C_{nm}; n, m < \omega\}$.

2) $\{C_{nm}; m < \omega\}$ is a discrete subcollection of $\{C_{nm}; n, m < \omega\}$ for each $n < \omega$. But there exists $x_0 \in \overline{\bigcup_{nm} C_{nm}}$, with the $x_0 \in \overline{\bigcup_{nm} (m)}$ for each $f \in {}^{\omega}\omega$.

Let $A = \bigcup_{nm}(\{m_n\} \times C_{nm})$. On the one hand; $(S_n \times P) \cap A = \bigcup_m(\{m_n\} \times C_{nm}) \cap (S_n \times P)$ is closed in $S_n \times P$ by 1) and 2) of (C_3) . On the other hand: $(U_f \times U) \cap A \neq \emptyset$ for each $f \in {}^{\omega}\omega$ and each neighborhood U of the x_0 . In fact: for each $f \in {}^{\omega}\omega$, if $x_0 \in \bigcup\{C_{nm}; m \ge f(n)\}$ then $U \cap (\cup\{C_{nm}; m \ge f(n)\}) \neq \emptyset$. So, there exists $C_{nm} \in \{C_{nm}; m \ge f(n)\}$ with $U \cap C_{nm} \neq \emptyset$. Then $(U_f \times U) \cap A \supset (U_f \times U) \cap (\{m_n\} \times C_{nm}) \neq \emptyset$. This implies that $S_{\omega} \times Y$ is not sequential. This is a contradiction.

Lemma 7. Let (XT_1) and (XT_2) be regular, and let $T_2 \subset T_1$. If subset C of X is T_1 -compact, then C is T_2 -compact and $T_2|C = T_1|C$. Here $\mathcal{A}|B = \{A \cap B; A \in \mathcal{A}\}.$

Proof. We only prove $\mathcal{T}_2|C = \mathcal{T}_1|C$. $\mathcal{T}_2 \subset \mathcal{T}_1$ then $\mathcal{T}_2|C \subset \mathcal{T}_1|C$. On the other hand: if $O_1 \in \mathcal{T}_1$, $O_1 \cap C \in \mathcal{T}_1|C$ then $C - (O_1 \cap C)$ is a \mathcal{T}_1 -compact subset of X. $C - (O_1 \cap C)$ is a \mathcal{T}_2 -compact subset of X, then $C - (O_1 \cap C)$ is a \mathcal{T}_2 -compact subset of C. Then $C - (O_1 \cap C)$ is a \mathcal{T}_2 -closed subset of C. Then $C - (C - (O_1 \cap C)) = O_1 \cap C$ is a \mathcal{T}_2 -open subset of C. Then there exists $O_2 \in \mathcal{T}_2$ with $O_2 \cap C = O_1 \cap C$. This implies $O_1 \cap C \in \mathcal{T}_2|C$.

Lemma 8. Let Y be sequential. If Y is the union of countably many compact metric subsets of Y, then there exists a totally disconnected sequential space Z which is the union of countably many compact metric subsets of Z and there exists a perfect map $f: Z \to Y$.

Proof. If $(Y\mathcal{T}_1)$ is a regular sequential space which is the union of countably many compact metric subsets of Y. Then $(Y\mathcal{T}_1)$

is a paracompact σ -space. Then Y has a G_{δ} -diagonal by [3, Theorem 4.6]. Then $(Y\mathcal{T}_1)$ is submetrizable by [3, Corollary 2.9]. There exists a topology \mathcal{T}_2 on Y such that $\mathcal{T}_2 \subset \mathcal{T}_1$ and $(Y\mathcal{T}_2)$ is metrizable. $(Y\mathcal{T}_1)$ is the union of countably many compact subsets of $(Y\mathcal{T}_1)$, then $(Y\mathcal{T}_2)$ is the union of countably many compact subsets of $(Y\mathcal{T}_2)$ by Lemma 7. Then $(X\mathcal{T}_2)$ has a countable base \mathcal{B} . By [1, Chapter 6, 252], $(X\mathcal{T}_2)$ is an image of a subspace $(Z\mathcal{O}_2)$ of the Baire space $B(\aleph_0)$ under an irreducible perfect map f. The Baire space $B(\aleph_0)$ is totally disconnected, so is the subspace $(Z\mathcal{O}_2)$. Let $\mathcal{K} = \{f^{-1}[K]; K$ is a compact subset of $(Y\mathcal{T}_1)\}$. Then \mathcal{K} is a compact metrizable subset collection of $(Z\mathcal{O}_2)$ by Lemma 7 and \mathcal{K} is a cover of Z. Let

 $\mathcal{O}_1 = \{ A \subset Z; \ A \cap f^{-1}[K] \in \mathcal{O}_2 | f^{-1}[K] \text{ for each } f^{-1}[K] \in \mathcal{K} \}.$

We can prove these results:

A) $\mathcal{O}_2 \subset \mathcal{O}_1$ and \mathcal{O}_1 is a topology of Z. In fact:

1) $O \in \mathcal{O}_2$ then $O \cap f^{-1}[K] \in \mathcal{O}_2[f^{-1}[K]]$ for each $f^{-1}[K] \in \mathcal{K}$. This implies $O \in \mathcal{O}_1$. Then $X = \bigcup \mathcal{O}_2 \subset \bigcup \mathcal{O}_1 \subset X$.

2) If $A, B \in \mathcal{O}_1$, for each $f^{-1}[K], A \cap f^{-1}[K] \in \mathcal{O}_2 | f^{-1}[K]$, then there exists $O_1 \in \mathcal{O}_2$ with $A \cap f^{-1}[K] = O_1 \cap f^{-1}[K]$. Also $B \cap f^{-1}[K] = O_2 \cap f^{-1}[K]$. Then $(A \cap B) \cap f^{-1}[K] = (O_1 \cap O_2) \cap f^{-1}[K] \in \mathcal{O}_2 | f^{-1}[K]$, which implies $A \cap B \in \mathcal{O}_1$.

3) If $A_{\alpha} \in \mathcal{O}_1, \alpha \in \Lambda$, for each $f^{-1}[K] \in \mathcal{K}, A_{\alpha} \cap f^{-1}[K] \in \mathcal{O}_2|f^{-1}[K]$ then there exists $O_{\alpha} \in \mathcal{O}_2$ with $A_{\alpha} \cap f^{-1}[K] = O_{\alpha} \cap f^{-1}[K]$. Then $(\bigcup_{\alpha \in \Lambda} A_{\alpha}) \cap f^{-1}[K] = (\bigcup_{\alpha \in \Lambda} O_{\alpha}) \cap f^{-1}[K] \in \mathcal{O}_2|f^{-1}[K]$. This implies $\bigcup_{\alpha \in \Lambda} A_{\alpha} \in \mathcal{Q}_1$.

B) $\mathcal{O}_1[f^{-1}[K]] = \mathcal{O}_2[f^{-1}[K]]$ and $f^{-1}[K]$ is a \mathcal{O}_1 -compact metric subset of Z for each $f^{-1}[K] \in \mathcal{K}$. In fact:

1) $\mathcal{O}_2 \subset \mathcal{O}_1$ then $\mathcal{O}_2|f^{-1}[K] \subset \mathcal{O}_1|f^{-1}[K]$. On the other hand $A \in \mathcal{O}_1|f^{-1}[K]$ then there exists $B \in \mathcal{O}_1$ with $A = B \cap f^{-1}[K]$. $B \in \mathcal{O}_1$ then $B \cap f^{-1}[K] \in \mathcal{O}_2|f^{-1}[K]$. Then there exists $\mathcal{O}_2 \in \mathcal{O}_2$ with $B \cap f^{-1}[K] = \mathcal{O}_2 \cap f^{-1}[K] \in \mathcal{O}_2|f^{-1}[K]$. This implies $B \cap f^{-1}[K] = A \in \mathcal{O}_2|f^{-1}[K]$.

