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o;-PROPERTIES IN FRECHET-URYSOHN
TOPOLOGICAL GROUPS

DMITRII B. SHAKHMATOV

1. RESULTS

If X is a topological space, then a function ¢ : w — X is
said to be a sequence converging to a point x € X provided
that ran € \ U is finite for every open neighbourhood U of z,
where as usual ran § = {£(3) : ¢ € w}. We say that ¢ is non-
trivial if ran ¢ is infinite. We will often identify a convergent
sequence ¢ with the set ran ¢.

Recall that a space is Fréchet-Urysohn if, whenever a point
z is in the closure of a subset A, there is a sequence from A
converging to x. Arhangel’skii [2,3] introduced the notion of
an a;-space and showed its importance in determining whether
a product of Fréchet-Urysohn spaces is Fréchet-Urysohn (see
also [21-24] in this regard).

1.1 Definition. Let X be a space, and let z be a point of
X. A sheaf at z is a family {¢, : n € w}, where each £, is a
sequence converging to z. For ¢+ = 1,2,3 and 4, we call z an
a;-point if for each sheaf at z there is a sequence ¢ converging
to x such that ran ¢ intersects:

(a1) each ran &, in a cofinite set;

(a2) each ran &, in an infinite set;

(a3) infinitely many ran &, in an infinite set;

() infinitely many ran &, in a nonempty set.
A space is an «;-space if each point of it is an o;-point. A v-
space is a Fréchet-Urysohn a;-space, and a w-space is a Fréchet-
Urysohn ay,-space.

The term “w-space” is due to Gruenhage, who originally
defined these spaces by means of a natural convergence game
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[12]. That this is equivalent to the definition adopted above
is essentially due to Sharma [33]. Gruenhage pointed out that
a condition equivalent to a5, is obtained when “infinite” is re-
placed by “nonempty”. (It suffices to split each £, into in-
finitely many sequences with disjoint ranges; then any ¢ whose
range meets each of these will meet that of £, in an infinite
set.)

First-countable spaces are v-spaces [2,3], and «;-spaces are
a;1-spaces for 1 = 1,2,3. The countable Fréchet-Urysohn fan
(the quotient space of the free union of the countable family of
non-trivial convergent sequences obtained via identifying the
limit points of these sequences to a single point) is an exam-
ple of a “barely Fréchet-Urysohn space”, i.e. Fréchet-Urysohn
space which is not even an ay4-space. Nevertheless, countably
compact Fréchet-Urysohn spaces are ay-spaces [2,3]. Simon
[35] constructed a compact Fréchet-Urysohn space X whose
square X X X is not Fréchet-Urysohn. Since the product of
a countably compact Fréchet-Urysohn az-space and a Fréchet-
Urysohn space is Fréchet-Urysohn [2,3], X is a compact ay-
space which is not an az-space. Reznichenko [29] and some-
what later Gerlits and Nagy [11] and Nyikos [26] independently
of each other constructed a compact Fréchet-Urysohn as-space
which is not an as-space. Reznichenko’s space X was addi-
tionally an image of a first-countable compact space under a
continuous map f so that | f~!(z)| = 1 for all z € X except
just a single point. Dow [8] showed that in Laver’s model for
the Borel conjecture (see [18]) each w-space is a v-space. Con-
versely, Nyikos [28] showed that b = w, implies the existence
of a countable w-space which is not a v-space. (The number b
is defined to be the least cardinality of an unbounded family in
(w¥, <*), where f <* g means that f is eventually less than g,
ie. f(n) < g(n) for all but finitely many n.) Dow and Steprans
constructed a model of ZF'C in which every countable v-space
is metrizable (announced in [9], but the proof presented here
contains a gap; see [10] for a correct proof). On the other
hand, every space of character < b is an «;-space [28], and
countable spaces are Fréchet-Urysohn under MA + —-C H [20],

so any countable dense subset of 2“! would be a nonmetrizable
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v-space under MA + -CH.
Originally Arhangel’skii added the following line to the list
of a;-properties in Definition 1.1:

(as) infinitely many ran &, in a cofinite set.

Nyikos [28] recently showed however that as-spaces coincide
with aj-spaces. Nevertheless this concept makes sense if one
restricts oneself to considering only sheafs with disjoint ranges.

1.2 Definition. (Nyikos). A sheaf {{, : n € w} at z is disjoint
provided that ran §, Nrané, = 0 for m # n. We call z an
oq 5-point if for each disjoint sheaf at z there is a sequence &
converging to z so that ran ¢ intersects infinitely many ran &,
in a cofinite set. A space is an o s-space if each point of it is
an ai s-point.

Clearly oy-spaces are aj s-spaces. Nyikos [28] proved that
every o s-space is an ap-space thus justifying the name for
this concept given above. Therefore, as follows from Dow’s
result cited above, in Laver’s model for the Borel conjecture
Fréchet-Urysohn oy s-spaces coincide with both w-spaces and
v-spaces. On the other hand, Nyikos constructed in [28], under
some additional set-theoretic assumptions, examples of count-
able Fréchet-Urysohn spaces with a single non-isolated point
which show that neither of implications oy = a;5 = ay is
reversible.

What is the behaviour of a;-properties in Fréchet-Urysohn
topological groups? Nyikos [25] pioneered in this direction.
He proved that, unlike general topological spaces, Fréchet-
Urysohn groups are ay4-spaces and that a sequential topologi-
cal group is Fréchet-Urysohn if, and only if, it is an a4-space.
Nyikos asked whether Iréchet-Urysohn topological groups must
be w-spaces, i.e ay-spaces ([25], Problem 5; this question was
recently repeated in [26]). He has some partial results which
show that most Fréchet-Urysohn groups obtained via popu-
lar constructions must be w-spaces [26,27]. Since ap implies
a3, the next theorem provides a consistent solution of Nyikos’
question.
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1.3 Main Theorem. Let H be the countable infinite group all
elements of which have order 2 (this group is Abelian and uni-
que up to isomorphism). Add w, Cohen reals to an arbitrary
model M of ZFC. Then, in the generic extension M |G|, there
are Hausdorff group topologies Ty and T, on H of weight w;
having the following properties:

(i) (H,To) is a Fréchet-Urysohn non as-space,

(i1) (H,T1) is a w-space, but is not an oy s-space (and so is
not also a v-space, because a; implies a;5).

In particular, the existence of the groups above is consistent
with any admissible cardinal arithmetic.

For additional information connected with this theorem see
Section 9.
From Dow’s result cited above we immediately obtain

1.4 Corollary. The ezistence of a (countable) w-group which
is not a v-group is consistent with and independent of ZFC.

Recall that an indexed family {A, : a € &} of infinite subsets
of w, where « is a cardinal, is said to be a tower provided that
Ap \ A, is finite whenever a < 8 < «, and if A C w is infinite,
then some A\ A, also is infinite. A family F' C w" is said to be
dominating if for every g € w* there is an f € F with g <* f.
Let t be the least cardinality of a tower and d be the smallest
cardinality of a dominating family F' C w®.

Under ¢t = d Nyikos constructed in [28, Section 5] a countable
w-group which is not a v-group. He pointed out in [28, Section
7] that if ¢ = ¢ is assumed, then he can make the group fail to
be an oy s-space. (Equalities ¢ = d = ¢ follow from M A, see
for example, the first paragraph in the proof of [7, Theorem
5.1].) Therefore Corollary 1.4 was independently established
by Nyikos.

Let G = {f € 20 : | {a € w1 f(a) = 1}| < w} be the Z-
product in 2“1, Then all countable subsets of G are metrizable,
so G is a (countably compact) v-group that is not first count-
able [12]. Is it possible to construct a countable group with the
same properties? Assume M A+-C H and consider any count-
able dense subgroup G of the group 2“* (which exists since 2“*
is separable). Since the character of G is wy < ¢, MA+-CH



a;-PROPERTIES IN TOPOLOGICAL GROUPS 147

implies that G is Fréchet-Urysohn [20]. Moreover, since b = ¢
under M A, G is an a;-space [28]. Thus G is a countable v-
group that is not first countable. On the other hand, let M be
the model in which every countable v-space is metrizable [9,10].
Then, in M, every separable v-group is metrizable, so the ez-
istence of a countable (or separable) nonmetrizable v-group s
consistent with and independent of ZFC.
Our results leave open the following questions.

1.5 Question. Is there a (countable) Fréchet-Urysohn group
which is an a3-space without being an a,-space?

1.6 Question. Is it consistent with ZFC to have a Fréchet-
Urysohn o s-group which is not a v-group?

1.7 Question. Is there a “real” (= requiring no additional set-
theoretic assumptions beyond ZFC) example of a countable
nonmtrizable w-group?

1.8 Question. Is there a “real” example of a Fréchet-Urysohn
topological group that is not an as-space?

It should be noted that it seems to be very hard to answer
last two questions positively at present, since to do this one
needs at least to construct a “real” example of a countable
nonmetrizable Fréchet-Urysohn group the existence of which
is the well-known open problem [1,25]. For “real” examples of
countable nonmetrizable w-spaces see [11] and [26].

Quite recently Nogura [23] introduced an infinite series of
convergence properties generalizing az-property.

1.9 Definition [23]. Let X be aspace, z € X and let = = {{, :
n € w} be a sheaf at . We call a sheaf {n,, : m € w} at z a
cross-sheaf of = provided that U{ran n,, : m € w} C U{rané, :
n € w} and each ran 7,, meets infinitely many ran £,. A sheaf
{Nm : m € w} is a subsheaf of a sheaf {{, : n € w} if there
exists an injection j : w — w so that ran 7, C ran{jm) for
each m € w.

