TOPOLOGY
PROCEEDINGS

Volume 15, 1990
Pages 185-198

http://topology.auburn.edu/tp/

A COMPARISON OF TWO
CONSTRUCTIONS IN TOPOLOGY

by

JERRY E. VAUGHAN

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings
Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA
E-mail: topolog@Qauburn.edu
ISSN: 0146-4124

COPYRIGHT (© by Topology Proceedings. All rights reserved.



A COMPARISON OF TWO CONSTRUCTIONS
IN TOPOLOGY

JERRY E. VAUGHAN*

ABSTRACT. We compare two constructions of families
of sequentially compact Hausdorff spaces whose product
is not countably compact, and show that every space that
can be constructed by one construction is homeomorphic
to a subspace of some space constructed by the other
construction, but not vice versa.

1. INTRODUCTION

In [3], Peter Nyikos and I gave two constructions which give
for every ultrafilter u € w* a space X, which is sequentially
compact, Hausdorff, and not u—compact (such spaces provide
a solution to the Scarborough-Stone problem [4] in the class
of Hausdorff spaces). The two constructions in [3] produce s-
paces with similar properties. For instance, spaces constructed
by either construction are always scattered, locally countable,
weakly T3 [3], weakly first countable [3], Hausdorff, non-regular
spaces. The purpose of this paper is to answer the natural
question: Is one of the two constructions more general that
the other in some sense?

By abuse of notation, we let C denote both a construction
in topology, and the class of spaces that can be constructed
by the construction. In order to give a rigorous comparison
of two constructions, we need a rigorous definition of the con-
structions. We take the two constructions as defined in [3],
and recall their definitions in §2, §3 below. The construc-
tion defined in §2 is a modification using weak bases of the
Osteszewski construction, and the construction defined in §3
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186 JERRY VAUGHAN

is an iteration of the well-known construction of the class of
spaces called ¥. We denoted these two constructions by C
and Cj.

Since C; and C; produce spaces which are in many ways
similar, it should be noted that in fact, C; NC, = @ because C;
produces spaces having ¢ (= the cardinality of the continuum)
isolated points, and C, produces spaces having only countably
many isolated points.

The relation between the two constructions is described in
§4 where we show that every space X € (), is homeomorphic to
a subspace of a space Y € C,. The converse, however, fails. In
§5, we construct a space X € C; with the property that every
nonisolated point in X is the limit of a convergent sequence
from a countable, discrete dense subset, and we show such a
space X cannot be embedded into any space Y € Cj.

The notion of a weak base is used in both constructions, and
we now recall that definition.

Definition 1.1. (A.V. Arhangelskii[l]) Let X be a space and
for each z € X let B(z) be a family of subsets of X each of
which contains z. We say that B =U{B(z) : ¢ € X} is a weak
base for X provided

(1) for all By, B, € B(z), there exists By € B(z) such that
B3 C B] N B2, and

(2) For every U C X, U is open if and only if for every
z € U there exists B € B(x) such that BC U.

For an isolated point z, {z} € B(z). For the spaces consid-
ered in this paper, the nonisolated points have a weak base of
a special kind.

Definition 1.2. Let X be a space with weak base B = U{B(z) :
z € X}, and for all nonisolated points ¢ € X let K, be a
countable set that converges to x and = ¢ K,. If

B(z) = {H U{z}: His a cofinite subset of K.},

we say that K, generates the weak base for x, and that X has
a weak base generated by convergent sequences.
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Throughout the remainder of the paper, let u € w* be arbi-
trary but fixed.

2. CONSTRUCTION C;: MODIFIED OSTASZEWSKI
CONSTRUCTION

The underlying set for the space is the cardinal c. The topol-
ogy is constructed by transfinite induction as follows.

Step 1. Well-order [¢]* = {K, : w < a < c}, the set of all
countably infinite subsets of ¢, so that K, Caforallw < a <
c.

Step 2. Begin the induction by starting with the discrete
topology T, on w.