2) $(Z\mathcal{O}_2)$ is a metric space. If d is the metric, then $(f^{-1}[K]d)$ is a compact metric subspace of $(Z\mathcal{O}_1)$ by $\mathcal{O}_1|f^{-1}[K] = \mathcal{O}_2|f^{-1}[K]$.

C) $(Z\mathcal{O})$ is sequential.

In fact: \mathcal{K} is a compact metric subset collection of $(Z\mathcal{O}_1)$ by B). On the other hand $\mathcal{O}_1 = \{A \subset Z; \text{ for each } f^{-1}[K] \in \mathcal{K}, A \cap f^{-1}[K] \in \mathcal{O}_2 | f^{-1}[K] = \mathcal{O}_1 | f^{-1}[K] \text{ by B} \}$. This implies $(Z\mathcal{O}_1)$ is sequential.

D) $(Z\mathcal{O}_2)$ is totally disconnected. $\mathcal{O}_2 \subset \mathcal{O}_1$ then $(Z\mathcal{O}_1)$ is totally disconnected.

Above we have proven that $(Z\mathcal{O}_1)$ is a totally disconnected sequential space which is the union of countably many compact metric subsets of $(Z\mathcal{O}_1$. Now we prove that $f:(Z\mathcal{O}_1) \to (Y\mathcal{T}_1)$ is a continuous perfect map. In fact : K is a compact metric subset of $(Y\mathcal{T}_1)$ for each $f^{-1}[K] \in \mathcal{K}$. Let $O \subset K$, and let Obe open in K. Then $O \in \mathcal{T}_2|K$ by Lemma 7 $\mathcal{T}_1|K = \mathcal{T}_2|K$. We have known that $f:(Z\mathcal{O}_2) \to (Y\mathcal{T}_2)$ is a continuous perfect map. Then $f|f^{-1}[K]:f^{-1}[K] \to K$ is a continuous map. $(f|f^{-1}[K])^{-1}(0) \in \mathcal{O}_2|f^{-1}[K] = \mathcal{O}_1|f^{-1}[K]$ then $(f|f^{-1}[K])^{-1}(O)$ is an $\mathcal{O}_1|f^{-1}[K]$ -open subset of $f^{-1}[K]$. If $O \in \mathcal{T}_1$, then for each $f^{-1}[K]$, $f^{-1}[K] \cap f^{-1}[O] = f^{-1}[K \cap O] =$ $(f|f^{-1}[K])^{-1}[O \cap K]$ is $\mathcal{O}_1|f^{-1}[K]$ -open in $f^{-1}[K]$. $(Z\mathcal{O}_1)$ is determined by \mathcal{K} then $f^{-1}[O] \in \mathcal{O}_1$. This implies that f: $(Z\mathcal{O}_1) \to (Y\mathcal{T}_1)$ is a continuous map. On the other hand $f^{-1}(x) \in \mathcal{K}$ then $f^{-1}(x)$ is \mathcal{O}_1 -compact. If we take a closed subset B of $(Z\mathcal{O}_1)$ then $f^{-1}[K] \cap B$ is \mathcal{O}_1 -compact. f is \mathcal{O}_1 continuous so $f[f^{-1}[K] \cap B] = K \cap f[B]$ is a \mathcal{T}_1 -compact subset of Y. Then $K \cap f[B]$ is \mathcal{T}_1 -closed. $(Y\mathcal{T}_1)$ is sequential hence f[B] is \mathcal{T}_1 -closed. This implies that $f:(Z\mathcal{O}_1) \to (Y\mathcal{T}_1)$ is a continuous perfect map.

Lemma 9. Let Y be a quotient s-image of a metric space, and let $S_{\omega} \times Y$ be a sequential space. Suppose that there exists $\mathcal{P}' = \{P_n \in \mathcal{P}; n < \omega\}$ and $\{S_n; n < \omega\}$ such that for each convergent sequence $S \cup \{x\}$ of Y and each $P_n \in \mathcal{P}'$, if $|(S \cup \{x\}) \cap P_n| < \aleph_0$ then $(S \cup \{x\}) \setminus (\cup\{S_n : n < \omega\})$ is finite. Then Y is a k_{ω} -space. Proof. Let $\mathcal{P}'' = \{P \in \mathcal{P}; P \cap (\bigcup_{n < \omega} S_n) \neq \emptyset\}$ then $|\mathcal{P}''| \leq \aleph_0$ since \mathcal{P} point-countable and $|\bigcup_{n < \omega} S_n| \leq \aleph_0$. Suppose that Bis not closed then there exists a convergent sequence $S \cup \{x\}$ such that $(S \cup \{x\}) \cap B$ is not closed in $S \cup \{x\}$. We may assume $S \subset B$ without loss of generality. If there exists a $P_n \in$ \mathcal{P}' with $|P_n \cap S| = \aleph_0$, then $\overline{P}_n \cap B$ is not closed in \overline{P}_n . If $|P_n \cap S| < \aleph_0$ for each $P_n \in \mathcal{P}'$, then $S \cup \{x\} \setminus (\cup\{S_n : n < \omega\})$ is finite. S is not closed then there exists a P such that $P \cap S$ is not closed in P. This $P \in \mathcal{P}''$ and $B \cap \overline{P}$ are not closed in \overline{P} . We prove that Y is determined by $\{\overline{P}; P \in \mathcal{P}' \text{ or } P \in \mathcal{P}''\}$. Then Y is a k_{ω} -space by Lemma 4.

Lemma 10. Let $f : Z \to Y$ be a perfect map. If Z is sequential then $S_{\omega} \times Z$ is sequential if and only if $S_{\omega} \times Y$ is sequential.

Proof. Let $I_{s_{\omega}}: S_{\omega} \to S_{\omega}$ be an identity map. Then $I_{S_{\omega}} \times f: S_{\omega} \times Z \to S_{\omega} \times Y$ is a perfect map. If $S_{\omega} \times Z$ is sequential then $S_{\omega} \times Y$ is sequential. On the other hand: If $S_{\omega} \times Y$ is sequential then $S_{\omega} \times Z$ is a k-space. Since each compact subset of $S_{\omega} \times Z$ is a metric subset then $S_{\omega} \times Z$ is sequential.

Remark. In order to show the following Lemma 11, we shall use the assumption MC(there exists measurable cardinal) and a technique of [2]. The author does not know whether the assumption MC of Lemma 11 can be omitted. We say that Cis a Cantor set if C is homeomorphic to $\{0,1\}^{\omega}$.

Lemma 11. (CH + MC). Let Y be a k-space with a pointcountable closed k-network $\{P_{\alpha}; \alpha \in \Lambda\}$. If $S_{\omega} \times Y$ is a k-space, then Y is a locally k_{ω} -space.

Proof. We may assume Y is a quotient s-image of a metric space by [4, Theorem 6.1]. Firstly; each point y of Y has a neighborhood U which is the union of countably many compact metric subsets of Y by Lemma 5. Let U be a closed neighborhood. $S_{\omega} \times Y$ is a k-space then $S_{\omega} \times Y$ is sequential. Hence $S_{\omega} \times U$ is a sequential subspace. Without loss of generality, let $Y = U = \bigcup_{n \leq \omega} P_n$. We prove that Y is a k_{\omega}-space.

Suppose that Y is not a k_{ω} -space.

Let $S_0 = \emptyset$, $\mathcal{P}_0' = \{P_n; \cup_{n < \omega} P_n = Y\}$, then there exists a sequence S_1 converging to x_1 and $|P_n \cap \overline{S}_1| < \aleph_0$ for each $P_n \in \mathcal{P}'_0$. Here $\overline{S}_1 = S_1 \cup \{x_1\}$. Let $\mathcal{P}'_1 = \{P \in \mathcal{P}; P \cap \overline{S}_1 \neq \emptyset\}$. $|\mathcal{P}'_1| \leq \aleph_0$ since \mathcal{P} point-countable. Let $\alpha < \omega_1$. Suppose that for each $\beta < \alpha$ we have taken S_β such that

1) S_{β} converges to x_{β} , $x_{\beta} \notin S_{\beta}$ and $\overline{S}_{\beta} = S_{\beta} \cup \{x_{\beta}\}$.