For k € w we define by induction what does it mean for = to
be k-nice as follows: = is 0-nice if U{ran ¢, : n € w} C ranyp
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for some convergent sequence 7; and Z is (k 4 1)-nice if each
cross-sheaf of = has a k-nice subsheaf.

For k € w we call z an of-point if each sheaf at z has a
k-nice subsheaf. A space X is an o¥-space if each point of it is
an of-point.

1.10 Definition. We will say that a point = of a space X
is an a®-point if every sheaf at z has a k-nice subsheaf for
some k € w. If every point of X is an a*-point, then X is an
a®™-space.

One can easily see that
a=a"=ad'=> ...z = ™.

On the other hand, for every k € w Nogura [23, Example 3.7]
constructed, under CH, a countable Fréchet-Urysohn a4-space
X which is an o**!-space but fails to be an oF-space. Clear-
ly, the disjoint sum ®{Xj : £ € w} of all Xi’s is a countable
Fréchet-Urysohn a4-space which is an a*-space but is not an
a*-space for every k € w. Now we arrive to the natural ques-
tions.

1.11 Question. Does convergence properties defined above,
a® ol,...,a*, ... and a* coincide for Fréchet-Urysohn topo-

logical groups?
1.12 Question. Is every Fréchet-Urysohn group an a*-space?

Since a3 implies o™, a counterexample to the last question,
if any, would be an improvement of our example constructed
in Theorem 1.3(i). At the same time, Question 1.12 can be
considered as the “heir” of Nyikos’ question cited before Theo-
rem 1.3, and since the property a* looks like to be much more
weaker than as, it seems to have a good chance for a positive
solution in ZFC.

A lot of efforts was spent on distinguishing a;-properties in
compact Fréchet-Urysohn spaces (see [26], [28], [29] and [11]).
Since compact groups are dyadic [15,17] and dyadic spaces
of countable tightness are metrizable [4], a Fréchet-Urysohn



a;-PROPERTIES IN TOPOLOGICAL GROUPS 149

compact group is metrizable. However, it seems to be worth
considering the behaviour of a;-properties in Fréchet-Urysohn
compact-like groups.

1.13 Question. Do some new implications between a;-proper-
ties, ¢ € {1;1,5;2;3;4}, and of-properties, k € w U {c0}, ap-
pear in Fréchet-Urysohn groups belonging to one of the follow-
ing classes:

(1) countably compact groups,

(ii) pseudocompact groups,

(iil) precompact groups (= subgroups of compact groups),
and

(iv) groups complete in their two-sided uniformity?

Results of this paper were announced in [31].

Our set-theoretic and forcing notations follow [16]. For a
function f we use dom f and ran f for denoting the domain and
the range of f respectively; the function f itself is considered as
a subset of dom f x ran f. If X C dom f, then "X = {f(z) :
z € X}. If X is a set and 7 is a cardinal, then [X]" = {Y C
X:|Y|=7}and [X]< ={Y C X :|Y| < 7}. We use letters
with a dot over the top to denote names in the forcing notion,
and usually for typographical reasons we will drop checks over
letters when denoting canonical names for objects lying in the
ground model. If G'C P is a generic subset of a forcing notion
P and X is a P-name, then valg X is the interpretation of X
via G (see [16, Chapter VII, Section 2] for details).

We fix the symbol H for denoting the countable infinite
group all elements of which have order 2 (recall that such a
group is Abelian and unique up to isomorphism), and 0 stands
for the neutral element of H. Since H is Abelian, we adopt +
for denoting the group operation of H. If n € w and K C H,
then

gr, K ={go+...+9g::1<n, go,...,9: € K}

and gr, K = U{gr, K : n € w}. If K C H is finite, then grix K
is the smallest subgroup of H that contains K, so this subgroup
is finite. Further, if H' is a subgroup of H and ¢ € H \ H',
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then H'U (g + H’) is the smallest subgroup of H that contains
H' U {g}.

The paper is organized as follows. We fix a countable fam-
ily F of subsets of H. In Section 2 we define a forcing poset
P depending of F which adds generically a Hausdorff group
topology 7 on H to be defined in Section 3. All results of Sec-
tions 2-6 are independent of the choice of F. In particular, we
show that, for any F, (H,T) is Fréchet-Urysohn (Section 5),
but is not an a; s-space (Section 6), and P is forcing isomor-
phic to Fn(w;,w), the standard poset adding w; Cohen reals
(Section 4). Finally, in Sections 7 and 8 we specify the choice
of F to construct topologies 7y and 7; respectively.

We propose the following guidelines during the first reading
of the manuscript. First, start with Sections 2 and 3. Then
proceed with reading Sections 58 returning to statements (but
not proofs) of results from Section 4 when necessary. And
finally, if, after all these been done, you would be still encoraged
to enter into rather messy details of Section 4, you would be
free to do this.

2. A FORCING NOTION P
From now on we fix a countable family F of subsets of H.

2.1 Definition. A condition p € P is a structure p =
(H?, AP, B?,C?, fP, ©P), where H? is a finite subgroup of H,

AP € [w]<¥, B € [[AP]<¥ x F x AP xw]”, CP C HP x AP x AP,

and fP: APx HP — 2, P : APx H? — 2 are functions satisfying
the following properties:

(1,) f?(a,0) =1 for every a € A?,

(25) (h,ya,B) € C? implies that @ < 3, fP(e,h) =1 and if
gngldE HP, f?(B,90) = fP(B,g1) =1, then fP(a,h+go+g1) =
1, an ‘

(3,)if (E,F,a,n) € BP, then a ¢ E and 6°({a})N gr,0°(F) C
F, where for each E € [AP]“ we fix the following notation:

6P(E) = {h € H? : o*(a,h) = 1 for some a € E}.
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For p,q € P we define q < piff H? C HI, AP C A?, BP C B9,
CPC (9, fPC f? ¢" Cp'and

(4<p) if h € H'\ H?, a,B € AP and ¢%(a,h) = 1, then
fi(B,h) = 1.

One can easily verify that (P, <) is actually a poset. (Usually
we will drop < and write simply P.) Clearly, ({0},0,0,0,0,0) €
P is the largest element of P, and in what follows we will use

Ik T as an abbreviation for ({0},0,0,0,0,0) I+ T.
2.2 Lemma. P isc.c.c.

Proof. Let @ € [P]“*. Since |F| < w, using standard A-system
and countability arguments one can find distinct p, ¢ € @ such
that H? = H? = H*, AP N AT = A", f? | gexme = f7 ] aoxne
and P [ gexpr = @? [ arxy+. Define H" = H*, A" = AP U A9,
B"=BPUB!, C"=CPUCY, fr=fPU [, ¢" = ¢?Uyp? and
r=(H",A",B",C", f7,¢"). One can easily verify that r € P,
r<pandr<gq.

2.3 Lemma. For each h € H the set Q, = {¢ € P: h € H}
is dense in P.

Proof. Fix p € P\ Q1 and define
H?= H? U (h + H?), A= AP, B? = B?, (7 = (7,
= U{{{e,g+h),0):c € A%, g € H"}

and
0! =P U {{{a, g + h),0) : a € AP, g € H}.
Then q= (anAanqvaqu799q) € Qh and q < p-

2.4 Lemma. (i) Suppose that p € P and B € w, \ A?. Then
there exists ¢ < p such that B € A? and f9(3,h) = 0 whenever
h € H?\ {0}.

(1t) If in addition to the hypothesis of (i) we assume that
a€ AP, h € H?, a < 3 and fP(a,h) = 1, then ¢ < p can be
chosen to satisfy (h,o, 3) € C9.

(iii) For each B € w, the set Qg = {q € P : B € A} is dense
in P.
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Proof. (i) Define H? = H?, A? = AP U{B}, B = B?, C? = C?,

f=fu{({(8,0),1)} U{((B,h),0) : h € H*\ {0}}
and ¢? = ¢” U {{{(B,h),0) : h € HI}. Then ¢ =
(H1,A%,B1,C1, f1,¢%) € P,q < p and ¢ satisfies the require-
ments of ().

(i1) Consider the g constructed in the proof of (i), and let
H =HI, A" =A% B"=B% C"=C1U{(h,o,B)}, fr = [*
" =¢?and r = (H",A",B",C", f7,¢"). Assumptions of (ii)
yield that r € P, r < ¢ < p and moreover, (h,a,() € C".

(i) immediately follows from (i).

2.5 Lemma. If p € P and p € AP, then there exist ¢ < p
and h* € H?\ H? such that A? = AP, ¢¥(u,h*) = 1, and
©?(n, h) = 0 whenever n € A?\ {u} and h € H?\ H".

Proof. Choose h* € H \ H? and define
H? = HPU (h* + HP), A? = AP, B = B?, C? = CP,

(1) = u{{{a,g+h7),ff(a,9)) : € A”, g € HP},

(2) ¢" =" U{((n, 1), 1)} U {{{e, "), 0) s @ € AP\ {}}
U{{{e,g +1),0): € 47, g € H?\ {0}}

and ¢ = (H?,A?,B?,CY, f9,¢%).
2.5.1 Claim. ¢ € P.

Proof. (1,) trivially follows from (1,).

(2,) Assume that (h,a,3) € C?=C?. Then h € H?,a < f3
and f%(a, h) = fP(a,h) =1 by (2,). Now suppose that go,91 €
H? and f9(8,90) = fP(B,91) = 1. We have to consider three
cases.