Step 3. (Inductive step). Assume we have constructed for
all w € a < 7, where v < ¢, Hausdorff topologies T, on « and
B(«a) countable families of subsets of @+ 1 each containing the
ordinal a, such that 8 < a < v implies

(1) (B8,T) is an open subspace of («a, Ty ),

(2) U{B(B) : B < a} is a weak base for (a,Ty),

(3) if B is not isolated in (8 + 1,T341), then there exists
Hjy € [K3]“ such that Hg converges to 3 and generates the
weak base B(3) for fin (8 + 1,T41),

(4) B is isolated in (8 + 1,Tp41) if and only if Kz has a limit
point in (4, ),

(5) u does not converge to any point in (a, Ty ),

(6) Kz has a cluster point in (8 + 1,Tp41).

We now proceed to the construction of the space (v, T).

Step 3A. v is a limit ordinal. Take T, to be the topology on
v having U{T, : « < v} as a base. Then (v, T.,) works by [3,
Lemma 2.10].

Step 3B. v is a successor ordinal, say vy = a + 1.

Step 3B(i). If K, has a limit point in (a,T,), we define
B(a) = {{a}}, and let T, be the topology on « + 1 having
T» U {{a}} as a base. Thus the point « is isolated.

Step 3B(ii). If K, does not have a limit point in (a,T,),
then choose an infinite set H, C K, for which there exists
W € T, such that H, C W, and W Nw ¢ u (this is possible
by [3, Theorem 3.2]). Take B(«) to be the set of all sets of the
form L U {a} where L is a cofinite subset of H,. Take To41 to



188 JERRY VAUGHAN

be the topology on a + 1 having as a base all sets U C a +1
such that UNa € T, and if a € U then there exists B € B(«)
such that B C U. Thus T, C Tpq41.

Note that Construction Cj can produce non-homeomorphic
spaces because of the freedom in Step 1 and Step 3B(ii).

Definition 2.1. The natural convention at Step 3B(ii): if there
exists W € Ty such that K, C W and W Nw ¢ u, then take
H, = K, (i.e., if it is possible to use the entire set K, to deter-
mine the topology at o then use it). If no such W € T, exists,
then take any H, € [K,]* for which there exists W € Ty such
that Hy, CW, and WNw & u.

3. CONSTRUCTION Cy: ITERATIONS OF ¥

Definition 3.1. A family A C [X]* is called almost disjoint
provided if A, A’ are distinct elements of A, then AN A’ is

finite.

Definition 3.2. Let (X,7) be a topological space and A C
[X]¥ an almost disjoint family of closed discrete subsets of X.
We define a space, denoted ¥ (X, A) as follows: The underlying
set of the space is X U A, where we write x4 instead of A for
all A € A, and the topology is that having as a base

TU |J{{za}UU:U€Tand A—Uis finite}
A€A

Thus A converges to x4 and generates the weak base at T4

in U(X, A).

Definition 3.3. Let {(Xa4, As) : a < 7} be a family of pairs
with each X, a topological space, such that for all a < ~

(1) Ao C [X4]* is an almost disjoint family of closed discrete
subsets of X,,

(2) if a+ 1<, then Xop1 = V(X,, As),

(3) if a is a limit ordinal, then X, = U{X35: 8 < a}.
Such a family is called a V-system of length v, and the space
U, =U{Xg: 8 < 4} is called the iterate (or limit) of the -
system, and we write ¥, = lim{Xz : § < ~}.
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Construction C,:

Step 1. Let X, denote w with the discrete topology.

Step 2. Pick any maximal almost disjoint family Ay C [w]*,
such that Ay Nwu = 0.

Step 3. (Inductive step) Assume we have constructed for all
a < v, where v < wy, spaces X, and maximal almost disjoint
families

A, C {H € [X,]”: H is closed discrete in X,}

such that {(X4, As) : @ < v} is a U-system of length ~ satis-
fying
(1) X, is Ty and has a weak base generated by convergent
sequences, hence consisting of countable, compact sets, and
(2) u has no limit point in X,.

Step 3A. v is a limit ordinal: Take T, to be the topology on

X, ={Xa:a<7}

having U{T, : o« < v} as a base. Pick a maximal almost
disjoint family A, of countable closed discrete subsets of X, so
that u has no limit point in ¥(X,,.4,), (this is possible by [3,
Lemma 4.6)).

Step 3B. v = a+ 1: We are given X, and A, satisfying (1)
and (2); so we put Xp41 = V(Xq, A,). We define Ay4g just as
we did A, in Step 3A.