2) $|P \cap S_{\beta}| < \aleph_0$ for each $P \in \bigcup_{\delta < \beta} \mathcal{P}_{\delta}$.

3) $\mathcal{P}_{\beta}' = \{P \in \mathcal{P}; P \cap \overline{S}_{\beta} \neq \emptyset\}$. Because of $|\bigcup_{\beta < \alpha} \mathcal{P}_{\beta}'| \leq \aleph_0 |\{S_{\beta}; \beta < \alpha\}| \leq \aleph_0$ and Lemma 9 there exists sequence S_{α} converging to x_{α} such that 1) $|P \cap \overline{S}_{\alpha}| < \aleph_0$ for each $P \in \bigcup_{\beta < \alpha} \mathcal{P}_{\beta}'.2$ $S_{\alpha} \cap (\bigcup_{\beta < \alpha} S_{\beta}) = \emptyset$. Let $\mathcal{P}_{\alpha}' = \{P \in \mathcal{P}; P \cap \overline{S}_{\alpha} \neq \emptyset\}$ then $|\mathcal{P}_{\alpha}'| \leq \aleph_0$. Then, by induction, there exists a collection $\varphi' = \{S_{\alpha}; \alpha < \omega_1\}$ such that:

 (C^*) :

1) S_{α} converges to $x_{\alpha}, x_{\alpha} \notin S_{\alpha}$ and $\overline{S}_{\alpha} = S_{\alpha} \cup \{x_{\alpha}\}$ for each $S_{\alpha} \in \varphi'$.

2) $|S_{\alpha} \cap P| < \aleph_0$ for each $P \in \bigcup_{\beta < \alpha} \mathcal{P}_{\beta'}$.

3) If $\beta < \alpha$ then $S_{\beta} \cap S_{\alpha} = \emptyset$.

4) Let $E = \{x_{\alpha}; S_{\alpha} \text{ converges to } x_{\alpha} \text{ and } \alpha < \omega_1\}$. Then $|E| = \aleph_1$, so we may assume $x_{\beta} \neq x_{\alpha}$ for $\beta < \alpha$.

In fact: If $|E| = \aleph_0$ then there exists an x_{α_0} with $|\{\alpha_\beta : x_{\alpha_\beta} = x_{\alpha_0}, x_{\alpha_\beta} \in E\}| = \aleph_1$. S_{α_0} is not closed, so there exists a $P_{\alpha_0} \in \mathcal{P}$ such that $P_{\alpha_0} \cap S_{\alpha_0}$ is not closed in P_{α_0} . Then $|P_{\alpha_0} \cap S_{\alpha_0}| = \aleph_0$ and the $x_{\alpha_0} \in P_{\alpha_0} \in \mathcal{P}'_{\alpha_0}$. Let $\beta < \omega_1$. For each $\delta < \beta$, $P_{\alpha_\delta} \cap S_{\alpha_\delta}$ is not closed in P_{α_δ} , $|P_{\alpha_\delta} \cap S_{\alpha_\delta}| = \aleph_0$ and $x_{\alpha_0} = x_{\alpha_\delta} \in P_{\alpha_\delta} \in \mathcal{P}'_{\alpha_\delta}$. Since S_{α_β} is not closed, then there exists a $P \in \mathcal{P}$ such that $P \cap S_{\alpha_\beta}$ is not closed in P. Then $|P \cap S_{\alpha_\beta}| = \aleph_0$ and $x_{\alpha_0} = x_{\alpha_\beta} \in P_{\alpha_\beta} \in \mathcal{P}'_{\alpha_\beta}$. Since for each $\delta < \beta$, $|P_{\alpha_\delta} \cap S_{\alpha_\delta} = \aleph_0$ hence $P_{\alpha_\delta} \in \mathcal{P}'_{\alpha_\delta}$ and $\mathcal{P}'_{\alpha_\delta} \subset \bigcup_{\delta' < \alpha_\beta} \mathcal{P}'_{\delta'}$. Then $|P_{\alpha_\delta} \cap S_{\alpha_\beta}| < \aleph_0$ and $P_{\alpha_\beta} \notin \{P_{\alpha_\delta}; \delta < \beta\}$ by $|P_{\alpha_\beta} \cap S_{\alpha_\beta}| = \aleph_0$. By induction there exists a collection $\{P_{\alpha_\beta}; \beta < \omega_1\}$ such that $|\{P_{\alpha_\beta}; \beta < \omega_1\}| = \aleph_1$ and $x_{\alpha_0} \in \bigcap_{\beta < \omega_1} P_{\alpha_\beta}$. This contradicts the point-countable of \mathcal{P} . Thus we any assume $x_\beta \neq x_\alpha$ for $\beta < \alpha$. The following shows that we may assume E contains a Cantor set C.

As $Y = \bigcup_{n < \omega} P_n$, by Lemma 8, there exists a sequential space Z which is the union of countable many compact metric subsets of Z and there exists a perfect map $f : Z \rightarrow$ Y such that $f^{-1}[Y] = Z$ is determined by $\{f^{-1}[P]; P \in$ \mathcal{P} }. { $f^{-1}[P]; P \in \mathcal{P}$ } is a point-countable cover of Z and $f^{-1}[\overline{P}] = \overline{f^{-1}[P]}$ is compact. Y is not a k_w-spcae, so Z is not a k_{ω} -space. Analogously we can prove that there exists a collection $\{S_{\alpha}; \alpha < \omega_1\}$ with property (C^*) . $f^{-1}(\overline{P}_0)$ is a totally disconnected compact metrizable subset of Z and $|f^{-1}[\overline{P}]_0 \cap E| =$ \aleph_1 so there exists a Cantor set C with $|C \cap E \cap f^{-1}[\overline{P}_0]| = \aleph_1$. MC implies that every uncountable subset of Cantor set contains a Cantor set. Then E contains a Cantor set C. By Lemma 10, $S_{\omega} \times Y$ is sequential if and only if $S_{\omega} \times Z$ is sequential. Then we amy assume E contains a Cantor set C. Y is a submetric space, then there exists an $(Y\mathcal{T}_2)$ which is a metric space with $\mathcal{T}_2 \subset \mathcal{T}_1$. Here $(Y\mathcal{T}_1)$ is a sequential space. Let d be a metric for $(Y\mathcal{T}_2)$. Then d-open ball of $(Y\mathcal{T}_2)$ is open in $(Y\mathcal{T}_1)$ and every \mathcal{T}_1 -compact set is a \mathcal{T}_2 -compact set by Lemma 7.

A) Let $C = \{x_{\alpha}; \alpha < \omega_1\}$ be a Cantor subset of E. Let $\varphi = \{S_{\alpha} \in \varphi'; S_{\alpha} \text{ converges to } x_{\alpha} \text{ and } x_{\alpha} \in C\}.$

