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ON CERTAIN CANTOR-SET-LIKE PRODUCTS

JEFF NORDEN

ABSTRACT. Let 2 denote the “Cantor Cube” of weight
k (the Tychonoff product of k many 2-point spaces), and
let X denote the discrete union of 2* with a singleton
space. We show that X* is homeomorphic to 2%, an-
swering a question asked recently by Murray Bell.

Let & be an infinite cardinal, and let 2* denote the prod-
uct of kK many discrete 2-point spaces with the usual product
topology. Let p ¢ 2%, and let X = 2 & {p}. If kK = w then
X" is a compact, 0-dimensional metric space with no isolated
points, so X" is homeomorphic to the Cantor set. For k > wy,
we will define a homeomorphism A : X*¥ — 2* proving the
assertion in the abstract.

We will treat members of product spaces as functions. Inter-
val notation will be used in the obvious way for sets of ordinals.
We will consider 0 to be a limit ordinal.

1. DESCRIPTION OF THE HOMEOMORPHISM.

Fix k > w;. Choose sets S, for each a € « which satisfy all
of the following:

(A1) SuNSg=10 for a # B.

(A2.) Each |S,| = «.

(A3.) Each S, C [a + w, &).

(A4.) Uscx So contains no limit ordinals (including 0).

(A5.) For each limit v € &, [y, ¥ + w) — Uaex Sa is infinite.
It is easily verified that such S,’s can be chosen—start with a
partition of the “odd” ordinals into « sets each of size «, then
remove initial segments if necessary to get condition A3. For
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130 JEFF NORDEN

each a < k, fix a 1:1 correspondence 7, : K = S, between &
and S,.

Now fix an z € X*. So, for each «, either z(a) = p or
z(a) € 2%, Let

I, =k —|J{S4:2(a) € 2°}.

Note that |I';| = . In fact, by A5, each I, N{y,vy+w)is
infinite. Let 2, : & — ', be the (unique) order preserving 1:1

correspondence from & onto I',. Now define the coordinates of
h(z) = y as follows. If a € I, let

_ J0 if (5 (a)) = p,
y(e) = {1 if z(:71(a)) € 2%,

If « € k — T, then a € S for some § with z(3) € 2*. For
each such a (if there are any), let y(a) be defined by

y(a) = 2()(n;" (@)) where a € S.

It is useful to think of the coordinates of y as coding informa-
tion about z. For each a, 2,(a) indicates which coordinate of
y will be used to code whether or not z(«) is equal to p. For
each a with z(a) € 2%, the function 7, is used to distribute
z(a) onto the coordinates of y which are in S,. The values of
y = h(z) are completely specified by the above two equations,
so we have described a well defined function & : X* — 2%,

2. PROOF THAT h IS A HOMEOMORPHISM.
Lemma 1. Fiz z € X*. If v is a limit ordinal, then

(@) 1(7) =,
(b) i(y+n) €ly+n,y+w) for each n € w.

Proof. Recall that i, : & — I'; is the unique order preserving
1:1 correspondence. This means that for each «,

zx(a) = min (I'; — {zx(ﬂ) 1B < a}) .
Clearly, 1,(0) = 0. Since I'; N [0,w) is infinite, 1,(n) € [0,w)
for all n € w. But 1, is increasing, so we in fact have that

€
each i;(n) € [n,w). Now fix a limit 4 > 0, and suppose that
conditions (a) and (b) hold for all limits é§ < 4. Condition (b)
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implies that v ¢ {2.(8) : B < v}, so 2;(y) < 4. Suppose that
1z(7) <. Then 1,(y) = 6 + n for some limit § < v and some
n € w. But then 2,(6 + n + 1) > 2,(), contradicting the fact
that ¢, is increasing. Thus, 2,(y) = 4. And condition (b) is
once again true because ¢, is increasing and each I'; N[y, v+w)
is infinite.

Lemma 2. h is I:1.