This completes the induction and give us a W-system of 75-
spaces of length w;. We take X, to be the iterate of this
U-system.

Construction C, is capable of producing non-homeomorphic
spaces because of the freedom in the choice of the maximal
almost disjoint families at each step. Note that C is an induc-
tion on ¢, and C, is an induction on w;. Also note that since
we start with Xy = w, we have |¥,, | < e

4. EVERY X € C, CAN BE EMBEDDED INTO A SPACE
Y el

We will prove
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Theorem 4.1 Every space constructed by C, (iterations of ¥)
is homeomorphic to a subspace of some space constructed by C
(modification of Ostaszewski technique).

We begin with some lemmas.

Lemma 4.2. Let X and Y be spaces with weak bases generated
by convergent sequences. For each nonisolated point z in X,
let K, be a countable subset of X which converges to z and
generates the weak base at z in X. If h : X — Y is a one-to-
one map such that h maps isolated points to isolated points,
and h(K;) generates the weak base at h(z) for all nonisolated
z € X, then h is a homeomorphism onto an open subset of Y.

Lemma 4.3. Let X be a Hausdorff space with a weak base
generated by convergent sequences. A sequence S converges to
a point z € X if and only if S — K, is finite, where K, is the
sequence that converges to = and generates the weak base at z.

Proof. Suppose S converges to z, and S’ = S — K, is infinite.
Since X is Hausdorfl, no point of K is a limit point of S’; so
there exists an open set U D K, such that U NS’ = @. Thus
W = {z} U U is an open set which contains ¢ and misses 5,
and this contradicts the hypothesis that S converges to x. The
other half of the lemma is trivial.

Lemma 4.4. Let ¥, be an iteration of the W-system
{(Xa, As) : @ < wi} given by Construction Cy, let A =U{ A, :
a < w}, and let & = |V, |. Then k = |A| and & has uncount-
able cofinality.

Proof. Note that A is an almost disjoint family of countable
subsets of ¥,,. [urther, it follows from Lemma 4.3 that A is a
maximal such family because ¥,, is sequentially compact (in
other words, because each 4, is maximal, and the iteration is
of length w;). Thus A is a maximal almost disjoint family of
countable subsets of ¥,,. In addition, |A| = |¥,,| since the
correspondence A — z4 from A onto ¥,, —w is a bijection.
The lemma now follows from the well-known fact that if X is
a cardinal of countable cofinality, then every maximal almost
disjoint family of countable subsets of A has cardinality greater
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than A (this fact is easy to prove using a standard diagonal
argument).

Lemma 4.5. Let U, be the iteration of the WU-system
{{Xay As) : @ < w}. Then ¥, can be well-ordered in or-
der type £ = |V, | in such a way that ¥, = {p, : @ < Kk},
pn=n foralln € w, and for allw < a < & (*) if A€ A such
that po = 24 then A CU{ps: B < a}.

Proof. Well-order ¥, in order type «, put p, = nforalln € w,
and for w < a < « define p, by induction by selecting p, to be
the first point in

\ywl—{Pﬁ:B<a}

that satisfies (*). This selection is possible since any point in
X,, where 0 < w; is the first ordinal such that X, — {ps: 8 <
a} # 0, satisfies (*). Claim: every point p € ¥, is listed as
some p, for a < «. I this is not the case, then let w < ¢ < w;
be the first ordinal such that X, contains a point p that is
never listed. Say p = z4. By uncountable cofinality (Lemma
4.4), there exists a < & such that A C U{pg : § < a}. Since
p 1s never listed, for every a < § < & we choose for pg a point
that precedes p in the order on ¥, , but this contradicts the
fact that this order has order type .

Proof of Theorem 4.1. Let ¥, be an iteration of the W-
system {(Xa, As) : @ < w;} given by Construction Cj, and let
k = |¥,, | = |A]. Recall that &« < c¢. Let Y C ¢ such that
w+1CVY,|Y|=+x and [c—Y|=c. Let {y,:a <k} bean
order preserving enumeration of Y (thus y, = n for all n € w,
and y, = w). Assume we have the order given by Lemma 4.5:
U, = {pa:a < k}. Since ¥, —w is in one-one correspondence
with 4 we can order A = {A, 1w < @ < £} so that p, = 2 4,.
Define a mapping b : ¥, — Y by h(p,) = ya for all a < &
(thus h(p,) = n = y, for all n € w, and A(p,) = w = yu).
Since h is a bijection onto Y, h(.A) is a maximal almost disjoint
family in [Y]“.