Since C is a compact metric subset and \mathcal{P} is a point-countable collection, there are only countably many P with $O_C(P \cap C) \neq$ \emptyset . Here $O_C(P \cap C)$ denotes the interior of $P \cap C$ in the subspace C. Let $\mathcal{P}'_0 = \{P \in \mathcal{P} ; O_C(P \cap C) \neq \emptyset\} = \{P_n; n < \omega\}.$ Then for each $P \in \mathcal{P} \setminus \mathcal{P}'_0$, $O_C(P \cap C) = \emptyset$ that is, $P \cap C$ is nowhere dense in C since \mathcal{P} is a collection of closed subsets of Y. Now pick a $y_0 \in C$. Let $\mathcal{P}_0 = \{P \in \mathcal{P} \setminus \mathcal{P}'_0 ; y_0 \in \mathcal{P}'_0\}$ P = { P_{1n} ; $n < \omega$ }. If y_{β} and \mathcal{P}_{β} have been defined for all $\beta < \alpha$, where $\alpha < \omega_1$, pick a $y_{\alpha} \in C \setminus [\cup (\cup_{\beta < \alpha} \mathcal{P}_{\beta})]$. Because the Cantor set C can not be denoted as the union of countably many nowhere dense subsets of C. Let $\mathcal{P}_{\alpha} = \{P \in \mathcal{P} \setminus$ \mathcal{P}'_0 ; $y_{\alpha} \in P$ = { $P_{\alpha n}$; $n < \omega$ }. Then, by induction, there exists a subset $A = \{y_{\alpha}; \alpha < \omega_1\}$ of C with $|A| = \aleph_1$. Then there exists a Cantor set C_0 of A with $|P \cap C_0| \leq 1$ for each $P \in \mathcal{P}$ $\setminus \mathcal{P}'_0$. If $P_n \in \mathcal{P}'_0$, then at most there exists one $S_{\alpha_n} \in \varphi$ with $|S_{\alpha_n} \cap P_n| = \aleph_0$ by 2) of (C^*) . Let $\alpha_0 = \sup\{\alpha_n; |S_{\alpha_n} \cap P_n| = \aleph_0$ and $P_n \in \mathcal{P}'_0$. If $\alpha > \alpha_0$ then $|S_\alpha \cap P_n| < \aleph_0$. Thus we may assume without loss of generality that

1) $|P \cap C| \leq 1$ for each $P \in \mathcal{P} \setminus \mathcal{P}'_0$.

2) $|P_n \cap S_\alpha| < \aleph_0$ for each $S_\alpha \in \varphi$ and each $P_n \in \mathcal{P}'_0$.

B) Let C(0) and C(1) be two Cantor subsets of C with $C(0) \cap C(1) = \emptyset$. Let $d(C(0), C(1)) = r_1 > 2/n_1$, and let $V(\delta_1)$ be a $1/n_1$ open ball of $C(\delta_1)$ in $(Y\mathcal{T}_2)$. Let $\varphi(\delta_1) = \{(S_{\alpha} \cap V(\delta_1)) \setminus (P_1 \cup C_0); S_{\alpha} \in \varphi, S_{\alpha} \text{ converges to } x_{\alpha} \text{ and } x_{\alpha} \in C(\delta_1)\}$. Here $P_1 \in \mathcal{P}_0, \delta_1 = 0, 1$. If $x_{\alpha} \in C(\delta_1)$, then $(S_{\alpha} \cap V(\delta_1)) \setminus (P_1 \cup C_0)$ is a sequence which converges to x_{α} . Then $|\varphi(\delta_1)| = \aleph_1$ and $\cup \varphi(\delta_1) \subset V(\delta_1) \setminus (P_1 \cup C_0)$. $V(\delta_1) \setminus (P_1 \cup C_0)$ is an open subset of Y which is the union of countably many compact metric subsets of Y. Then there exists a compact metric subset $K(\delta_1)$ which is a subset of $V(\delta_1) \setminus (P_1 \cup C_0)$ such that $K(\delta_1)$ meets \aleph_1 -many sequences in $\varphi(\delta_1)$. Let

$$D(\delta_1) = \{ x_{\alpha} \in C(\delta_1); \ S_{\alpha} \in \varphi(\delta_1), \ S_{\alpha} \cap K(\delta_1) \neq \emptyset$$

and S_{α} converges to $x_{\alpha} \},$

then $|D(\delta_1)| = \aleph_1$.

If it has been defined that :

a) $\{C(\delta_1 \delta_2 \dots \delta_n); \delta_i = 0, 1, i = 1, 2, \dots, n\}$ is a collection of mutually disjoint Cantor sets.

b) $\{V(\delta_1 \delta_2 \dots \delta_n); \delta_i = 0, 1, i = 1, 2, \dots, n\}$ is a collection of mutually disjoint open balls such that

$$V(\delta_1 \delta_2 \dots \delta_n) \cap [\bigcup_{j \le n-1} (\bigcup \{ K(\delta_1 \delta_2 \dots \delta_j); \ \delta_i = 0, 1.$$

$$i = 1, 2, \dots, j \})] = \emptyset.$$

Here $V(\delta_1\delta_2...\delta_n) = \{y; d(y, C(\delta_1\delta_2...\delta_n)) < 1/n_n\}.$

c) $\{\varphi(\delta_1\delta_2...\delta_n); \delta_i = 0, 1, i = 1, 2, ..., n\}$ such that $\varphi(\delta_1...\delta_n) = \{(S_{\alpha} \cap V(\delta_1...\delta_n)) - (P_1 \cup ... \cup P_n \cup C_0); S_{\alpha} \in \varphi(\delta_1...\delta_{n-1}), S_{\alpha} \text{ converges to } x_{\alpha} \text{ and } x_{\alpha} \in C(\delta_1...\delta_n)\}$ and $|\varphi(\delta_1...\delta_n)| = \aleph_1$, here $P_i \in \mathcal{P}'_0 = \{P_n \in \mathcal{P}; O_C(P_n \cap C) \neq \emptyset\}$.

d) { $K(\delta_1 \dots \delta_n)$; $\delta_i = 0, 1. i = 1, 2, \dots, n$ } is a collection of compact subsets such that $K(\delta_1 \dots \delta_n)$ is a subset of open subset $V(\delta_1 \dots \delta_n) \setminus (P_1 \cup \dots \cup P_n \cup C_0)$ and $|\{S_\alpha \in \varphi(\delta_1 \dots \delta_n); S_\alpha \cap K(\delta_1 \dots \delta_n) \neq \emptyset\}| = \aleph_1$.

e) $\{D(\delta_1 \dots \delta_n); \ \delta_i = 0, 1, i = 1, 2, \dots, n\}$, where $D(\delta_1 \dots \delta_n)$ = $\{x_{\alpha} \in C(\delta_1 \dots \delta_n); \ S_{\alpha} \in \varphi(\delta_1 \delta_2 \dots \delta_n), S_{\alpha} \text{ converges to } x_{\alpha} \text{ and } S_{\alpha} \cap K(\delta_1 \delta_2 \dots \delta_n) \neq \emptyset\} \subset C(\delta_1 \delta_2 \dots \delta_n).$