Case 1. go,g1 € HP. In this case fP(8,¢9;) = fU(B,9:) =1
for ¢ € 2. Since HP is a subgroup of H, h + go + ¢g; € H?, and
(2,) yields f9(a,h + go +g1) = fP(e,h+ g0+ 1) = 1.

Case 2. g; € H?, g;_; € H?\ H?, ¢« € 2. In this case
gi-i = ¢' + h* for some ¢’ € HP, and since fI(f8,q1-:) = 1,
from (1) we conclude that f?(3,¢') = 1. Now from (2,) it
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follows that fP(a, h+g;+¢') =1, and applying (1) once more
we obtain

fio,h+go+g1) = fl(a,h+gi+9'+h*) = fP(a,h+g:+g') = 1.

Case 3. Both g; € H?\ H?, ¢ € 2. In this case choose g! € H?
with g; = g{ + &*, ¢ € 2. Since f?(8,4!) = f%(B,9:) = 1 for
i €2, fP(a,h+gy+g}) = 1 by (2,). But

h+got+tgi=h+go+h +g1+h"=h+g;+4g,
S0
filayh+go+g1) = fUash+g0+91) = fHah+ g0+ 1) = 1.
(34) Suppose (E,F,a,n) € B? = B?. Then a ¢ E by (3,).
If p ¢ EU{a}, then
0°({a}) Ngr,0°(E) = 0°({a}) N gr,07(E) C F,
because (3,) holds. If 4 = a, then
0'({a}) Ngr,0*(E) = (0°({a}) U {hr"}) N gr,0°(E)
C 0°({a}) Ngr,0°(E) C F,
because h* ¢ HP D gr, 0°(E) (we use here the fact that H? is a
subgroup of H and a ¢ E) and (3,) holds. Now suppose that
p € E. Then o # p and
0'({a}) Ngr,0°(E)
C 7 ({a}) N (gr 07(E) U (k" + gr,07(E)))
C 0°({a})Ngr,0P(E) C F,
since H? is a subgroup of H, h* ¢ HP and (3,) holds.

2.5.2 Claim. ¢ < p.

Proof. All properties beyond (,<,) are obvious. To verify
(4<p) observe that if h € H?\ H?, a, B € AP and ¢%(a, h) =1,
then A = h* and a = p according to (2); finally, (1) and (1,)
yield f(8,h") = f?(B,0) = 1.

All other properties of ¢ mentioned in Lemma 2.5 follow
trivially from the choice of ¢, so the proof of this lemma is now
completed.
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3. INTRODUCING GENERICALLY A GROUP
ToroLOoGY 7 ON H.

In this section we define a Hausdorff group topology 7 on
H and discuss purposes for including conditions (1,)-(3,) and
(4<p) in Definition 2.1. To give the reader an opportunity to
understand better the construction of 7, let us start from an
easy lemma adapting the common way of topologizing groups
to the specific group H:

3.1 Lemma. Let § = {U, : a € w;} be a family of subsets of
H satisfying the following properties:

(i) N{Us : @ € w1} ={0} and

(it) if « € wy and h € Uy, then h + Uz + Ug C U, for some
ﬂ c wi.

For h € H and ® € [w]¥ set Vig = h+N{U, : a € 9},
and let B={V,¢:h € H and ® € [w]*}. Then B constitutes
a base of some Hausdorff group topology T on H and S is a
subbase at 0 of this topology. Moreover, if T' is another group
topology on H for which S is a subbase at 0, then T' =T, i.e.
T is uniquely determined by S.

Recall that a family S is said to be a subbase at a point x of
a topological space (X,7)if S C T and, wheneverz € V € 7,
there is a finite subfamily Sy € § with z € NSy C V.

Proof. Since all elements of H have order 2,
(i) =U, = U, for every a € w;.

Since H is Abelian, we trivially have
(iv) g+ Uy — g = U, for all a € wy.

Now the conclusion of our lemma is a well-known conse-
quence of (i)-(iv) (see, for example, [14, Chapter 2, Theorems
4.3 and 4.5]).

3.2 Definition. [or a € w; set
Us={(h,p) : p € P, h € H” and f?(a,h) =1}
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and
Sy = {(h,p) : p€ P, h € H? and @*(a, k) = 1}.
Obviously, U, and S, are canonical P-names and
I+ “Ua C H and S, C H for every a € wy”.

Our main aim in this section will be to show that, in every
generic extension M[G] via a generic filter G C P,

(%) the family S = {valg U, : a € w;} satisfies the assump-
tion of Lemma 3.1, and so, in accordance with the conclusion
of this lemma, it generates the Hausdorff group topology 7 on
H,

(%) each interpretation valg S5 is a non-trivial sequence
converging to 0 in the space (H,7T).

In the process of verifying this we will demonstrate the im-
pact of different conditions from Definition 2.1 on the be-
haviour of U,’s and S,’s. We start with the simplest condition

(1p)-
3.3 Lemma. IF “N{U,:a € w} = {0}”.

Proof. For o € w; and p € P fixed, use 2.4(iii) to choose ¢ < p
with o € A? and note that ¢ IF “0 € U,,”, since f?(a,0) = 1 by
(1,). Now a standard density argument yields IF “0 € N{U, :
a € wi}”. On the contrary, from 2.3 and 2.4(i) it follows that
for each h € H\ {0} theset {g € P:38 € A? (fI(B,h) =0)}
is dense in P, so IF “N{U,:a € w} C {0}".

To prevent the reader from treating really simply-sounding
condition (1,) as being something not very much serious, it
should be specially emphasized that we have already used this
condition in a non-trivial way in the proof of Claim 2.5.2. In
its turn, Lemma 2.5 incorporating this claim will be applied in
the proof of important Lemma 3.9.

The proof of our next lemma displays what reason the prop-
erty (2,) was designed for.

3.4 Lemma. Ifg € P and (h,o,8) € CY, then gl “h+Us+
UsCU,”.
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Proof. Let go,91 € Hyr < gand rlF “g; € Uﬁ for : € 27.
Use 2.3 to pick p < r so that go,g1 € HP. Since p < r < g,
(h,a,8) € C* C CP. From p < rlk “go,91 € Ug” it follows
that f?(8,90) = fP(8,91) = 1. Now the condition (2,) enters
into the game: fP(o,h+go+¢1) =1,andsopl- “h+go+¢1 €
U,”. Finally, a standard density argument finishes the proof.

3.5 Lemma. IF “Va€w,Vhe U,38 € w; (h+Uﬂ+Uﬁ -
Ua)”.

Proof. Assume that « € w;, h€ Hy,r€ Pandrl- “h € U,”.
According to a standard density argument, to prove our lemma
it suffices to find ¢ < r and B € w; such that ¢l- “h + Up +
Us C U,”. So use 2.3 and 2.4(iii) to pick p < r such that
h € H? and a € AP. Sincep < rlF “h € Ua”, we obviously
have fP(a,h) = 1. Then apply 2.4(ii) to choose f € w; and
q < p with (h,a, 8) € C? and note that, by Lemma 3.4, ¢ is as
required.

3.6 Lemma. IF “the family S = {U, : & € w,} can be taken
as a subbase at 0 of some (uniquely determined by S) Hausdorff
group topology T on H”.

Proof. By 3.3 and 3.5, IF “ S satisfies the assumption of Lem-
ma 3.17, and the result follows.

3.7 Definition T is a P-name satisfying the following prop-
erty: I+ “(H, T ) is the Hausdorff topological group for which
S is a subbase at 0”. (Such a P-name exists by 3.6 and the
maximal principle (see, for example, [16], Ch. VII, Theorem
8.2).

Now we turn to handling S'g’s. For the reader convenience
we state explicitly a simple topological lemma wich will be
helpful in verifying (#*).

3.8 Lemma. Let (X,7) be a Hausdorff space, x € X and
S = {U, : a € w1} be a subbase at x. Assume also that S
is an infinite countable subset of X and S\ U, is finite for
each o € wy. Then (after any one-to-one enumeration) S is a
non-trivial sequence T -converging to x.
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Proof. We have to show that S\ V is finite whenever z € V €
T. Indeed, let z € V € T. Since S is a subbase at z, there is a
finite set ag, ..., o, € wy such thatz € N{U,, :: € n+1} C V.
Then

S\VCS\N{Us:i€n+1} =U{S\U,, :i €n+1},
and the last set is finite by our assumption.
3.9 Lemma For each B € w;, IF “5'[3 is infinite”.

Proof. Tor B € wy fixed, from 2.3, 2.4(iii) and 2.5 it follows
that for every K € [H]<“ the set {p € P : ¢?(8,h) =1 for
some h € H? \ K} is dense in P, so IF “ Sg is infinite”.

The proof of our next lemma displays how property (,<,)
works:

3.10 Lemma. I+ “S;\ U, is finite whenever a, B € w; ”.

Proof. Let a, 8 € wy. For p € P fixed, use 2.4(iii) to pick ¢ < p
with o, 8 € A? and then observe that qlF “Sg\ U, c H?”,
because (,<,) holds for each r < ¢. Since H? is finite, the
result follows from a standard density argument.

3.11 Lemma. For each B € wy, Ik “S'ﬁ is a non-trivial se-
quence converging to 0 in (H,7T)”.

Proof. Combine 3.6, 3.9. 3.10 and apply 3.8.

3.12 Lemma. Ifp € P and (E,F,a,n) € B?, thenpl- “S.N
gr,U{Sg: B EE}C F”.

Proof. 1f ¢ < p, then (E, Fya,n) € B> C B?, and so 8?({a}) N
gr,09(E) C I by (3,); now it remains only to remember the
definition of S,.