In accordance with Step 1 of C; we must order [c] = {K, :
w < a < ¢} so that K, C « for all a. This order will be con-
structed by transfinite induction, and will satisfy several addi-
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tional properties (one purpose of these properties is to make
h(Ag) be the first set in the order from [h(Ag)]“).

Let [c]“ have a well-order in order type ¢, and assume we
have defined K, € [c]“ for w < a < 7, where v < ¢ such that

(1) K4 C «

(2)if a=yp €Y, then K, = h(Ap),

(3) if K, NY is infinite, and w < 7 < & is the smallest
ordinal such that K, N &(A,) is infinite, then y, < a.

We define K., as follows: If v = yg € Y, then to satisfy (2)
we put I, = h(Ap). Since h(A) is an almost disjoint family
and K, € h(A), the only 7 for which K., N h(A,) is infinite
is 7 = f3; s0 y, = yg = v, and therefore (3) holds. (1) holds
because Ag C {p, : T < B}; so

h(Ag) Ch({pr:7<B}) ={y, : 7 < B} Cyp=1.
If y €Y, define

H,={H €[] —{K,:a<~v}:HCH~},
and let K be the first set in H.,. We define K., by an induction

which starts by inspecting the set K:

(i) if KNY is finite, define K, = K,

(i) if L NY is infinite and 7 < & is the first ordinal such
that K N A(A,) is infinite, and y, < v, then define K, = K,

(iii) otherwise, discard I, and inspect the next set in H.,
and repeat (i), (ii), and (ii1). Continue in this manner until
some set in H,, is defined as K., (there exists K € H, that
satisfies (ii): any K € [h(AL)]Y — {K« : a < v}; so the process
eventually will define K.).

Claim 4.6. For every K € [c]*, there exists a < ¢ such that
K =K,.

Proof. Suppose some I{ is not listed. There exists a < ¢ such
that ' C a, and if { NY is infinite, there exists 7 < & such
that K N k(A,) is infinite. If K NY is finite put vy = a, and if
K NY is infinite put v = max{a,y,}. At eachstepy <o <c
with o € Y, we have I € H,, but K was not inspected at step
o since if it had been, it would have been put equal to K, by
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(i) Gf K NY is finite) or by (it) (if K NY is infinite). Thus for
each v < 0 < ¢, with 0 ¢ Y, a set which precedes K in the
order on [c]* was defined to be K, but this is impossible since
lc = Y| = ¢, and the order on [c]* has order type c.

We now apply construction C to {K, : w € a < ¢}, and
use the natural convention at step 3B(ii). Denote the resulting
spaces by (a,T,) for all @ < ¢, and let X = (¢, T).

Claim 4.7. Foreveryw < a<e¢, ifa €Y, then K, converges
to a and generates the weak base at a, and if a ¢ Y and K,NY
is infinite, then « is tsolated in X.

Proof. Assume true for w < a < %, where v < ¢. Case 1.
v € Y. Then by (2) v = ys, and K., = h(Ap) for some 8 < k.
We claim that K., has no limit points in (vy,7,): otherwise,
let @ < 7 be the first limit point of K. First we note that
K,NK, is finite: since K., = h(Ag) C Y, this is clear if K,NY
is finite; so we assume that I{, N'Y is infinite. Thus, since «
is not isolated, it follows from the induction hypothesis that
a € Y, therefore by (2) K, € h(A); so by almost disjointness,
K,NK., is finite. By virtue of the construction C}, there exists
H, C K, such that H, converges to o and generates the weak
base at o in X. Let H! be a cofinite subset of H, such that
H,NK, is empty. For each o € H,, ¢ < a. Since « is minimal,
there is a neighborhood U, of ¢ such that U, N K., = 0. Thus

W = {a}U|J{U,:0 € H.}

is a neighborhood of a containing at most one point of K..
This contradicts our assumption that « is a limit point of K,
and hence I{,, has no limit points in (v,7,). Now it follows by
Construction C) Step 3B(ii) and 2.1, that K, converges to v
and generates the weak base at .