Take $C(\delta_1 \dots \delta_n 0)$ and $C(\delta_1 \dots \delta_n 1)$ which are two disjoint Cantor subsets of $D(\delta_1 \dots \delta_n)$. By e), $K(\delta_1 \dots \delta_n)$ and C_0 are \mathcal{T}_1 -compact, thus $K(\delta_1 \dots \delta_n)$ and C_0 are \mathcal{T}_2 -compact. Then $d(C, \cup_{j < n} [\cup \{K(\delta_1 \dots \delta_j); \delta_i = 0, 1, i = 1, 2, \dots, j\}]) = r_{n+1} > 0$ 0 by b) and d) of B). Choose n_{n+1} with $(\frac{2}{n_{n+1}}) < r_{n+1}$ such that $V(\delta_1 \dots \delta_{n+1}) = \{y; d(y, C(\delta_1 \dots \delta_{n+1})) < \frac{1}{n+1}\}$ С $\overline{V(\delta_1 \dots \delta_{n+1})} \subset V(\delta_1 \delta_2 \dots \delta_n) \text{ and } V(\delta_1 \dots \delta_n 0) \cap V(\delta_1 \dots \delta_n 1) =$ \emptyset , then $\{V(\delta_1 \dots \delta_{n+1}); \delta_i = 0, 1, i = 1, 2, \dots, n+1\}$ is a collection of mutually disjoint open balls. Let $\varphi(\delta_1 \dots \delta_{n+1}) = \{(S_{\alpha} \cap$ $V(\delta_1 \dots \delta_{n+1})) - (P_1 \cup \dots \cup P_{n+1} \cup C_0); \ S_{\alpha} \in \varphi(\delta_1 \dots \delta_n), \ S_{\alpha}$ converges to x_{α} and $x_{\alpha} \in C(\delta_1 \dots \delta_n)$, where $P_{n+1} \in \mathcal{P}_0$. Then $(S_{\alpha} \cap V(\delta_1 \dots \delta_{n+1})) \setminus (P_1 \cup \dots \cup P_{n+1} \cup C_0)$ is a sequence which converges to x_{α} for each $x_{\alpha} \in C(\delta_1 \delta_2 \dots \delta_{n+1})$ and $|\varphi(\delta_1 \dots \delta_{n+1})| = \aleph_1 \dots V(\delta_1 \dots \delta_{n+1}) \setminus (P_1 \cup \dots \cup P_{n+1} \cup \dots \cup P_{n+1})$ C_0) is an open subset of Y which is the union of countably many compact metric subsets of Y, so there exists a compact subset $K(\delta_1\delta_2\ldots\delta_{n+1}) \subset V(\delta_1\delta_2\ldots\delta_{n+1}) \setminus (P_1 \cup \ldots \cup$ $P_{n+1} \cup C_0$ such that $K(\delta_1 \dots \delta_{n+1})$ meets \aleph_1 many sequences in $\varphi(\delta_1\delta_2\ldots\delta_{n+1})$. If $D(\delta_1\ldots\delta_{n+1}) = \{x_\alpha \in C(\delta_1\ldots\delta_{n+1}); S_\alpha \in C(\delta_1\ldots\delta_{n+1})\}$ $\varphi(\delta_1 \dots \delta_{n+1}), S_{\alpha} \cap K(\delta_1 \dots \delta_{n+1}) \neq \emptyset$ and S_{α} converges to x_{α} , then $D(\delta_1 \dots \delta_{n+1}) \subset C(\delta_1 \dots \delta_{n+1}) \subset D(\delta_1 \dots \delta_n)$ and $|D(\delta_1 \dots \delta_{n+1})| = \aleph_1$. Then, by induction, there exist:

1) $\mathcal{K} = \{K(\delta_1 \dots \delta_n); \quad \delta_i = 0, 1. \ i = 1, 2, \dots, n. \ n > 0.\}$ with $[\cup \{K(\delta_1 \dots \delta_j); \delta_i = 0, 1. \ i = 1, 2, \dots, j. \ j \ge n\}] \cap P_n = \emptyset$ for each $P_n \in \mathcal{P}_0$.

2) $C = \{C(\delta_1 \dots \delta_n); \ \delta_i = 0, 1. \ i = 1, 2, \dots, n. \ n > 0\}$ such that $\cap_{n>0}(\cup\{C(\delta_1 \dots \delta_n); \ \delta_i = 0, 1. \ i = 1, 2, \dots, n. \ n > 0\}$ $\cap_{n>0}(\cup\{V(\delta_1 \dots \delta_n); \ \delta_i = 0, 1. \ i = 1, 2, \dots, n\}) = C^*$ and C^* is a Cantor set. If $C^* = \{x(\delta_1 \delta_2 \dots); \ \delta_i = 0, 1. \ i = 1, 2, \dots, n\} = C^*$ and $C(\delta_1 \cap C(\delta_1 \delta_2) \cap \dots = V(\delta_1) \cap V(\delta_1 \delta_2) \cap \dots$ and $|C^* \cap P| \le 1$ for each $P \in \mathcal{P} \setminus \mathcal{P}_0$.

3) If $\varphi_0 = \{S_\alpha \in \varphi; S_\alpha \text{ converges to } x_\alpha \text{ and } x_\alpha \in C^*\},\$

then $|\varphi_0| = \aleph_1$. If $S_\alpha \in \varphi_0$, S_α converges to x_α and $x_\alpha = x(\delta_1 \delta_2 \dots) \in C^*$, then $S_\alpha \cap K(\delta_1 \dots \delta_n) \neq \emptyset$ for n > 0.

C) We use the results of B) to construct a collection $\{C_{nm}; n, m < \omega\}$ which does not satisfy condition (C_3) .

i) Let $A_1 = \{x(00...)\}$, and let $C_1 = \{P \in \mathcal{P} \setminus \mathcal{P}_0 ; P \cap \overline{A}_1 \neq \emptyset\} = \{P_{1n}; n < \omega\}$. For each $n < \omega$; let $\mathcal{K}(0...0 \stackrel{n}{1}) = \{K(0...0 \stackrel{n}{1} \delta_1 \delta_2 \dots \delta_m); K(0...0 \stackrel{n}{1} \delta_1 \dots \delta_m) \subset V(0...0 \stackrel{n}{1})\}$ thus $(P_{11} \cup \ldots \cup P_{1n})$ meets only finitely many sets in $\mathcal{K}(0...0 \stackrel{n}{1})$.

In fact $P_{11} \cup \ldots \cup P_{1n}$ meets infinitely many sets in $\mathcal{K}(0 \ldots 0 \stackrel{n}{1})$, so $P_{11} \cup \ldots \cup P_{1n}$ meets infinitely many sets in $\mathcal{K}(0 \ldots 0 \stackrel{n}{1} 0)$ or in $\mathcal{K}(0\ldots 0\stackrel{n}{1}1) \text{ by } \mathcal{K}(0\ldots 0\stackrel{n}{1}) = \{K(0\ldots 01)\} \cup \mathcal{K}(0\ldots 0\stackrel{n}{1}0) \cup$ $\mathcal{K}(0\ldots 0\stackrel{n}{1}1)$. Then we may assume $P_{11}\cup\ldots\cup P_{1n}$ meets infinitely many sets in $\mathcal{K}(0 \dots 0 \stackrel{n}{1} \delta_1)$. Because $\mathcal{K}(0 \dots 0 \stackrel{n}{1} \delta_1) =$ $\{K(0\ldots 0 \ \stackrel{n}{1} \ \delta_1)\} \cup \mathcal{K}(0\ldots 0 \ \stackrel{n}{1} \ \delta_1 0) \cup \mathcal{K}(0\ldots 0 \ \stackrel{n}{1} \ \delta_1 1), \text{ then }$ $P_{11} \cup \ldots \cup P_{1n}$ meets infinitely many sets in $\mathcal{K}(0 \ldots 0 \stackrel{n}{1} \delta_1 0)$, or in $\mathcal{K}(0...0 \stackrel{n}{1} \delta_1 1)$. We may assume $P_{11} \cup ... \cup P_{1n}$ meets infinitely many sets in $\mathcal{K}(0...0 \stackrel{n}{1} \delta_1 \delta_2)$. Then, by induction, there exist $\mathcal{K}(0 \dots 0 \stackrel{n}{1} \delta_1) \supset \mathcal{K}(0 \dots 0 \stackrel{n}{1} \delta_1 \delta_2) \supset \dots$ such that $P_{11} \cup \ldots \cup P_{1n}$ meets infinitely many sets in $\mathcal{K}(0 \ldots 0 \stackrel{n}{1})$ $\delta_1 \ldots \delta_m$). $\cup \mathcal{K}(0 \ldots 0 \stackrel{n}{1} \delta_1 \ldots \delta_m) \subset V(0 \ldots 0 \stackrel{n}{1} \delta_1 \ldots \delta_m)$ so $(P_{11} \cup \ldots \cup P_{1n}) \cap V(0 \ldots 0 \stackrel{n}{1} \delta_1 \ldots \delta_m) \neq \emptyset. \cap_{m>0} V(0 \ldots 0 \stackrel{n}{1})$ $\underline{\delta_1 \ldots \delta_m} = \{ x(0 \ldots 0 \ \stackrel{n}{1} \ \delta_1 \delta_2 \ldots) \} \text{ so } x(0 \ldots 0 \ \stackrel{n}{1} \ \delta_1 \delta_2 \ldots) \in$ $\overline{P_{11} \cup \ldots \cup P_{1n}} = P_{11} \cap \ldots P_{1n}$. This is a contradiction to $P_{1i} \in$ \mathcal{C}_1 and $|P_{1i} \cap C^*| \leq 1$ for $i = 1, 2, \ldots, n$. Then there exists an n_n and $\mathcal{K}_{1n} = \{ K(0 \dots 0 \stackrel{n}{1} \delta_1 \dots \delta_n); \ \delta_i = 0, 1. \ i = 1, 2, \dots n_n \}$ such that:

- (1) $(P_{11} \cup \ldots \cup P_{1n}) \cap (\cup \mathcal{K}_{1n}) = \emptyset.$
- (2) If S_{α} converges to x_{α} , $S_{\alpha} \in \varphi_0$ and $x_{\alpha} = x(0...0 \ 1)$ $\delta_1 \delta_2, \ldots) \notin \overline{A}_1$ then $S_{\alpha} \cap (\cup \mathcal{K}_{1n}) \neq \emptyset$.