Now it is time to summarize the results of this section. Let
G C P be a generic filter and M[G] the generic extension of
M. In M[G] define f = U{f?:p€ G} and p = U{p? : p € G}.
From 2.3, 2.4(iii) and easy density arguments it follows that
f and ¢ are functions with dom f = dom¢ = w; x H and
ran f =ran ¢ = 2. For a € w; set

U,={h€H: f(a,h) =1} and
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So={h€H:p(a,h)=1}. '
It is routine to check that U, = val g U, and S, = val g S, for
all @ € wy, so the following lemma is an immediate consequence
of 3.6, 3.7 and 3.11:

3.13 Lemma. (i) S = {Uy : @ € w,} is a subbase at O of the
Hausdorff group topology T = valgT on H, and

(ii) {Sa : a € w1} is a family consisting of non-trivial se-
quences T -converging to 0.

It is properties (1,) and (2,) that are responsible for 3.13(i),
and the property (,<,) was designed to ensure 3.13(ii). The
various f? and P could be regarded as carrying the finite piece
of information on what p forces to be in future U,’s and S,’s,
respectively. And the interplay between f? and ¢P incorpo-
rated into the condition (3,) will then determine, by means of
3.12, which of the o;-properties would eventually hold in M[G].
Finally, the sequences S, will play a key role in verifying both
the Fréchet-Urysohn property and o;-properties of (H,T).

4. TECHNICAL LEMMAS

4.1 Definition. Let p € P and 4 € w;. We define a condition
ply € P, a restriction of p to v, by the following rules:

HPP = HP APP = APy, BPP = B”ﬂ([A”"’]<“’x.7-"xApl'7xw),
c?h = crn (th x AP x API’Y),
= 7 Daptvcrroins @77 = &P Lastpsty
and p|vy = (HP|"/,AP|’Y, Brh, Cph,fpl'r’(pph)_
The following facts can be verified trivially.

4.2 Lemma. p|y € P and p < p|y whenever p € P and v €
wi.

4.3 Lemma. If ¢ < p and v € wy, then q|y < p|y.

4.4 Lemma. For each p € P there exists § € w; such that
ply =p for all y € wy \ 6.
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4.5 Definition. Let p € P and v € w;. We say that p is
v-good if there exists o : AP — AP N« (witnessing that p is
7v-good) such that:

(i) o [4r\y is an injection,

(i) o(B) = B for every B € AP N ~,

(iii) if (E, F,a,n) € BP, then (¢"E, F,o(a),n) € B,

(iv) if (h,a,B) € CP, then (h,o(c),0(B)) € CP; in particu-
lar, o(a) < o(B),

(v) fP(a,h) = fP(o(a), k) for « € AP and h € H?,

(vi) P(a, h) = ¢P(o(a), k) provided that o € AP and h €
H?.

For A,B C w; we write A < B if & < 8 whenever a € A
and B € B.

4.6 Lemma. Suppose thatp € P and~y € w, is a limit ordinal.
Then there is a y-good ¢ < p so that APNy < A7\ AP < A7\ ~.

Proof. If AP C ~, then ¢ = p does the job, since the identity
function o : AP — AP witnesses y-goodness of p. So assume
that A7\ v # 0. Since A? is finite and + is a limit ordinal, one
can find K C v\ A? with | K| =|A? \v]| and APNy < K <
AP\ 4. In particular, there is a map o : APUK — APU K such
that o(8) = f for B € (AP N~v)U K, and o [4r\, is a bijection
from AP\ 4 to K preserving order, i.e. so that o, € AP\ v
and a < fimply o(a) < o(f). Define H? = H?, A = APUK,
B? = BP?U{(¢"E,F,o(a),n): (E, F,a,n) € B},
C? = C?U {(h,o(a),0(B)) : (h,a,B) € C?},

o= u{((o(e),h), fPle,h)):a € AP\y, h € HP},

o' = ¢ U {{{o(@),h), (e h) @€ A7\, h € )
and ¢ = (H?, A%, B?,CY, f9,¢%). An easy verification that ¢ €
P and g < p is left to the reader. On the other hand, by our
construction o witnesses that g is y-good.

4.7 Definition. P’ = {p € P : p is y-good for each limit
vy €w}and P, = {p € P': pla = p} for a € w;.

4.8 Lemma. P’ is dense in P.
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Proof. For pu € w; let i denote the smallest limit ordinal greater
than p. Fix r € P and choose p < r with w € A? (Lemma
2.4(iii)). Let {m: pu € AP} = {p1,... ,ptn}, Where py > pgy >
... > ln. Starting from py = p use 4.6 to choose, by induction
oni € (n+1)\{0}, p; € Psuch that pg > p;y > ... > pn, pi is
wi-good and

AP Ny < AP\ AP < AP\ for i € (n+ 1)\ {0}
Then observe that p, € P'.

4.9 Lemma. Suppose that v € wy, p,q € P, qly = ¢, ¢ < ply
and p is y-good. Then p and q are compatible in P.

Proof. Fix o witnessing that p is y-good. Define
H°=H' A =APUA', BP=B*UB? C°=CPUC(CY,

(3) f*=f1U{{{a,h), f1(o(a),h)) : . € AP\, h € H},
(4) ¢* =P U U{{{a, h),0) : € A"\ 7, h € H*\ H"}
and s = (H®, A°, B°,C°, f*,¢°).

4.9.1. Claim s € P.

Proof. (1) follows from (1,) and (1,).

(25) Suppose that (h,a,8) € C*. If (h,a, B) € C9, then (2,)
for these h,a, 8 follows from 4.5(ii) for o, (2,) for h,a, 3 and
(3). Otherwise (h,a, 3) € C?, and so a < 8 by (2,). Moreover,
4.5(iv) for o yields (h,o(a),0(B)) € CP. Since o(a),c(B) € v
and ¢ < p|y, we conclude that (h,o(a),o(B)) € CP C C1.
Therefore f*(a,h) = fi(o(a),h) = 1. Now suppose that g; €
H* = H? and f*(B,9:) = f%o(B),9:) = 1 for each 7 € 2.
Applying (2,) for h,o(a),o(3) and (3) we obtain f*(a, h +
9o+ g1) = fUo(a),h+go+g1) = 1.

(35) First of all let us show that

(5) 0°({a}) C 0°({o()}) whenever o € AP.

Indeed, since o(a) € ANy = AP and ¢ < p|y, ?I C ¢? and
S0

(6) 0"({o(a)}) = 0""({o(a)}) C 0°({o(a)}).
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If « € AP\, then from (4) and 4.5(vi) it follows that 6*({a}) =
07({a}) = 0?({o(a)}); this, together with (6), immediately
yields (5). Finally, for @ € AP N~ we have o(a) = a by 4.5(ii),
and so 0°({a}) = 0°({o(a)}) = 09({c()}) according to (4).

Secondly, as a consequence of (5), for each E € [AP]<¥ we
have

(7) 0°(E) = U{0°({a}) : a € E}
C U{t’({e(2)}) : « € E}
=U{0"({8}): B € a"E} = 0°(a"E).

Now assume that (£, F,a,n) € B*. If (E,F,a,n) € B, then
a ¢ E and

0°({a}) Ngr,0°(E) = 0°({a}) Ngr,0(E) C F

by (3;). Otherwise (F,F,a,n) € B? and o ¢ E by (3,).
Further, (¢"E, F,o(a),n) € BP by 4.5(iii) for o. On the other
hand, ¢”F C v, o(a) € v and q < p|y, so (¢"E, F,o(a),n) €
B C BY. Finally from (5), (7) and (3,) we obtain

0°({a}) Ngr,0°(E) C 0°({c(a)}) Ngr,0°(c"E) C F.
4.9.2 Claim. s < pand s <gq.

Proof. Inequality s < ¢ immediately follows from definition of
s. By the choice of s,

H? C H? = H*, AP C A®, BP C B®, C? C C® and ¢? C ¢°.

Further, from ¢ < p|y, 4.5(v) and (3) it follows that f? C f*.
Hence to show that s < p it remains only to verify (,<,). So
fix h € H*\ H? and o, € AP with ¢°(a,h) = 1. Then (4)
implies that & € AP Ny = APM and ¢?(a, k) = ¢*(a, h) = 1.
Since h € H* \ H? = H?\ H?P, o(B) € AP N~y = AP and
g <pl~, from (;<,,) we conclude that fI(o(8),h) =1. Now
if B € AP N+, then B = o(B) € AP Ny C A? by 4.5(ii) and
g < plv, so f*(B,h) = fUB,h) = fi(c(B),h) = 1. Otherwise
Be A\ and (B, k) = [(o(B), k) = 1 by (3).

4.10 Lemma. In addition to hypothesis of Lemma 4.9 as-
sume also that

() p€ AP\ v,
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(ii) h* € H?\ H?,

(iii) fi(a,h*) =1 for each a € AP N, and

(iv) h* ¢ gr,09(E) U (0°({a}) + gr,0(E)) provided that
(E,F,a,n) € Brh,
Then there existsr € P such thatr < p,r < g and " (p, h*) =1.

Proof. Consider the condition s constructed in the proof of
Lemma 4.9 and o from the same proof. Define

H' = H', A" = A*, B = B*, C" = C*, f" = f*

and " = p* U {<<.u’h*)’ 1>} \ {((p,h*),O)}.
4.10.1 Claim. r = (H", A", B",C", f",¢") € P.

Proof. First of all note that u ¢ A?. Indeed, A? C 7 because
g = 4|y, and p € AP\ v by (i).

(1,) follows from (1;).

(2,) follows from (2;) since f" = f°.