Case 2. v ¢ YV and K, NY is infinite. Let 7 < & be the
smallest ordinal such that ,NA(A,) is infinite. By (3) above,
we have y, < v, and since ¥ € Y we have y, < 7. By the
induction hypothesis, I{,, = h(A,) converges to y,; so K, has
Y- as a limit point in X. Since y, < 7, K, has y, as a limit
point in (v,7T,). Thus by Step 3B(i), v is isolated in X.
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Claim 4.8. h is a homeomorphism from ¥, onto Y.

Proof. We have that h(n) = n for all n € w, and A, converges
to p, and generates the weak base at p, for all w < a < &.
Moreover, K,, converges to y, and generates the weak base
at yo. Since h(ps) = Yu, and h(A,) = K, it follows from
Lemma 4.2 that h is a homeomorphism.

Claim 4.9 h(¥,,) =Y is clopen in X. Thus, the ultrafilter u

does not converge in X.

Proof. By Lemma 4.2, h(V¥,,) = Y is open in X. Indeed, Y
satisfies (2) of Definition 1.1. A similar proof shows that its
complement is also open, or we can use the known results that
X is a sequential, Hausdorff space [3, Lemma 2.8], and that in
such a space, countably compact subspaces are closed.

This completes the proof of 4.1.

5. A SPACE X € (', WHICH CANNOT BE EMBEDDED INTO
ANY SPACE Y € (C,

We will construct a space by C in which every non-isolated
point is the limit of a convergent sequence in w, and show that
such spaces cannot be embedded into any ¥,,.

Definition 5.1 We say Y C ¥,, is bounded provided there
exists a < wy such that Y C X,.

Lemma 5.2. Every bounded, countably compact subset of ¥,
ts countable.

Proof. If the result is not true, take a < w; to be the smallest
ordinal such that there exists an uncountable, countably com-
pact Y C X,. Thus, for all § < a, Y ¢ Xp so by countable
compactness, « is a successor ordinal; say a« = v + 1. Again
by countable compactness, ¥ N (X, — X,) is finite. By lo-
cal countability [3, Lemma 2.3] there is a countable open set
W 2o YN(X,—X,). Thus Y —W is an uncountable, countably
compact subset of X, and this contradicts the definition of a.

Recall that the sequential closure of a set A in a space X is
defined to be

AU {z € X : there is a sequence in A converging to z}.
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Lemma 5.3. Let U, be an iteration of the W-system
{(Xa,Aa) : @ < wy} as given by Construction C,. For all
a < wy, the sequential closure of X, is Xqq1. In particular,
the sequential closure of any countable subset of ¥, is bound-

ed.

Proof. Let 8 > a+ 2 and z € Xg — Xa41. For A such that
z = z4, we have by definition of ¥, , that AN X, is finite. By
the Lemma 4.3, if S is a sequence that converges to z, then
S — A is finite; so S ¢ X,. Thus, z is not in the sequential
closure of X,. For the other inclusion, we note that every point
in X, 41 is the limit of a sequence from X, by definition, and
this completes the proof. '

Theorem 5.4. There exists a space constructed by Cy in which
every non-isolated point is in the sequential closure of w.

Proof. By Zorn’s Lemma, let A C [w]” be a maximal almost
disjoint family of size ¢ such that ANu = 0, and give [¢]*
any well-order of order type ¢. We proceed by induction to
construct a topology on ¢, and a listing of [c]“. Let S, denote
the discrete topology on w, and assume we have defined Haus-
dorff topologies S, on a, and countable sets I, C « for all
w < a < v, where vy < ¢, such that for w < 8 < o,

(1) (B, Sp) is an open subspace of (8 + 1, Sg41),
(2) if B is not isolated in (8 + 1, Sp41), then
(a) K3 Nw is infinite, and K3 Nw C A for some A € A,
(b) There exists an open set W € Sg such that Ky C W
and WNw ¢ u,
(c) K converges to [, and generates the weak base at j
in (841, 5541),
(3) B is isolated in (B+1, Sg41) if and only if K has a limit
point in (8, Ss),
(4) u does not converge to any point in (a, Sq).