Let $\mathcal{K}_1 = \bigcup_{n>0} \mathcal{K}_{1n}$, then

- (1) P meets only finitely many sets in \mathcal{K}_1 for each $P \in \mathcal{C}_1$.
- (2) P meets only finitely many sets in \mathcal{K}_1 for each $P \in \mathcal{P}$.

(3) If S_{α} converges to x_{α} , $x_{\alpha} = x(0...0 \ \mathring{1} \ \delta_1 \delta_2,...)$ and $x_{\alpha} \notin \overline{A}_1$, then $S_{\alpha} \cap (\cup \mathcal{K}_{1n}) \neq \emptyset$ for each $S_{\alpha} \in \varphi_0$.

In fact :

1) We omit the proof.

2) For each $P \in \mathcal{P}$.

a) if $P \cap C^* = \emptyset$, then there exists an n with $P \cap (\bigcup \{V(\delta_1 \dots \delta_n); \ \delta_i = 0, 1. \ i = 1, 2, \dots, n\}) = \emptyset$ by $C^* = \bigcap_{n>0} (\bigcup \{V(\delta_1 \dots \delta_n); \ \delta_i = 0, 1. \ i = 1, \dots, n\})$. Then P meets only finitely many sets in \mathcal{K}_1 .

b) if $P \cap C^* \neq \emptyset$ and $P \in \mathcal{P}_0$, then P meets only finitely many sets in \mathcal{K}_1 . If $P \notin \mathcal{P}_0$, then $|P \cap C^*| \leq 1$. Suppose that there exists a infinite subcollection $\{K(0...0\ 1 \\ \delta_{n1}...\delta_{nn_n}); n < \omega\}$ of \mathcal{K}_1 such that $P \cap K(0...0\ 1 \\ \delta_{n1}...\delta_{nn_n}) \neq \emptyset$ for each $K(0...0\ 1 \\ \delta_{n1}...\delta_{nn_n})$. Because $K(0...0\ 1 \\ \delta_{n1}...\delta_{nn_n}) \subset V(0...\ 0 \\ 0 \\ P \cap V(0...\ 0 \\ 0 \\ P = P$ and $P \in \mathcal{C}_1$. This is a contradiction to 1).

3) We omit the proof.

If $C_{1n} = \bigcup_{i \ge n} (\bigcup \mathcal{K}_{1i})$, then $\{C_{1n}; 1 \le n < \omega\}$ has the properties:

1) P meets only finitely many sets in $\{C_{1n}; 1 \leq n < \omega\}$ for each $P \in \mathcal{P}$.

2) If S_{α} converges to x_{α} , $x_{\alpha} = x(0...0 \stackrel{n}{1} \delta_1, \delta_2...)$ and $x_{\alpha} \notin \overline{A}_1$, then $S_{\alpha} \cap C_{1n} \neq \emptyset$ for each $S_{\alpha} \in \varphi_0$.

ii) If $A_{n-1} = \{x(\delta_1, \delta_2...); \text{ there exist } n-2 \text{ many 1's in } \delta_1, \delta_2, ... \}$ and $\{C_{n-1 \ m}; \ n-1 \le m < \omega\}$ have been defined so that:

1) P meets only finitely many sets in $\{C_{n-1}, m; n-1 \leq m < \omega\}$ for each $P \in \mathcal{P}$.

2) For each $S_{\alpha} \in \varphi_0$, if S_{α} converges to x_{α} , $x_{\alpha} = x(\delta_1' \dots \delta_{m'}', 10 \dots 0 \quad 1 \quad \delta_1 \delta_2 \dots) \notin \overline{A}_{n-1}, x'_{\alpha} = x(\delta_1' \dots \delta_{m'}', 100 \dots) \in A_{n-1}$ and $j \ge m$, then $S_{\alpha} \cap C_{n-1} \ m \ne \emptyset$.

Let $A_n = \{x(\delta_1 \delta_2 \dots); \text{ there exist } n-1 \text{ many } 1\text{'s in } \delta_1, \delta_2 \dots \}$ then $\overline{A}_n = A_n \cup \dots \cup A_2 \cup A_1 \text{ and } |\overline{A}_n| = \aleph_0$. Let $\overline{A}_n =$ $\{x_1, x_2, \dots\}, \text{ and let } \mathcal{C}_n = \{P \in \mathcal{P} \setminus \mathcal{P}_0'; P \cap \overline{A}_n \neq \emptyset\} = \{P_{ni}; i < \omega\}. \text{ Pick } x_m \in \overline{A}_n. \text{ Then } x_m = x(\delta_1'\delta_2'\dots) = x(\delta_1' \dots \delta_{m'}' 100 \dots).$ For each $j < \omega$, let

 $\mathcal{K}(\delta_{1}' \dots \delta_{m'}' 10 \dots 0 \quad 1) = \{K(\delta_{1}' \dots \delta_{m'}' 10 \dots 0 \quad 1 \\ \delta_{1} \dots \delta_{n}); K(\delta_{1}' \dots \delta_{m'}' 10 \dots 0 \quad 1 \quad \delta_{1} \dots \delta_{n}) \subset V(\delta_{1}' \dots \delta_{m'}' 10 \dots 0 \\ 1 \quad 1 \end{bmatrix}$ Take $P_{ni} \in \mathcal{C}_{n}, i = 1, 2, \dots, m+j+1$. Then, as in the proof of i), there exists an n(j) and a subcollection $\mathcal{K}_{nj}(x_{m}) = \{K(\delta_{1}' \dots \delta_{m'}' 10 \dots 0 \quad 1 \quad \delta_{n1} \dots \delta_{nn(j)}); \delta_{ni} = 0, 1. \ i = 1, 2, \dots, n(j)\}$ of $\mathcal{K}(\delta_{1}' \dots \delta_{m'}' 10 \dots 0 \quad 1 \quad)$ such that;

1) $(P_{n1} \cup \ldots \cup P_{m+j+1}) \cap (\cup \mathcal{K}_{nj}(x_m)) = \emptyset.$

2) For each $S_{\alpha} \in \varphi_0$, if S_{α} converges to x_{α} , $x_{\alpha} = x(\delta_1' \dots \delta_{m'}' \otimes 10 \dots 0 \otimes 1 \otimes \delta_1 \otimes \delta_2 \dots) \notin \overline{A}_n$ and $x'_{\alpha} = x(\delta_1' \dots \delta_{m'}' \otimes 100 \dots) = x_m \in A_n$, then $S_{\alpha} \cap (\bigcup \mathcal{K}_{nj}(x_m)) \neq \emptyset$.

Let $\mathcal{K}_n(x_m) = \bigcup_{j>0} \mathcal{K}_{nj}(x_m)$. Then $\mathcal{K}_n(x_m)$ satisfies:

1) $(P_{n1} \cup \ldots \cup P_{n \ m+j}) \cap [\cup \mathcal{K}_{nj}(x_m)] = \emptyset$, here $P_{ni} \in \mathcal{C}_n$ for $i = 1, 2, \ldots, m+j$.

2) P meets only finitely many sets in $\mathcal{K}_n(x_m)$ for each $P \in \mathcal{P}$.