(3;) Suppose (E, F,a,n) € B" = B*.Then a ¢ E by (3,).

1°. If u ¢ E U {a}, then (3,) for this (E, F,a,n) follows
from (3,).

2°. If u = «, then, since u ¢ A, we conclude that (E, F,a,n)
€ BP in this case. Therefore (¢"E, F,o(a),n) € B* C B9,
because ¢ < ply and 4.5(iii) for o holds. Moreover (compare
the proof of 4.9.1, item (3;)),

0"({a}) = °({a}) U {r"} C 07({a(a)}) U {A"}

and gr,0"(E) = gr,0°(E) C gr,09(c"E), because u ¢ E. Since
(¢"E,F,0(a),n) € B?P, (iv) yields h* ¢ gr,09(¢"E), and so

0"({a}) Ngr 07(E) C (0°({o()}) U {h"}) Ngr,0°(c"E)

Cc 0{o(a)})Ngr,0(c"E)C F

by (3,).

3°. Now consider the last case u € E. Since u ¢ A?, we again
have (E, F,a,n) € B? and (0"E, F,o(a),n) € B Cc B?. But

now a # p, and so 0"({a}) = 0°({a}) C 67({o(a)}). On the
other hand,

gra0"(E) C gr,0'({o"E}) U (h” + gr,0°(o"E)).
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Since (0”E, F,o0(a),n) € BP, applying (iv) once more we con-
clude that &* ¢ 69({o()})+gr,0%(c”E), and hence §?({o(a)})N
(h* + gr,0?(c"E)) = 0. Now from (3,) it follows that

0"({a}) Ngr,0"(E)
C (6°({o(e)}) N (gr,07(c"E) U ({R*} + gr,0°(c"E)))
C #({o(a)}) Ngr,0'(c"E) C F.

4.10.2 Claim. r < p.

Proof. Since s < p and h* ¢ HP by (ii), we have only to check
property (,<,). So let h € H"\ H? = H* \ H?, a,3 € AP
and ¢"(a,h) = 1. If b # h*, then ¢*(a,h) = ¢"(a,h) =
according to the choice of ", and then f"(8,h) = f*(B,h) =1
by (s<p). On the other hand, since o(8) € APNv in accordance
with the choice of o, f7(8,h*) = f*(B,h*) = fi(c(B),h*) =1
by (3), 4.5(i1) and condition (iii) from the assumption of our
lemma.

4.11 Lemma. Suppose thaty € w1, p,q € P, qly =¢q, ¢ < plv
and p is y-good. Assume also that u € AP\ v, h* € H? and

(8) h* ¢ HP U (HP + gryar07(AP N 7)).
Then there isr € P so thatr <p, r < q and f"(pu,h*) = 0.

Proof. Let o witnes that p is 4-good, A”\A" {Ao, A1y.- o520}
and Ao > Ay -+ > A,. By induction on : € n+ 1 we will deﬁne
Z; as follows. Set

(9) Zo={heH: [P(do,h) = 1} U (0°(4" N7) \ HP).

If0<:<nand Z,...,Z;_; have already been defined, then

we let

(10) Z;={h € H?: fP(A\;,h) =1} U (0(A? N v) \ HP)
U{h+Z;+ Z: (k) i,);) € CP}.

(Note that (h,A;,A;) € CP implies A; < A; by (2,), so all
Z;’s mentioned in the third subset of Z; in (10) were already
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defined.) Now define

(11)
H =H A"=APUA°, B'=B*UB’, C"=C"UC",

(12) f':qu{(()\j,h),l):jEn+1,hEZJ’}
U{({(A;,h),0):j€En+1, he H*\ Z;}

and

(13)
o =P Up?U{{{a,h),0): a € AP\ A%, h € H?\ HP}.

It is clear that f" and ¢" are functions. We claim that r =
(HT, AR B",C", f7,¢") is as required. The proof of this will
be divided into a sequence of claims.

4.11.1 Claim f%o(Ai),h) = 1 for each ¢ € n + 1 and any
h € Z.

Proof. We will use inductionon ¢ € n+1. Letz = 0and h € Z,.
If h € HP, then fP(Ao,h) =1 by (9), and since q < ply,

F1(0(Ae) k) = [7(0(Xa), ) = f*(ho, b) = 1

by 4.5(v). Otherwise h € H?\ H? and ¢%(c, h) = 1 for some
a € AP Ny (see (9)). Since a,a(X) € AP Ny = APM and
q < ply, from (<, ) it follows that f9(o(Ao), k) = 1.

Now suppose that 0 < ¢ < n and that for Z,, Z;,...,7Z;_;
our claim was verified. Let h € Z;. If h belongs either to the
first or the second subset of Z; in (10), then the same argument
as above works to show that f(o(A;),h) = 1. So assume that
h belongs to the third subset of Z; in (10), i.e. there exist
JE€n+1,h € HP and 2,21 € Z; so that (', A\;, A;) € CP and
h = h'+ 29+ z,. Observe that j < i (see remark after (10)), so
fi(o(Xj),20) = f4(o(N;),21) = 1 by our inductive hypothesis.
Since ¢ < plv, from 4.5(iv) it follows that (h’,a()\;),a(};)) €
CPlv C C9. Thus fi(o()\),R') = 1 by (2,). Applying (2,) once

more, we conclude that

fi(a(Xi), k) = fUo(XN), A + 20+ z1) = 1.
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4.11.2 Claim. f* C f".

Proof. Since q < p|y, (12) yields that fP1" C f? C f. Since
AP\ y = AP\ A? = {Xg, A1,..., An}, it remains only to show
that fP(A;,h) = f7(A;,h) for every j € n +1 and any h € H?.
So fix arbitrarily j € n + 1 and h € H?. If fP();,h) =1, then
h € Z; by (9) and (10), and so f7(A;, k) =1 by (12). If, on the
contrary, fP();,h) = 0, then from 4.5(v) and ¢ < p|y it follows

that
fio(X), h) = fP(a(X;), k) = fP(A,h) =0,
so 4.11.1 yields that h ¢ Z;; therefore, f"(A;, h) = 0 by (12).

4.11.3 Claim. r € P.

Proof. (1,) follows from (1,), (1,), 4.11.2 and (12).

(2,) Let (h,,8) € C". If (h,, B) € CY, then (2,) for these
h, a, B follows from (2,) and (12). So assume that (h,a, f) €
C” \ C1. From (2,) and 4.11.2 it follows that & < 3 and
fr(e,h) = fP(a,h) = 1. In particular, (h,a,B8) € C?\ C?
implies that 8 € AP\ A%, ie. B = ); for some j € n + 1.
Further, suppose additionally that go,¢91 € H™ and f7(8,490) =
fr(:Bagl) = L Then go, g1 € Zj and fq(a(ﬁ),go)
fi(o(B),91) =1 by 4.11.1. Now we have to consider two cases.

1° o € A?. Since q|y = q < ply, from 4.5(i1) and 4.5(iv) it
follows that (h,a,0(8)) € CU. Since fi(a,h) = fP(o, k) =1,
(2¢) yields f%(a,h+go+91) = 1, and so f(a,h+go+g1) =1
by (12).

2° a € AP\ AY. In this case a = \; for some ¢ € n+ 1. Since
(h, Aiy Aj) = (h,a,8) € C?, (10) implies that h + go + g1 € Z;,
and so f"(a,h + go+ g1) =1 by (12).

(3,) could be verified via the same arguments as in the proof
of 4.9.1, item (3;).

4.11.4 Claim. r < p.

Proof. In view of (11), 4.11.2 and (13) it suffices only to check
property (» <,). SolethEHT\H”-—H"\th a,f € AP and

¢ (a,h) = 1. From the last equality, (13) and q|y = ¢ < p|y we
conclude that o € APNAI = APNy = APM. If B € APNAY, then
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from (12) and (, <,py) it follows that f7(8,h) = fI(B,h) = 1.
Otherwise § € AP\ A? and so # = ); for some : € n + 1. Now
notice that « € ANy, h € H?\ H? and ¢?(a, h) = ¢"(a, h) =
1,s0 h € 79(APNy)\ H? C Z; by (9) or (10); finally (12) yields
F(8R) = (k) = 1.

4.11.5 Claim. r < gq.

Proof. Since H™ = HY, (, <,) holds trivially. All other prop-
erties immediately follow from (11)-(13).

4.11.6 Claim. f7(u, k") =0.

Proof. Using (9), (10) and induction on ¢ € n 4+ 1 it can be
easily verified that

(14) Z; C HP U (H? + gry:0?(AP N 7)) for each i € n + 1.

Since u € AP\ vy, p = )\, forsome s € n+1. Sinces <n+1=
|AP \ A?] < |AP|, from (8) and (14) it follows that A* ¢ Z,.
Therefore f"(u, h*) = 0 by (12) as required.

4.12 Definition. Let T be a sentence in the forcing notion
P and § € w,. We say that T is é-definable provided that,
for each ¥ € w, \ § and any y-good conditionp € P, p I+ T
implies p|y IF T.

Note that if T' is é-definable, then T is also é§’-definable for
any &' € wy \ 6.