Proof. Let x and 2’ be distinct members of X*. Let a < &
be minimal such that z(a) # z'(a). If both z(a) and z'(a)
are in 2%, then there is some 8 € S, such that z(a)(n;(8)) #
z'(a)(n;'(B)), and thus h(z) # h(z’'). Now suppose that one
of z(a) or z'(a) is equal to p. Note that condition A3 implies
that T, N[0, a + w) =T N[0, @ + w). But 2;(a) and 2,+(a)
lie in [0, a + w), and 1.(B) = 1(B) for all B < a. It follows
that ¢;(a) = 1/ (a). But h(z)(2.(a)) # A(2")(22(@)), so h(z) #

h(2') for this case also.
Lemma 3. & is onto.

Proof. Fix y € 2%. Inductively construct an increasing function
t: k& — K as follows. Let 2(0) = 0. For a > 0, let

(o) = min(k—{e(B) : B < a}UU{Ss : f < o and y(:(B3)) = 1}).
Now define z € X* by:

z(a) = p iff y((@)) = 0,

z(a)(B) = y(na(B)) for each a such that y(z(a)) = 1.

A straightforward induction shows that ¢, =2 (condition A3 is
again important), from which it easily follows that A(z) = y.

Lemma 4. h is continuous.

Proof. Fix z € X*, and let y = h(z). Let V be an open set
containing y; we need to find an open set U containing  which
maps into V. Choose a finite set F' C & such that if y’ € 2%
and y'(a) = y(a) for all @ € F, then y' € V. Assume, wlog,
that F' has the form
F = Ul 5 +m)
<n

where n € w, each v; is a limit ordinal, and each m; € w.
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Let U be the open subset of X" which contains exactly the
points z’ which satisfy all of the following conditions:

(B1.) 2'(a) = pif Sa N F # 0 and z(a) = p.

(B2) 2'(a) € 25 if S, N F # 0 and z(a) € 2".

(B3.) z'(a)(B) = z(a)(B) if S, N F # 0 and z(a) € 2% and
na(B) € F.

(B4.) 2/(a) = p if 1.(a) € F and z(a) = p.

(B5.) @'(a) € 2% if 1,(a) € F and z(a) € 2~.
Note that U is open since only finitely many S, intersect F
and only finitely many a map into F' under :,. Note also that
z € U. Now choose an arbitrary ' € U and let ¢’ = h(z'). All
that remains is to show that y'(a) = y(a) for all @ € F. By
Bl and B2, we have that ',y N F =T, N F. Thus, B3 implies
that y'(a) = y(a) forall @« € F —T,;. Solet « € FNTy,
and let B = ;!(a). By B4 and B5 it suffices to show that
17(8) = a. Now a = v + n for some limit ordinal 4 and some
n € w. Recall that 2,(y) = 1(y) = v (so we are done if
n = 0). Note that [y, v+ n] C F (by the way F was chosen)
and that T, N [y,y+n] = T N[y, v +n]. Thus, we have
that 1. (y + m) = 1.(y + m) for all 1 € m < w such that
(7 + m) < v+ n. Thus, 1,(8) = 1.(8), which completes the
proof.

We have shown that A is continuous, 1:1, and onto. Since 2*
and X" are compact, & is a homeomorphism.

3. REMARKS.

I would like to thank Amer Beslagi¢ for suggesting condition
A3. While a homeomorphism can be constructed using S,’s
satisfying only the other conditions, the proof becomes rather
murky.

It is easy to see that the above proof can be extended to
include a product of k¥ spaces where each factor is of the form
2° @ {p} for some B < k. In fact, it seems reasonable to
conjecture that [[,.. X, = 2" iff each X, is a continuous,
open, non-degenerate image of 2* (the only if part is immediate
because projection maps are open).
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The fact that X" = 2% also follows from theorem 9 of [S1],
which states (essentially) that any retract of 2® which has
uniform local character « is homeomorphic to 2. The proof in
[S1] is much more complex than the above construction, and
it also contains several technical errors (they can be corrected,
although this takes a bit of work). In light of this theorem, it
is natural to rewrite the above conjecture on product spaces in
more general terms.

Conjecture If X is a continuous, open image of 2* and the
local character at each point of X is equal to k, then X 1is
homeomorphic to 2°.

This really asks whether or not “retract” can be replaced
with “open image” in [S1]. Theorem 5 of [S2] appears to imply
that this can be done for the special case k = w;.

Added in proof: Another example of Schepin’s is a coun-
terexample for the case £k = w,.
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