3) For each $S_{\alpha} \in \varphi_0$, if S_{α} converges to x_{α} , $x_{\alpha} = x(\delta_1' \dots \delta_{m'}' + 10 \dots 0 \quad 1 \quad \delta_1 \delta_2 \dots) \notin \overline{A}_n$ and $x'_{\alpha} = x(\delta_1' \dots \delta_{m'}' + 100 \dots) = x_m \in A_n$, then $S_{\alpha} \cap (\bigcup \mathcal{K}_{nj}(x_m)) \neq \emptyset$.

We prove only 2). In fact, if $P \in \mathcal{P} \setminus \mathcal{P}_0$, suppose that Pmeets infinitely many sets in $\mathcal{K}_n(x_m)$. Then there exist infinitely many $\mathcal{K}_{nj}(x_m)$ such that P meets sets in $\mathcal{K}_{nj}(x_m)$ because $\mathcal{K}_n(x_m) = \bigcup_{j>0} \mathcal{K}_{nj}(x_m)$ and $|\mathcal{K}_{nj}(x_m)| < \aleph_0. \ \cup \mathcal{K}_{nj}(x_m) \subset$ $V(\delta_1' \dots \delta_{m'}' 10 \dots 0 \ 0)$ so $P \cap V(\delta_1' \dots \delta_{m'}' 10 \dots 0 \ 0) \neq \emptyset$. Then $\{x_m\} = \bigcap_{j>0} V(\delta_1' \dots \delta_{m'}' 10 \dots 0 \ 0) \subset P$ and $P \in \mathcal{C}_n$. This is a contradiction to 1).

Let $\mathcal{K}_n = \bigcup \{ \mathcal{K}_n(x_m); x_m \in \overline{A}_n \}$. Then \mathcal{K}_n satisfies: 1) $P_{nm} \cap [\bigcup \{ \mathcal{K}_{nj}(x_i); j \ge m, i > 0 \}] = \emptyset$ for each $P_{nm} \in \mathcal{C}_n$.

CHEN HUAIPENG

2) P meets only finitely many sets in \mathcal{K}_n for each $P \in \mathcal{P}$.

3) For each $S_{\alpha} \in \varphi_0$, S_{α} converges to x_{α} , $x_{\alpha} = x(\delta_1' \dots \delta'_{m'})$ $10 \dots 0 \quad 1 \quad \delta_1 \delta_2 \dots) \notin \overline{A}_n, \ x'_{\alpha} = x(\delta_1' \dots \delta'_{m'}) 100 \dots) = x_m \in A_n \text{ and } j \ge m \text{ so } S_{\alpha} \cap [\bigcup \{\mathcal{K}_{nj}(x_i); j \ge m, i > 0\}] \neq \emptyset.$

In fact:

1) for each $P \in \mathcal{P} \setminus \mathcal{P}_0$, if $j \ge m$, then $P_{nm} \cap (\bigcup \mathcal{K}_{nj}(x_i)) = \emptyset$ for i > 0 by $(P_{n1} \cup \ldots \cup P_{n \ m+j}) \cap (\bigcup \mathcal{K}_{nj}(x_m)) = \emptyset$. Then $P_{nm} \cap [\bigcup (\bigcup_{j \ge m} \mathcal{K}_{nj}(x_i))] = \emptyset$ for i > 0. Then $P_{nm} \cap [\bigcup \{\bigcup \mathcal{K}_{nj}(x_i); j \ge m, i > 0\}] = \emptyset$.

2) Let $P \in \mathcal{P} \setminus \mathcal{P}_0$. If P meets infinitely many sets in $\mathcal{K}_n = \bigcup \{\mathcal{K}_n(x_m); x_m \in A_m\}$, then there exists a sets $\{m_1, m_2, \ldots\}$ such that P meets sets in $\mathcal{K}_n(x_{m_i})$ for each m_i by property 2) of $\mathcal{K}_n(x_{m_i})$. $\{x_{m_i}; i > 0\} \subset A_n$, so we may assume $\{x_{m_i}; i > 0\}$ is a sequence which converges to x and $x = x(\delta_1 \delta_2 \ldots) \in \overline{A}_n$. We may also assume $\{x_{m_i}; i \ge n\} \subset V(\delta_1 \ldots \delta_n)$, so $V_n(x_{m_i}) = V(\delta_1 \ldots \delta_n)$ for each $i \ge n$. Here $x_{m_i} = x(\varepsilon_1 \varepsilon_2 \ldots), V(\varepsilon_1) \supset V(\varepsilon_1 \varepsilon_2) \supset \ldots$ and $V_n(x_{m_i}) = V(\varepsilon_1 \varepsilon_2 \ldots \varepsilon_n) = V(\delta_1 \delta_2 \ldots \delta_n)$ so $x_{m_i} = x(\delta_1 \ldots \delta_n \delta_{n_1} \ldots \delta_{n_n} i, 000 \ldots), \bigcup \mathcal{K}_n(x_{m_i}) \subset V(\delta_1 \delta_2 \ldots \delta_n)$ and $P \cap V(\delta_1 \delta_2 \ldots \delta_n) \neq \emptyset$. P is compact, so $x(\delta_1 \delta_2 \ldots) \in P$ and $P \in \mathcal{C}_n$. This is a contradiction to property 1) of \mathcal{K}_n .

3) $S_{\alpha} \in \varphi_0$, S_{α} converges to x_{α} , $x_{\alpha} = x(\delta_1' \dots \delta'_{m'})$ $10 \dots 0 \stackrel{m'+j+1}{1} \delta_1 \delta_2 \dots) \notin \overline{A}_n$ and $x'_{\alpha} = x(\delta_1' \dots \delta'_{m'}) 1000 \dots) = x_n \in A_n$, so $S_{\alpha} \cap (\bigcup \mathcal{K}_{nj}(x_n)) \neq \emptyset$. If $j \ge m$, then $S_{\alpha} \cap (\bigcup \bigcup \{\mathcal{K}_{nj}(x_i); j \ge m, i > 0\}) \neq \emptyset$.

Let $C_{nm} = \bigcup \{ P\mathcal{K}_{nj}(x_i); j \ge m, i > 0 \}$ for $m \ge n$. Then $\{ C_{nm}; m \ge n \}$ satisfies:

1) P meets only finitely many sets in $\{C_{nm}; m \ge n\}$ for each $P \in \mathcal{P}$.

2) For each $S_{\alpha} \in \varphi_0$, if S_{α} converges to x_{α} , $x_{\alpha} = x(\delta_1' \dots \delta'_{m'})$ 10... $\overset{m'+j+1}{1} \delta_1 \delta_2 \dots \notin \overline{A}_n$, $x'_{\alpha} = x(\delta_1' \dots \delta'_{m'}) = A_n$ and $j \ge m$, then $S_{\alpha} \cap C_{nm} \neq \emptyset$.

Then, by induction, there exists a collection $\{C_{nm}; n \leq m < \omega\}$ such that:

1) C_{nm} is closed in (YT_1) for each $C_{nm} \in \{C_{nm}; n \le m < \omega\}$.

2) For each $n, \{C_{nm}; m \ge n\}$ is a discrete collection.

Now we prove $C^* \cap \overline{(\cup \{C_{nm}; m \ge f(n)\})} \neq \emptyset$ and $C^* \cap (\cup \{C_{nm}; m \ge f(n)\}) = \emptyset$ for each $f \in {}^{\omega}\omega$.