4.13 Lemma. Fach sentence T in the forcing notion P is §-
definable for some § € wy.

Proof. Let R C P be a maximal antichain consisting of condi-
tions which force —=T'. Since P is c. c. c., | R| < w, and so there
exists § € w; such that r|y = r wheneverr € R and v € w; \ §
(Lemma 4.4). We will prove that this § is as required. Indeed,
fix ¥ € w; \ 6 and a y-good condition p € P with p IF T. To
show that p|y IF T it suffices to check that no ¢ < p|y forces
—T. If this is not the case, then ¢t I+ =T for some ¢ < p|y.
Since R is a maximal antichain in {r € P :r |F =T}, one can
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find s € P and r € R so that s <t and s < r. For ¢ = s|y we
would have ¢ = s|y < t|y < p|y (see 4.3). Moreover, gy = ¢
and p is y-good, so by 4.9 there is r* € P such that r* < p
and r* < ¢. Now in view of 4.3 and the choice of § we have
™ < qg=sly <rly =r € R, thus r* | =T. On the other
hand, r* < p implies r* I T, a contradiction.

Let (P,<p) and (Q,<q) be posets. Amap j: P — Qisa
dense embedding provided that j is an injection, j”P is dense
in (Q,<q), and p <p p' is equivalent to j(p) <o j(p') for all
p,p' € P. Any poset P can be densely embedded into the com-
plete Boolean algebra P which is unique up to isomorphism.
Posets P and @) are forcing isomorphic iff Boolean algebras P
and @ are isomorphic. If j : P — @ is a dense embedding,
then P and @ are forcing isomorphic (see [16], Chapter VII,
Section 7).

4.14 Lemma. P is forcing isomorphic to Fn(w;,w), the stand-
ard poset adding w, Cohen reals. In particular, P and Fn(w;,w)
provide the same generic extensions.

Proof. For p € P and v € w, define
plly = (H?, AP\ v, B?\ B*,CP\ CP1", fP\ f71, 0P \ P).
Let {y(a): @ € w; \ {0}} be the increasing enumeration of all

limit ordinals A € w;. By induction on a € w; we will define a
finite support iteration

Q= {{Qu: a € w), (Ra Do € wr))
and dense embeddings ju : Py, — Qa, @ € w1 \ {0}, so that
Jo | Ply = i © Jp for B < a, where igy : Qp — Qu is the
canonical complete embedding. Set Qo = {0}, @1 = P, and
let j; : P, — @, be the identity map. For « limit, let Q, be
the finite support iteration ((Qg : B € a), (Rg: B € a)) and
Ja=U{iga07Js: B € a}. For @« = B+ 1 define Qp-names

Rs = {{(p || 7(B))", is(pl7(B))) : p € Pjoy}

and
<p = {{((¢' 1 7(8),p 1 7(B)))Y, 1q,) : P’ € Pyoy and p' < p}.
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It is clear that

1g, kg, “(Rg,<p) is a poset with the largest element
15 = ({0}7 wa ma wa wa w)”,

so (omitting <g) let Q, = Qg * Rg. Finally, let ju(p) =
(Us(plv(B))s p | 7(B)) for all p € Py,

Let us verify by induction on a € w; that j,’s are as required.
For a limit this is clear, so let « = 8+1. If 3 =0, then j, = 7;
is trivially a dense embedding, so we will assume that 3 > 0.
Since jg is an injection, so is j,. We leave to the reader to
check that p < ¢ is equivalent to j,(p) < ja(q). To show
that jo" P}, is dense in Q, fix (¢,7) € Qqa. Observe that
19, ks “Rs C{p |l v(8): p€ Py}, so we can find ¢ € Qs
and p € Py, with ¢t < g and t Ik, “p||v(8) =7 € Rp".
Since, by inductive hypothesis, j5" P, 4 is dense in Qp, js(s) <
t for some s € Py5. Now j(s) kg, “p || ¥(B) =7 € Ry”
implies the existence of p € P, such that js(p | 7(8)) and
js(s) are compatible in Qg, and p || 7(8) = p || 7(8). By
inductive hypothesis, jz is a dense embedding, so p|y(8) and s
are compatible in P} ;. Now 4.9, 4.8 and 4.3 yield that there
is p* € P,y with p* < p and p* < s. Then ju(p*) < (g,7).
Finally, note that p € P, 4 implies p || ¥(8) = 1g, so ja(p) =
iﬁa o ]ﬁ(p)

Recall that a poset P is non-atomic if for every p € P there
exist incompatible ¢, € P with ¢ < p and r < p. The follow-

ing claim seems to be folklore, but we include its proof for the
sake of completeness.

Claim. Suppose that Q = ((Qa : @ € &), (Ra: a € k) is a
finite support iteration such that, 1¢, kg, “Rgs is a countable
non-atomic poset” for every § € k. Then there is a dense

embedding of Fn(k,w) into Q.

Proof. By induction on a € k we will define dense embeddings
Ja : Fn(a X w,w) — Qg such that jo [rr(gxww)= 8« © Jg for
B < a < k, where ig, : Qg — Q4 is the canonical complete
embedding. For the basis of induction we set Qo = {0}, and
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since F'n(0 X w,w) = {0}, the map jo : Fn(0 x w,w) — Qo
sending @ to 0 is obviously a dense embedding. If  is a limit
ordinal, then from inductive hypothesis it follows that

Ja=U{iga0Jg: B € a}: Frnla X w,w) = Qq
is a dense embedding. So assume that « = § + 1. Since
1o, kg, “Rg is a countable non-atomic poset”,

from the proof of [34, Ch.II, Theorem 5.6] we conclude that

lg, IFq, “there is a dense embedding
Jg : Frn(w,w) — Ry such that J(0) = 1g,”

where Fn(w,w) is the standard poset adding a single Cohen
real. By the maximal principle [16, Ch. VII, Theorem 8.2],
there exists a (Jg-name Js such that

lg, lFo, “Jg: Fn(w,w) — Rg is a dense
embedding such that Js(9) = lg,”

For f € Fn(axw,w) define f' = f [sxw, and let f” € Fn(w,w)
be the function defined by f”(n) = f(3,n) for every n € w.
For every g € F'n(w,w) use the maximal principle again to fix
a Qp-name 7, such that 1q, IFg, “Js(g) = 7,”. Now one can
check that the map j, : Fn(axw,w) = Q4 = Qg * Rﬁ defined
by

ja = {(f7 (jﬁ(f/)’i'f”)) : f € Fn(a'x wvw)}
C Frn(a xw,w) X (Qp * Ra)

is a dense enbedding and j, [Fa(gxww)= 18a0Jp. Since Fn(k,w)
is isomorphic to F'n(k X w,w), the result follows.

One could easily check that 1g, IFg, “R, is a countable
non-atomic poset” for all € w;, so Fn(w,w) and @ are
forcing isomorphic by our Claim. If 7, : Q, — @ denotes the
canonical complete embedding, then j : P’ — @ defined by
J = U{ia0Js: @ € w} is a dense embedding. Now observe
that P and P’ are forcing isomorphic by 4.8.
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5. (H,T) 1s FRECHET-URYSOHN

In what follows we will use [X] for denoting the closure of
X CHin (HT).

5.1 Lemma. Suppose that s € P, X is a P-name and s IF
X C H and 0 € [X]. Then there ezistt < s, E € [w1]<¥ and
m € w so that

tl-“0e[XNgr, U{S,:ac E}]"
Proof. Suppose the contrary, then
(15)
s IF“XCc Hand0 e [X]\[Xngr,U{S,: € E}

<wn

for each m € w and any E € [w]

We are going to find » < s which forces the contradiction. For
each h € H Lemma 4.13 allows us to find §, € w; so that
the sentence “h € X” is §;-definable. Since | H | < w, we can
choose a limit ordinal ¥ € w; with v > sup {6, : h € H}.
Then each sentence “h € X” is y-definable. Pick u € wy \ 7.
Since sIF “0 ¢ [XNS,]”, we can use 3.11, 2.3, 2.4(iii) and 4.8
to find a y-good p < s such that u € AP and

(16) plF“X NS, c H.

Set

(17)  n"=max ({n:(F,F,a,n) € BP}U{0}) + 1.

Since AP N« is finite, from (15), 3.6, 3.7, 2.3 and 4.8 it follows
that there exist a y-good ¢t < p and h* € H*\ H? with

thF“r* en{U,:a € APNy}N X \gr.U{S,:a€ AP Ny)}".

In particular, for ¢ = ¢ | v we would have f?(a, h*) = 1 when-
ever o € AP N v, and moreover h* ¢ gr,.09(A” N ~y). Applying
(17), we conclude that

h* ¢ gr,0°(E) U (0°({a}) + gr,07(E))
for each (E,F,a,n) € B*. On the other hand, since the

sentence “h* € X7 is y-definable and ¢ is 5- good, qlIF “h* €
X”. Now all the requirements of 4.10 are satisfied, so there
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is r € P such that r < p, r < ¢ and ¢"(p4,h*) = 1. Since
r<qlF“h* e X", rlk“h*e€ XNS,”. Since r < p, (16)
yields r I+ “ h* € HP”, a contradiction with h* ¢ H?.

5.2 Lemma. M[G] & “(H,T) is Fréchet-Urysohn”.

Proof. We argue in M[G]. Since (H,T) is a topological group
(see 3.13(i)), it suffices to check the Fréchet-Urysohn property
of (H,T) at 0. Solet X C H and 0 € [X]. From 5.1 it follows
that 0 € [XNgr,,U{S, : @ € E}] for some E € [w;]<“ and m €
w. Since each S, is a convergent sequence (Lemma 3.13(ii)),
Z = (U{S, : @ € E})™ is a countable compact subspace of
(H,7)™. Since the m-fold multiplication ¢, : (H,7)™ —
(H,T) is continuous, gr,, U {Sa : @ € E} = ¢(Z) is also
a countable compact (hence metrizable) subspace of (H,T).
Now 0 € [X Ngr,, U{Ss, : a € E}] yields that there is a
sequence of points of X converging to 0 in (H,T).