We construct S, and K. If v is a limit ordinal take S, to
be the topology on v having U{S, : @ < v} as a base. Then
(v,S+) has a weak base generated by convergent sequences,
and u does not converge in (v, Sy). Define K, as follows: Put
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Hy={He€[]'—{Koa:w<a<y}:HCH}

and let B, be the first element of ., in the given order of [¢]“.

Case 1. If B, has a limit point in (v, S5,), put K, = B,.
Case 2. If B, has no limit point in (v, S,), then since u has
no limit point in (v, S, ), by w-collectionwise Hausdorff (see [3,
Lemma 2.6]) there exists an infinite set B' C B, and an open
set W’ O B’ such that W' Nw ¢ u. If B'Nw is infinite, then
there exists A € A such that B'N A is infinite; put K, =
(BB—w)U(ANB')and W =W'UA. If B'Nw is finite, then
pick an A € A such that A has no limit points in (v, S,), and
put K, = (B’ —w) U A (since |A| = ¢ we can pick A € A such
that KgNw ¢ A for all # < ~v; thus A has no limit points
in (v,S5,) by 4.3 and 2(a),(c)) and W = W' U A. Note that
in Case 2, I, N B, is infinite, and K., has no limit point in
(7, 55)-

If 4 is a successor ordinal, say ¥ = a+1, we are given S, and
K,. If K, has alimit point in (e, Sy), them make a isolated in
(a+1,S4+1) as in Step 3B(i) of C;. If K, does not have a limit
point in (a,S,), then take S,4; to be the topology on a + 1
defined as in Step 3B(ii) of € using 2.1 so that K, converges
to a, and generates the weak base at a. By 2(b), u does not
converge in (a + 1,S5,41). Define K4, in the same manner as
K, was defined in the limit ordinal case.

This completes the induction.

Claim 5.5. If K € [c]”, and « and 3 are ordinals such that
w<la<B<cand K = B, = Bg, then K = K, or K = K.

Proof. If B,(= K) has a limit point in («a,T,), then K, = K.
Otherwise, K, was defined so that K, N K is infinite, and the
topology at a was defined so that K, converges to a. Thus K
has « as a limit point in (& 4+ 1,Ts41), hence in (3,T5). Since
Bg(= K) has a limit point in (3,T3), Kg = Bg; so K = Kp.

Claim 5.6. Every set K € [c]* is listed as K, for some w <
a<c
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Proof. If this is not true, let K be a set in [c]“ that is not listed
as any I{,. By 5.5 there is at most one « such that K = B,,
and since K is countable, there exists 8 < ¢ such that K C 8,
and K # B, forall 8 <y <c. Thus K € H,, and K # B,
for all B < v < ¢; so the B, are sets that precede K in the
order on [c]“. Since that order has order type c, there exists
at least one set B that precedes K and such that B = B, for
infinitely many o. Pick ¢ < 0; < 02 such that B = B,, for
i € {0,1,2}. By 55, B=K,, or B=K,,;s0o B¢gH,, But
B = B,, € H,,. This is a contradiction.

Claim 5.7 Every non-isolated point in the space (c,S.) is in
the sequential closure of w.

Proof. If 3 is a non-isolated point, then by 2(c), Kg converges
to B, and by 2(a), g Nw is infinite. Thus, there is a sequence
in w which converges to S.

Now apply construction C; using the above order on [¢]“ =
{Ka : @ < ¢}, and using the natural convention at Step 3B(ii).
Denote the resulting topology on a by T, forw < a < c.

Claim 5.8. For cveryw < o < ¢ we have S, = T,.
Proof. This follows easily by induction.

Claim 5.9. In the space (c,T.) constructed above by C1, a
point is non-isolated if and only if it is in the sequential closure
ofwC X.

Proof. This follows from 5.7 and 5.8.

Corollary 5.10. The space (c,T.) constructed above cannot be
embedded into any space constructed by C,.

Proof. Suppose b : (¢,T.) — V¥, is an embedding. By 5.2,
the countably compact subspace h(c) is unbounded, but by
5.3 the sequential closure of h(w) is bounded. By 5.9 the set of
non-isolated points of (c) is bounded. This contradicts that
h(c) is countably compact.

Thus, (¢, T;) is a space constructed by C; which cannot be
embedded into any space construced by C,.
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