In fact: If $f \in {}^{\omega}\omega$, let $f(i) = n_i$ and let $0 < n_1 < n_2 < n_3 \dots$ Pick $x_{\alpha} = x(0 \dots 0 \stackrel{m_1}{1} 0 \dots 0 \stackrel{m_2}{1} 0 \dots) \in C^*$, where $m_i = n_1 + n_2 + \dots + n_i > i$. Take $S_{\alpha} \in \varphi_0$ such that S_{α} converges to $x_{\alpha}, x_{\alpha} = x(0 \dots 0 \stackrel{m_1}{1} 0 \dots 0 \stackrel{m_2}{1} \dots 0 \stackrel{m_i}{1} 0 \dots) \notin \overline{A}_i$ and $x'_{\alpha} = x(0 \dots 0 \stackrel{m_1}{1} 0 \dots 0 \stackrel{m_2}{1} \dots 0 \stackrel{m_{i-1}}{1} 0 0 0 \dots) = x_m \in A_i$, so $S_{\alpha} \cap (\cup \mathcal{K}_{in_i}(x_m)) \neq \emptyset$ and $S_{\alpha} \cap C_{in_i} \neq \emptyset$ since $C_{in_i} = \bigcup \bigcup \{\mathcal{K}_{ij}(x_m); j \geq n_i, m > 0\}$ for $i \geq 1$. Then $x_{\alpha} \in C^* \cap \bigcup \{C_{nm}; m \geq f(n)\} \neq \emptyset$.

D) Let $g: Y \to Y/\{C^*\}$. Then g is a continuous perfect map. Then $\{g[C_{nm}]; m \ge n\}$ satisfies:

1) $g[C_{nm}]$ is closed for each $g[C_{nm}] \in \{g[C_{nm}]; n \leq m < \omega\}$ in $Y/\{C^*\}$.

2) $\{g[C_{nm}]; m < \omega\}$ is a discrete subcollection of $\{g[C_{nm}]; m \ge n\}$ for each $n < \omega$.

3) There exists a $C^* \in \overline{\bigcup\{g[C_{nm}]; m \ge n\}}$ with $C^* \in \overline{\bigcup\{g[C_{nm}]; m \ge f(n)\}}$ for each $f \in {}^{\omega}\omega$.

Then $S_{\omega} \times (Y/\{C^*\})$ is not sequential by Lemma 6. Thus $S_{\omega} \times Y$ is not sequential by Lemma 10. This is a contradiction to the conclusion of Lemma 10. Then Y is a k_{ω} -space.

RESULTS (CH + MC).

Theorem 1. Let X and Y be k-spaces with point-countable closed k-networks. Then $X \times Y$ is a k-space if and only if one of the three properties below holds:

a) X and Y have point-countable bases.

b) X or Y is locally compact.

c) X and Y are locally k_{ω} -spaces.

Proof. If X contains a copy of S_2 and X contains no copy of S_{ω} , then the perfect image $X/\{S_0\}$ of X contains a copy of S_{ω} , where S_0 is the converging sequence of S_2 which has no

isolated point. By Lemma 10, $(X/\{S_0\}) \times Y$ is sequential if and only if $X \times Y$ is sequential.

"only if":

1) If X and Y contain copies of S_{ω} or S_2 . Then X and Y are locally k_{ω} -spaces by lemma 11.

2) If X contains a copy of S_{ω} or S_2 , and Y contains no copy of S_{ω} and S_2 . $X \times Y$ is sequential then $S_{\omega} \times Y$ is sequential. Then P is compact metrizable for each $P \in \mathcal{P}$ by Lemma 4. Then Y has a point countable base by [11, Corollary 4.5]. S_{ω} is not strongly Fréchet then Y is locally compact by [8, Theorem 1.1].

3) X and Y contain no copies of S_{ω} and S_2 . $Y \times X$ is sequential and $t(Y) \leq \omega$ then Y satisfies (C_1) or X satisfies (C_2) by Lemma 1.

At the same time $X \times Y$ is sequential and $t(X) \leq \omega$ so X satisfies (C_1) or Y satisfies (C_2) by Lemma 1. Then there exist four cases:

case 1. X satisfies (C_1) and Y satisfies (C_1) . Then X and Y have point-countable bases by [5, Theorem 9.8].

case 2. X satisfies (C_1) and X satisfies (C_2) . Then X has a point-countable base by (C_1) . Then X is locally compact by (C_2) .

case 3. Y satisfies (C_1) and Y satisfies (C_2) . Same as case 2.

case 4. X satisfies (C_2) and Y satisfies (C_2) . If X satisfies (C_2) then P is a compact metrizable set for each $P \in \mathcal{P}$. Then X has a point-countable base by [11, lemma 4.1]. So does Y.

"if" we omit the straightforward proof.

Corollary. Let X and Y be quotient s-images of locally compact metric spaces. Then $X \times Y$ is sequential if and only if one of the three properties below holds:

- a) X and Y have point-countable bases.
- b) X or Y is locally compact.
- c) X and Y are locally k_{ω} -spaces.

Proof. A quotient s-image of a locally compact metric space has a point-countable closed k-network.

Theorem 2. Let X and Y be closed images of metric spaces. Then $X \times Y$ is sequential if and only if one of three properties below holds:

a) X and Y have point-countable bases.

b) X or Y is locally compact.

c) X and Y are locally k_{ω} -spaces.

Proof. "only if"

1) If X contains a copy of S_{ω} then $S_{\omega} \times Y$ is sequential. If Y is a closed image of a metric space, then $\partial f^{-1}(y)$ is locally compact and Lindelöff for every $y \in Y$ by [9, Proposition 2.4]. We may assume without loss of generality that Y is a closed simage of a metric space. Then Y has a closed point-countable k-network. Then Y is a locally k_{ω} -space by Lemma 11. So does X.

2) X contains a copy of S_{ω} and Y contains no copy of S_{ω} , then $S_{\omega} \times Y$ is sequential. As in the proof 1) we may assume Y is a closed s-image of a metric space. As in the proof 2) of "only if" of Theorem 1, Y is locally compact.

3) X and Y contain no copies of S_{ω} . Then we may assume that X and Y are closed s-images of metric spaces by [11, Theorem 1.7 ii]. Then X and Y have closed point-countable k-networks. As in the proof 3, of "only if" of Theorem 1, then X is locally compact or Y is locally compact or X and Y have point-countable bases.

"if" We omit the straightforword proof.

The above theorem 2 is analogous to Theorem 1.1 of [9]. The following Theorem 3 is analogous to Theorem 3.1 of [7].

Theorem 3. Let X and Y be k-and \aleph -spaces. Then $X \times Y$ is a k-and \aleph -space if and only if one of the three properties holds: a) X and Y have point-countable bases.

b) X or Y is locally compact.

c) X and Y are locally k_{ω} -spaces.

Proof. Every k-and \aleph -space is a k-space with σ -locally finite knetwork, then every k-and \aleph -space has a closed point-countable k-network. Then the Theorem 3 is a Corollary of Theorem 1.

CHEN HUAIPENG

References

- 1. A. V. Arhangel'skii and A.I. Ponomarev, Fundamentals of General Topology, Chapter 6 No 252 D. Reidel Publishing Co Boston.
- 2. G. Gruenhage, k-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), 478-482.
- 3. —, Generalized metric spaces, Handbook of set Theoretic Topology, 423-501.
- 4. G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by pointcountable covers, Pacific. Jour. of Math. 113 (1984), 303-332.
- 5. E. Michael, A quintuple quotient quest, General and Appl. 2 (1972), 91-138.
- 6. P. O'Meara, On paracompactness in function spaces with the compactopen topology, Proc. Amer. Math. Soc. 29 (1972), 183-189.
- 7. Y. Tanaka, A characterization for the products of k-and ℵ-spaces and related results. Proc. Amer. Math. Soc. 59 (1976), 149-155.
- 8. —, Products of sequential spaces, Proc. Amer. Math. Soc. 54 (1976), 371-375.
- 9. —, A characterization for the product closed images of metric spaces to be a k-space, Proc. Amer. Math. Soc. 74 (1979), 166-170.
- 10. —, Point-countable k-systems and products of k-spaces, Pacific Jour. Math. 101 (1982), 199-208.
- 11. —, Metrizability of certain quotient spaces, Fund. Math. CXIX (1983), 157-168.

Quinhai Normal University Xining, China