6. (H,T) IS NOT AN a; 5-SPACE.

6.1 Lemma. Suppose that s € P, ¢ and Q are P-names and
(18)

s IF“€ :w — H is a function, Q C w is infinite and
Sm \ (U{S, : n < m} Uran€) is finite for allm € Q7.
Then st “£ is not a sequence T -converging to 0 7.
Proof. If not, then there is s’ < s so that
(19) s'IF “€ is a sequence T -converging to 0.

For i,m € w and K € [H]<¥ use 4.13 to choose ; , k € w; so
that the sentence

“(Sm \ (U{Sn :n < m}Uran €))U {€(j) : j <i} C K”
is 6; m k-definable. Fix a limit ordinal v € w; with

v > {5,"7,1‘]\" : i,m € w, K e [H]<w}
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Pick 4 € wy\y. Then use (19), 3.6, 3.7 and 4.8 to find a y-good
p < &’ and ¢ € w such that

(20) plk“€(j) € U, for all j > 3”.

Since p < slF “Q C w is infinite”, we can find m € w\ AP
and p’ < pso that p’IF “m € Q”. Now from p’ < s, (18), 2.3,
2.4(iii) and 4.8 it follows that there exists a y-good ¢ < p’ such
that {0,1,...,m} C A* and

tIF (S, \ (U{S, :n < m}Uran €))U{€(j) : j < i} C H”.
Since the last sentence is v-definable and ¢ is y-good,
(21)

ty Ik “(Sm \ (U{Sn : m < m} Uran €)) U {£(5) : j < i} € H”.
Now use 2.5 to find ¢ < t|y and h* € H?\ H* such that A? =
A oi(m,h*) =1, and ¢%(a, h) = 0 whenever a € A?\ {m}
and h € H?\ H'. Since m ¢ APN~y C A%, H' is a subgroup of
H and H? C H¢, we conclude that
(22) h* ¢ H' D gr (HP U0I(AP N ~)).
In particular

h* ¢ H' D HP U (H? + gryar07(A? N 7).

Note that ¢ | ¥ = ¢, because A7 = A, So 4.11 can be applied
tofind r € P withr <p,r < gand f"(u,h*) =0. Sincer <gq
and {0,1,...,m — 1} C A" = A9, " (m,h*) = @I(m,h*) =1
and ¢"(n,h*) = @¥(n,h*) = 0 for n < m, ie. rlk“h* €
Sm\U{Sn :n <m}”. Nowr < ¢g<t|~, h*¢ H' and (21)
imply that r Ik “ 2* = {(j) for some j > ¢”. Since r < p and
(20) holds, this yields r IF “ A* € U,”, a contradiction with
fr(p,h7) = 0.

6.2 Lemma. M[G] E “(H,T) is not an a; s-space”.

Proof. We argue in M[G]. From 2.4(iii) and 2.5 it follows that
Tm = Sm \ U{S, : n < m} is infinite for every m € w. Since
each S, is a sequence converging to 0 in (H,7T) (see 3.13(ii)),
we conclude that {7}, : m € w} is a disjoint sheaf at 0. Finally,
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Lemma 6.1 implies that the set {m € w: [T, \ran ¢ | < w} is
finite for each sequence ¢ that converges to 0 in (H,T).

7. CONSTRUCTION OF 7T,

In this section we will show that for F = [H]<* the topol-
ogy T constructed in Section 3 can be taken as 7y from Main
Theorem.

7.1 Lemma. Let p € P and p € wy \ A?. Then there exists
r € Psothatr <p, A" = APU{p}, H" = H? and ¢"(u,h) =1
for each h € H'.

Proof. Define H™ = H?, A" = AU {u}, B" = B?, C" = C?,
T =1 U{((#,0),1)} U{{{n, h),0) : h € H”\ {0}},

¢" =" U{{{g,h),1) : h € H"}.
We leave to the reader an easy verification that r =

(HT,A",B",C", f7,¢") is as required.

7.2 Lemma. Let F = [H]<¥, K € [H|<“, J € [w»]<¥, B €
w1\ J and k € w. Then the set

{geP:qlk “Ssn (K +gr,U{Ss:aeJ}) is finite”}
is dense in P.

Proof. Fix p € P. In view of 2.3 and 2.4(iii) we can assume,
without loss of generality, that K C H?, J C AP and § € AP’.
Choose p € w; \ AP, and let » < p be the condition constructed
in 7.1. Define

H?=H", A= A", B? :BTU{(‘]U{#}aHTnka_*_l)}?
qzcr’ fq:frv qu:Lpr a'ndq:(anAanqva,fqa()oq)'

It is clear that ¢ € P and ¢ < r < p. Furthermore, from 3.12
it follows that

gIF“SsN griyq U {Se:aeJU{u}}C H™.

Since K C H", and ¢"(u,h) =1 for each h € H", we conclude
that . _
glF“SgN (K +gr,U{Sa:a€J})C H™”.
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7.3 Lemma. Let F = [H]<“. Then IF  the set {n € w :
ran £ N Sy, is infinite} is finite for every sequence £ which con-
verges to 0 in (H,T)”.

Proof. Assume the contrary, and fix s € P and a P-name f SO
that
(23)

s IF“6:w — H is a sequence T- converging to 0, and
{n € w:ran €N S, is infinite} is infinite”.

For each j € w and every h € H fix 6;, € w; so that the
sentence “6(j) = h” is 6; -definable (Lemma 4.13). Let ¥ € w,
be a limit ordinal such that v > sup {6; : j € w, b € H}.
Pick 4 € w; \ 7. Since

slF “¢ is a sequence converging to 0 in (H,7)”,

we can apply 3.6, 3.7, 2.4(iii) and 4.8 to find i € w and a y-good
p € P such that p < s, p € AP and

(24) pl-“€(j) € U, for all j > 3",

Now use (23) to choose n € w \ A? and p' < p so that
pIF« ran é N S, is infinite”. From 7.2, 2.3 and 4.8 it follows
that there exist a y-good ¢t € P, h* € H* and j > 7 such that
t < p' and
(25)

ti-“€(j) = h* ¢ HP U (HP 4 gryam U {Sy : @ € AP NA})”.

Define ¢ = t|y. From (25) it follows that
h* ¢ HP U (H” + gryan?(AP N 7)).

Since t < p, 4.3 implies that ¢ < ply. Hence p, ¢,v,x and h*
satisfy all the requirements of 4.11 which yields the existence of
r € Pwithr <p,r <gand f"(g,h*)=0,i.e. 7l “h* ¢ Uu”.
Since ¢ is 4-good and the sentence “f( 7) = h*” is v-definable,
(25) implies that ¢ I £(j) = h*”. Now from r < q it follows
that r - “¢(5) ¢ U,”, a contradiction with j > ¢, r < p and
(24).
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7.4 Lemma. If F = [H]|<Y, then M[G] & “(H,T) is not an

a3-space”.

Proof. From 3.13(ii) and 7.3 it follows that, in M[G], {S, :
n € w} is a sheaf at 0 so that the set

{n € w: S, Nran ¢ is infinite}
is finite for each sequence ¢ which converges to 0 in (H,T).

Proof of Main Theorem, item (i). Set F = [H]|<“ and
combine 3.13, 4.14, 5.2 and 7.4.

8. CONSTRUCTION OF T;

Here we will show that for F = () the topology 7 constructed
in Section 3 can be taken as 7; from Main Theorem.

8.1 Lemma. Suppose that F = 0, s € P, X is a P-name,
sl “X C H and 0 € [X]\ X7, v € w; is a limit ordinal,
and for all h € H the sentence “h € X7 is y-definable. Then
sl “S N X is infinite” for any p € wy \ 7.

Proof. Pick p € wy \ 7. To verify that s IF “ S, N X is infinite”
it suffices to find, for t < s and K € [H]<¥ ﬁxed r <t and
h*e H\ K w1thrlf- “h* € S nx». Sop1cka7goodp<t
so that u € AP (see 2.4(iii) and 4.8). Since pIF “0 € [X]\ X”,
we can use 3.6, 3.7, 2.3 and 4.8 to find a y-good ¢’ < p and
R* € HY \ (H? U K) with
¢IF“r*en{lU,:a€ AP N7}NX".

Set ¢ = ¢’|y. Then h* € H?\ H? and f%a,h*) =1 for a €
AP N ~. Since F = § implies B* = (), we can apply 4.10 to
obtain 7 € P such that r < p, r < ¢ and ¢"(y, h*) = 1. Since
¢IF“r € X7, ¢ is 7- -good and the sentence “h* € X7 is
~-definable, ¢IF “ h* € X7, andsorlF “ h* € S nx’.

8.2 Lemma. Assume that F =0, s € P, X is a P-name and
slF“X C H xw and 0 € [X,]\ X, foralln € w”,

where X, = {(k,p) : pIF “(h,n) € X ”}. Then there is 1 € wy
such that

sl- “S"“ N X, is infinite for alln € w”.
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Proof. For all h € H and n € w use 4.13 to find 6, € w; for
which the sentence “h € X,.” is Op n-definable. Choose a limit
ordinal ¥ > sup {6nn : R € H, n € w} and p € wy \ 7. Now
8.1 finishes the proof.

8.3 Corollary If F = 0, then M[G]) E “(H,T) is an ap-

space”.

Proof of Main Theorem, item (ii). Set F = § and
combine 3.13, 4.14, 5.2 and 8.3.

9. ADDENDUM TO MAIN THEOREM

One can easily see that in case F = @ the condition (3,)
from Definition 3.1 is superfluous, so in this case poset P can
be simplified by dropping B and condition (3,) from p € P.
The only reason for involving so complicated poset in solution
of “ay = a; problem” is author’s intention to present a unified
approach to both problems and to provide their solutions by
complete proofs, and also the question of size of the paper. In
fact, to construct the topology 7; with the properties described
in Main Theorem one can use the following poset P* which is
much more simple than P.

9.1 Definition. A condition p € P* is a structure p =
(HP, AP, f? ©?,), where H? is a finite subgroup of H, AP €
[wi]<“ and fP: AP x H? — 2, P : AP x H? — 2 are functions
satisfying the following property:

(e,) For every o € AP the set H2 = {h € H? : fP(a,h) = 1}
is a subgroup of H.

For p,q € P* we define ¢ < piff H? C HI, AP C A9, fP C f9,
P C ¢? and

(4Sp) if h € HY\ H?, o, € AP and ¢¥(a, k) = 1, then
fi(B, k) =1.

One may easily check that all results of Sections 2-4 except
for 4.11 remain valid for P* instead of P — simply replace P
by P*, cut BP’s and C?’s, drop verifications of (2,) and (3,) in
the proofs and delete items (iii) and (iv) from Definition 4.5.
(Observe that 3.5 now trivially satisfied by letting 8 = a.) As
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for 4.11, its analogue, say 4.11*, also holds if we substitute P
by P* and replace condition (8) by the stronger condition

(26) k™ ¢ gr,(H? U 07(AP N¥)).

To see this, define r = (H", A", f7, ©") by the same rules as in
the proof of 4.11, but for each : € n + 1 replace old Z; by

(27)
Z: = gr,({h € HP : fP(A,h) = 1} U (0°(47 Ny) \ H?).

Since each Z; is a subgroup of H" = H? r € P*. Further,
f"c fic frand ZNnH? = {h € H? : fP(\;,h) = 1}
for every ¢ € n+ 1, so fP C f". From (13), the equality
H™ = H? and ¢ < p|y we conclude that (, <,) holds, so r < p;
and since H" = HY, the property (, <,) holds trivially, which
immediately yields r < gq. As was noted in the proof of 4.11.6,
p = A, for some s € n + 1. Finally, from (26) and (27) we
conclude that A* ¢ Z;, and so f"(u,h*) = 0. This finishes the
proof of 4.11*.

Let 7;* be the topology constructed via P* the same way
as 77 was constructed from P. The argument from Section 6
works to show that (H,77*) fails to be an oy 5-space (note that
condition (26) coincides with (22), so 4.11* can be applied!).
We will show in Lemma 9.2 below that (H,7;*) is Fréchet-
Urysohn, i.e. 5.2*, the analogue of 5.2 for P*, holds. Since
in the proofs in Section 8 only results from Sections 2-4 and
5.2* are applied, (H,7;*) is an az-space. So summarizing what
was said above, we see that 7;* has the same properties as 7;
from our Main Theorem. Moreover, P* is forcing isomorphic
to F'n(w;,w). The first advantage of 7;* with respect to 7; is
that, in view of (e,) for all p € P*, 7;* has a base of open
neighbourhoods of 0 consisting of subgroups of H. To display
the second one, we need the following

9.2 Lemma. If G is P*-generic over M, then M[G] E “(H,
T.)F is Fréchet-Urysohn for all k € w”.

Proof. Fix k € w, and let [X]; denote the closure of X C H*
in (H,7;*)F and 0, = (0,...,0) € H*. Since in M[G] each S,,
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[t € wi, is a sequence 7T -converging to 0 (analogue of 3.13(ii)
for 7;*), to check our lemma it suffices to show that
MI[G]  “if X C H* and 0y € [X], then
0% € [X N (S,)F]x for some p € wy”.
In its turn to prove this it suffices to verify that if s € P*, X
is a P*-name and
(28) s IF X C H* and 0} € [X]s,

then there is 4 € wy such that, whenever t < s and K € [H]<¥,
rik“(S,\K)*NX #0” for some r <t. So fix s € P* and a
P*-name X satisfying (28). Choose a limit ordinal v € w; such
that for any (ho,...,hk_1) € H* the sentence “(ho, ..., hg-1) €
X" is y-definable. Pick u € w1\v, and fixt < sand K € [H]<¥.
Choose a y-good p < ¢t with 4 € AP and K C HP. Then
use (28) to find a y-good ¢’ < t and hY,...,hL_, € HY (not
necessary distinct) so that

qIF<(Rs, .. hi_) € (NM{U, \ HP : € AP NN X7,

Let ¢ = ¢'|v. Then f%e,h}) = 1 and h} ¢ HP whenever
a € AP N~ and j € k. Further, gl “ (k... h_,) € X7,
because ¢ is y-good and the sentence “(Ag,...,h5_,) € X”
is y-definable. Now let o witnes that p is 4-good, and define
H™ = H?, A" = AP U A9,
o= rrPurtu{{(a, h), fi(o(a), b)) : . € AT\AP, h € H*\ H"}
and
" = "UETU{((p,h]),1):5 €k}

OL((, ),0) < b€ HI\ (HP U RS : 5 € )}

U{{(a, h),0) : a € AP\ (ATU {p}), h € H?\ H?}.
One can easily check that r = (H", A", f",¢") € P*, r < p and
r < q. Finally note that

rlb “(Re,. .. ki) € (S, \ K)*n X7,

Now, in M[G), (H,7;*) is an a,-space (analogue of 8.3 for
T;*), and (H,T;*)* is Fréchet-Urysohn for all k£ € w (Lemma
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9.2), so (H,T;*)” is a w-space ([22], Corollary 3.8). Thus we
have verified the following

9.3 Addendum to Main Theorem In addition to the
conclusion of Main Theorem we can assume that (H,T*)* is
a w-space and that T; has a base of open neighbourhoods of 0
consisting of subgroups.

In connection with this Addendum it might be interesting
to know whether the group (H, 75) from Main Theorem can be
chosen to have a base of open neighbourhoods of 0 consisting of
subgroups. I am inclined to an opinion that this is impossible.
Moreover, I could propose the following

9.4 Conjecture Each Fréchet-Urysohn group having a base
of open neighbourhoods of its neutral element consisting of
subgroups is a w-space.

Historical remarks. The trick of using a special function o
for preserving necessary information in the process of cutting
a condition, employed in the definition of a y-good condition,
was implicitly introduced by the author in [30] (observe that
the property (10) from item 4 of this paper can be restated in
terms of the existence of a special function o : B? — B? N Ay;
see also the property (14) in [32, Definition 2.1.2] for detailed
exposition). Such a function usually garantees that some sub-
posets of a poset are completely embedded in it. In our case
Lemma 4.9 actually states that P, is completely embedded in
P for every limit ordinal ¥ € w; (and p | v is a reduction of
p € P to P, in the sense of [16, Chapter VII, Definition 7.1]).

The notion of a é-definable sentence is the precise represen-
tation of a rather common idea that one could cut a condition,
or more generally, change it in a somewhat more complicated
way, without losing some piece of information this condition
forces. This idea, based essentially on the concept of a mini-
mally forcing set of conditions introduced, by the way, by Paul
Cohen (see definition before [6, Chapter IV, Lemma 8.7]), was
exploited in a non-trivial manner by Hechler [13], Bell [5], Ma-
lyhin [19] and probably by many others. In particular, based
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upon this fruitful idea, Malyhin [19, Section 5] discovered an in-
genious way of getting Fréchet-Urysohn non-metrizable groups
in forcing extensions. The author would like to emphasize that
it is Malyhin’s ideas from [19, Section 5] which were the start-
ing (but afterwards become far off) point of his constructions.!

Acknowledgement. The author would like to thank P.J.
Nyikos for valuable bibliographical comments and the referee
for helpful remarks and suggestions.

n fairness it should be mentioned that, although Malyhin’s ideas from
[19, Section 5] got the author an opportunity to understand better how one
might construct Fréchet-Urysohn group topologies in forcing extensions,
the author was unable to follow the arguments from the proof of [19,
Proposition 5.4] (referred to afterwards simply as “the Proof”). Indeed,
imagine that ({6,u},i) € £° for some p < 6 and i € w (we will use
the original notations from the Proof). Suppose also that the following
property holds:

(*) Whenever ¢ €P, ¢ <s,meQand qlF “mn € B”, then there is
n € (dom d?) \ (i + 1) so that d?(n) = (m,m’) and A4 (m') = L.

Now if this situation somehow happens (and the author could not ex-
tract from the existing proof any indication how to avoid this), then the
argument presented in the Proof unfortunately does not work. Moreover,
in this case the quadruple r = (A",d",E",T") constructed in the Proof
is not even a condition, i.e. » ¢ P in contrast with what is claimed there.
To see this observe that ¢ € P and m € Q chosen in the Proof satisfy the
assumption of (*), so we can pick n in accordance with the conclusion of
(*). Since Aj(m) = A} (m') = 1 and ({6, p},i) € £ C £ by the choice
of r, if r really were a condition, then the property 3c¢) for this » would
yield n <, a contradiction with n € w\ (¢ + 1).

However, if in the Proof someone drops items 2) and 3) from the
definition of a condition and items 3) and 4) from the definition of the
comparison relation between conditions, then it can be easily seen that
the resulting group would be Fréchet-Urysohn and non-metrizable (but,
of course, now nobody could state that its square is not Fréchet-Urysohn).
Therefore the following question seems to remain open:

Question. Is there a countable Fréchet-Urysohn group G such that
G x G is not Frechét-Urysohn?
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